New developments in our understanding of vitamin D metabolism, action and treatment

Sylvia Christakos, Shanshan Li, Jessica De La Cruz, Daniel D. Bikle

1. Introduction
2. Vitamin D metabolism
 2.1. The vitamin D metabolic pathway production and regulation of 1,25(OH)2D3
 2.2. Mutations in the vitamin D hydroxylases and human disease
3. Vitamin D: molecular mechanism of action
4. Vitamin D and bone mineral homeostasis
 4.1. Recent advances in our understanding of 1,25(OH)2D3 regulation of intestinal calcium absorption
 4.2. Effects of 1,25(OH)2D3 on bone
 4.3. The role of 1,25(OH)2D3 in the kidney: decreased 1,25(OH)2D3 or increased FGF23 as an initial event in chronic kidney disease?
5. Non-classical actions of vitamin D
6. Vitamin D sufficiency
 6.1. 25(OH)D: total vs. free 25(OH)D
 6.2. Determination of 25(OH)D levels

Although vitamin D has been reported to have pleiotropic effects including effects on the immune system and on cancer progression, the principal action of vitamin D is the maintenance of calcium and phosphate homeostasis. The importance of vitamin D in this process is emphasized by the consequences of vitamin D deficiency which includes rickets in children and osteomalacia in adults. Vitamin D deficiency has also been reported to increase the risk of falls and osteoporotic fractures. Although vitamin D fortification of foods (including dairy products) has contributed to a marked decrease in rickets in the Western world, vitamin D deficiency in children and adults is still prevalent worldwide. This review summarizes new developments in our understanding of vitamin D endocrine system and addresses clinical syndromes related to abnormalities in vitamin D metabolism and action. In addition, the current understanding of the evaluation of vitamin D deficiency and sufficiency and recommendations for achieving vitamin D sufficiency are discussed.

© 2019 Elsevier Inc. All rights reserved.
1. Introduction

Nearly a century ago McCollum et al. [1] identified vitamin D as the factor that cured rickets. In recent years there has been renewed interest in vitamin D due not only to an increased awareness of possible benefits of vitamin D on overall health but also due to the resurgence of vitamin D deficiency in children and adults world-wide. In this article we focus on recent advances in our understanding of the vitamin D endocrine system and clinical syndromes related to dysregulation of vitamin D metabolism and action. The determination of vitamin D deficiency and sufficiency and recommendations for achieving vitamin D sufficiency are also addressed in this review.

2. Vitamin D metabolism

2.1. The vitamin D metabolic pathway production and regulation of 25(OH)2D3

Vitamin D is produced in the skin from its substrate 7-dehydrocholesterol [2]. This is a non-enzymatic process involving UV light and heat and is the most important source of vitamin D since few foods, which include fatty fish and fortified dairy products, contain vitamin D. The next step is the conversion of vitamin D to 25-hydroxyvitamin D3 (25(OH)D3) in the liver. Recent reports indicate that there are a number of enzymes with 25-hydroxylase activity [3]. However, evidence indicates that CYP2R1 appears to be the dominant 25-hydroxylase in humans [4-6]. 25(OH)D3 is then metabolized in the kidney, as well as in a number of extra-renal sites, to its most biologically active form 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) by the CYP27B1 (25(OH)D3 1-α hydroxylase) [7-10]. Controlling the levels of 1,25(OH)2D3 and 25(OH)D3 is the enzyme CYP24A1 (25(OH)D3 24-hydroxylase). CYP24A1 is induced by 1,25(OH)2D3 and is widely distributed, being expressed in most cells. Thus 1,25(OH)2D3 regulates its own metabolism protecting against hypercalcemia [7-10] (Fig. 1). Mutations in each of these enzymes can cause human disease [11]. The production of 1,25(OH)2D3 in the kidney is under stringent control (Fig. 1). Parathyroid hormone (elevated in response to hypocalcemia) stimulates CYP27B1 resulting in enhanced 1,25(OH)2D3 production. 1,25(OH)2D3 acts in turn to suppress PTH production in the parathyroid glands by increasing serum calcium and by upregulating the expression of the calcium sensing receptor, thus sensitizing the parathyroid gland to calcium inhibition [12]. Direct inhibition of PTH expression by 1,25(OH)2D3/VDR has also been reported [13]. 1,25(OH)2D3 also suppresses its own production by directly inhibiting CYP27B1 at least in the kidney [7-10]. Fibroblast growth factor 23 (FGF23), produced primarily from osteoblasts and osteocytes, promotes phosphate excretion and together with its cofactor α-klotho regulates vitamin D metabolism by inhibiting renal 1,25(OH)2D3 production and increasing expression of CYP24A1 [14,15] (Fig. 1). 1,25(OH)2D3 in turn stimulates FGF23 expression. In extrarenal tissues where CYP27B1 is also expressed, regulation differs from that in the kidney. In particular, sites such as epithelial cells and immune cells, regulation is primarily by cytokines and not by PTH or FGF23 [16]. This accounts for the hypercalcemia and inappropriately elevated 25(OH)D3 levels seen in a variety of granulomatous diseases and epithelial cancers.

With age there is a decline in the ability of the kidney to hydroxylate 25(OH)D3 to 1,25(OH)2D3 [17]. An increase in renal CYP24A1 expression as well as an increase in the clearance of 1,25(OH)2D3 with aging...
have also been reported [17–20]. Thus the combined effect of a decline in the ability of the kidney to synthesize 1,25(OH)2D3 and an increase in the catabolism of 1,25(OH)2D3 by CYP24A1 may contribute to age-related bone loss.

2.2. Mutations in the vitamin D hydroxylases and human disease

Evidence that CYP2R1 is the key vitamin D 25-hydroxylase is indicated from studies showing that patients with functional mutations in CYP2R1 develop vitamin D-dependent rickets with high PTH and alkaline phosphatase levels and very low 25(OH)D levels [5–7,21]. This form of rickets is currently considered vitamin D-dependent rickets, type 1B (VDDR1B). These patients respond well to physiologic doses of calcifediol (25(OH)D3) [21]. Mutations in the renal 1α-hydroxylase (CYP27B1), diagnosed generally in the first year of life, result in skeletal defects of classic rickets, muscle weakness, and growth retardation in spite of normal intake of vitamin D [7]. These findings emphasize the importance of the CYP27B1 enzyme. Patients with this disease were first diagnosed by Fraser et al. [22]. Laboratory assessment includes low 1,25(OH)2D3 levels, hypocalcemia, hypophosphatemia, high PTH but normal levels of 25(OH)D. Physiological levels of calcitriol (1,25(OH)2D3) are curative. This disease can be distinguished from vitamin D deficiency since vitamin D deficiency presents with low 25(OH)D levels and often normal 1,25(OH)2D3 levels. The crucial role of CYP24A1 in the catabolism of 1,25(OH)2D3 in humans was noted in recent studies of children with inactivating mutations in CYP24A1 [23]. These children present with hypercalcemia, hypercalciuria, decreased PTH, low 24,25(OH)2D3 and normal to high 1,25(OH)2D3 levels. It was suggested that this mutation was the probable cause of at least some cases of idiopathic infantile hypercalciuria, which can manifest after vitamin D supplementation. Stopping vitamin D supplementation, implementing a low calcium diet and limiting sunlight exposure have been suggested as therapy. It should be noted that adults with this syndrome have also been described [24,25]. Patients with a history of hypercalciuria and kidney stones may warrant screening for CYP24A1 mutations. Very recently a gain of function mutation in CYP3A4, a P450 enzyme involved in drug metabolism located in liver and intestine, has been described leading to rickets with decreased serum calcium and phosphate and elevated PTH and alkaline phosphatase. CYP3A4 was found to inactivate 25(OH)D3 and 1,25(OH)2D3 [26]. This is a distinct form of vitamin D-dependent rickets since it does not involve a defect in synthesis of vitamin D metabolites but rather is due to accelerated inactivation of vitamin D metabolites. The authors called this vitamin D dependent rickets type 3 and suggest that accelerated vitamin D inactivation by genetic or induced CYP3A4 activity may be a risk factor for vitamin D deficiency.

3. Vitamin D: molecular mechanism of action

The actions of 1,25(OH)2D3 are mediated by the vitamin D receptor, a ligand dependent nuclear receptor. The modular structure of VDR is comprised of an A/B domain, a conserved zinc finger DNA-binding domain (DBD), a flexible hinge region and a multifunctional ligand binding domain (LBD). VDR heterodimerizes with the retinoid X receptor (RXR). VDR/RXR interacts with specific DNA sequences, leading to activation or repression of transcription. For transcriptional activation, in general the vitamin D response element (VDR-E) in target genes is composed of two direct repeats of the hexonucleotide sequence AGGTCA separated by 3 base pairs (bp) although variations on this hexonucleotide sequence are numerous [9,10,27]. 1,25(OH)2D3 promotes heterodimerization of VDR with RXR and also recruits coregulatory complexes that participate in the regulation of transcription of VDR target genes, including SRC-2 (GRIP1) and CBP that display histone acetylase activity and Mediator complex, which functions to recruit RNA polymerase II [9,10,27] (Fig. 2). SRCs (SRC-1, -2 and -3) are primary coactivators that bind to VDR and recruit secondary coactivators such as CBP. Brahma-related gene 1 (BRG-1), an ATPase that is a component of the SWI/SNF chromatin remodeling complex, has also been reported to play a fundamental role in 1,25(OH)2D3 induced transcription [28] (Fig. 2). Thus VDR mediated gene transcription is a multistep process requiring a combination of transcriptional coactivators in a cell type and gene specific manner. At least 49 different mutations in the VDR in over 100 patients have been described, and occur throughout the VDR [29]. These mutations result in early onset of rickets, low calcium and phosphate, high PTH and growth retardation, indicating the essential role of VDR as the mediator of vitamin D action [29]. From recent genome wide studies we have obtained a new perspective on VDR mediated transcription. VDR binding sites are not only located at proximal promoters, as previously reported, but are situated also within introns and at distal intergenic regions many kilobases upstream or downstream of regulated genes [10,30]. In addition, recent evidence indicated that 1,25(OH)2D3 results in an increase in levels of acetylation at H4K5, H3K9 and H3K27 which can define sites of action of 1,25(OH)2D3 [10,31]. Epigenetic histone changes within enhancers of certain VDR target genes can play a crucial role in 1,25(OH)2D3 mediated transcriptional activation. Understanding the multiple factors involved in VDR mediated transcription can lead to the design of drugs that can selectively modulate 1,25(OH)2D3 responses in specific tissues, resulting in new approaches to sustain calcium balance and perhaps enhance suggested anti-inflammatory and anti-tumor activities of 1,25(OH)2D3.

4. Vitamin D and bone mineral homeostasis

4.1. Recent advances in our understanding of 1,25(OH)2D3 regulation of intestinal calcium absorption

Vitamin D is a principal factor involved in the control of mineral balance. Vitamin D deficiency during bone development causes growth retardation and rickets and in adults vitamin D deficiency can cause secondary hyperparathyroidism resulting in osteoporosis and/or osteomalacia and increased risk of fracture [32,33]. However, in spite of the importance of vitamin D in mineral homeostasis, understanding vitamin D action and the molecular targets that mediate the impact of vitamin D have remained incomplete and are a subject of continuing investigation. The principal action of vitamin D in maintenance of calcium homeostasis is intestinal calcium absorption [9,34]. This conclusion was made from studies in VDR null mice, an animal model of hereditary vitamin D–resistant rickets (HVDRR; also known as vitamin D dependent rickets type II) [29]. When VDR null mice are fed a diet which includes high calcium, rickets and osteomalacia are prevented as serum calcium and PTH are normalized [35,36]. In addition, intravenous or high dose oral calcium cures rickets and promotes normal mineralization in patients with HVDRR [37]. Transgenic expression of VDR specifically in the intestine of VDR null mice prevents rickets and normalizes serum calcium, further indicating that a major action of 1,25(OH)2D3/VDR in the prevention of skeletal abnormalities is enhancement of intestinal calcium absorption [38]. The demand for calcium increases under conditions of low dietary calcium intake, during skeletal growth or during pregnancy and lactation, vitamin D mediated intestinal calcium absorption occurs predominantly by an active transcellular process [34,39]. Two of the most pronounced effects of 1,25(OH)2D3 in the intestine are increased synthesis of calbindin, an intracellular calcium binding protein that has been proposed to facilitate calcium movement through the cytoplasm, and increased synthesis of transient receptor potential cation channel, subfamily V, member 6 (TRPV6), an apical epithelial calcium channel that mediates calcium entry into the enterocyte [40]. Evidence for a role of TRPV6 and calbindin in intestinal calcium absorption includes the findings that both proteins are expressed in the duodenum, both are induced at weaning (the time of onset of intestinal calcium transport) and both are induced, in response to 1,25(OH)2D3, prior to the peak of intestinal calcium absorption [40]. However, studies in calbindin-D9k or TRPV6...
null mice show no difference in phenotype (normal serum calcium and bone mass) and no difference in 1,25(OH)₂D₃ mediated active intestinal calcium absorption compared to wild type mice, thus challenging the traditional model of vitamin D mediated intestinal calcium absorption [41–43]. Thus active calcium transport can occur in the absence of these proteins suggesting compensation by other proteins yet to be identified. These findings also suggest the complexity of VDR mediated transepithelial uptake of calcium which may involve a network of multiple components involved in active calcium transport [44]. It should be noted, however, that under conditions of low dietary calcium in the TRPV6 KO mouse and in the TRPV6/calbindin-D₉k double null mice calcium absorption is reduced compared to single null mice and WT mice [41]. Thus TRPV6 and calbindin may act together in certain aspects of the absorptive process (for example calbindin may modulate calcium influx mediated by TRPV6). It is also possible that a principal function of calbindin is not facilitation of calcium movement through the cytosol but calcium buffering, preventing toxic levels of calcium from accumulating within the enterocyte during calcium absorption. Although the findings in the null mice indicate that other apical membrane calcium transporters may compensate for the loss of TRPV6, transgenic expression of TRPV6 in the intestine of VDR null mice results in enhanced calcium absorption and prevention of the hypocalcemia and osteomalacia observed in the VDR null mice [45]. These findings suggest that TRPV6 can mediate intestinal calcium absorption and that an inability to transport calcium into the enterocyte may be a primary defect in VDR dependent rickets. In addition to TRPV6, the in vivo physiological importance of the plasma membrane calcium pump (PMCA) in vitamin D mediated intestinal calcium absorption has recently been noted. Specific intestinal deletion in mice of PMCA1 (the major calcium pump of the intestine) resulted in decreased bone mineral density and impaired intestinal calcium absorption in response to 1,25(OH)₂D₃ [46].

Most research on intestinal calcium absorption has utilized the duodenum. However, it is the distal intestine where most of the ingested calcium is absorbed [47]. Although it has been suggested that calcium absorption in the distal intestine is due to vitamin D independent passive diffusion [47], VDR and the traditional transcellular mediators are expressed in both proximal and distal intestine [38]. In addition, active 1,25(OH)₂D₃ regulated calcium absorption occurs in the rat and human colon [48,49]. Studies in humans show that total calcium absorption is higher when the colon is preserved after small bowel resection [50]. To test directly the role of 1,25(OH)₂D₃ and the VDR in the distal intestine, recent findings from the Christakos lab indicated that transgenic expression of VDR only in distal ileum, cecum and colon of VDR null mice, at levels equivalent to WT, completely rescued the bone and serum defects associated with VDR deletion [51]. The induction of TRPV6 mRNA and calbindin-D₉k in the distal intestine of the transgenic mice suggest that active transport is involved in the rescue of rickets of the VDR null mice expressing VDR in the distal intestine and that the distal intestine contributes to maintenance of whole body calcium and bone homeostasis.

4.1.1. Clinical relevance

Reduction of intestinal calcium absorption with advancing age has been reported to be a significant risk factor for fracture in the elderly [52]. Bariatric surgery with the by-pass of the upper intestine is associated with calcium malabsorption and bone loss [53]. Understanding the mechanisms involved in VDR mediated active calcium transport in the distal intestine may suggest new strategies to prevent bone loss caused by disrupted calcium metabolism due to bariatric surgery, small bowel resection or aging.

4.2. Effects of 1,25(OH)₂D₃ on bone

Although a primary antirachitic effect of 1,25(OH)₂D₃ is indirect, providing calcium to bone as a result of enhanced intestinal calcium absorption, 1,25(OH)₂D₃ can stimulate osteoclastogenesis by upregulating RANKL (receptor activator of nuclear kB ligand) in osteoblastic cells. RANKL mediates osteoclast formation by mediating direct interactions between osteoblast/stromal cells and osteoclast precursors [54]. During a negative calcium balance 1,25(OH)₂D₃ together with PTH (which also induces RANKL in osteoblasts) result in enhanced osteoclast formation and loss of calcium from bone [9,10,55]. Enhancer regions significantly
upstream of the RANKL start site mediate the regulation of RANKL by PTH and 1,25(OH)₂D₃ [56,57]. In addition to osteoblasts, osteocytes have also been shown to be a major source of RANKL [58]. 1,25(OH)₂D₃ also reduces matrix mineralization by increasing the expression of mineralization inhibitors, including osteopontin, in osteoblasts [59]. Thus when 1,25(OH)₂D₃ regulation of intestinal calcium absorption is insufficient to maintain calcium homeostasis, maintenance of blood calcium levels is prioritized at the expense of skeletal integrity. It should be noted however, that the role of 1,25(OH)₂D₃ in bone under conditions of positive calcium balance, although not clearly defined, has been suggested to involve osteoanabolic effects of 1,25(OH)₂D₃, for example up-regulation of LRPs (low density lipoprotein receptor related 5), a mediator of bone mineral density and formation as part of the Wnt signaling mechanism [60].

4.2. Clinical relevance

These findings suggest that a combination of calcium and vitamin D is needed for treatment or prevention of osteoporosis since vitamin D alone may negatively affect bone when calcium homeostasis cannot be maintained by 1,25(OH)₂D₃ mediated intestinal calcium absorption.

4.3. The role of 1,25(OH)₂D₃ in the kidney: decreased 1,25(OH)₂D₃ or increased FGF23 as an initial event in chronic kidney disease?

During a negative calcium balance, when serum calcium cannot be maintained by intestinal calcium absorption, in addition to mobilizing calcium from the skeleton, 1,25(OH)₂D₃ also acts together with PTH to increase calcium reabsorption from the distal tubule of the kidney. 1,25(OH)₂D₃ regulates the active transcellular process at the distal tubule by inducing the expression of the apical calcium channel TRPV5 (which shows 73.4% sequence homology with TRPV6) and by inducing calbindin-D₉k (9000 Mr) in mouse kidney and calbindin-D₂₈k (28,000 Mr) in mouse, human and rat kidney [9,61]. 1,25(OH)₂D₃ can also enhance the stimulatory effect of PTH on calcium reabsorption in part by increasing PTH receptor expression in the distal tubule [62]. Another major function of 1,25(OH)₂D₃ in the kidney is the regulation of the vitamin D hydroxylases (inhibition of CYP27B1 and stimulation of CYP24A1 as an autoregulatory mechanism to prevent hypercalcemia). In addition to 1,25(OH)₂D₃, calcium, PTH and FGF23 are also important regulators of 1,25(OH)₂D₃ production (see Section 2; vitamin D metabolism and Fig. 1). In chronic kidney disease (CKD) there is a gradual decrease in the number of functional nephrons and alterations in renal vitamin D hydroxylases and vitamin D metabolites including low 1,25(OH)₂D₃ [63]. This has been attributed to reduction in renal 1α-hydroxylase as renal mass is reduced as well as to the increase in FGF23 [63,64]. FGF23 is increased in CKD in order to maintain phosphate excretion per nephron but has been shown to be a major contributor to the decrease in 1,25(OH)₂D₃ in early renal failure [64,65]. A decline in the FGF23 cofactor klotho has also been reported to be an early event in CKD, which may cause a compensatory increase in FGF23 [65].

4.3.1. Clinical relevance

Recent evidence indicates that FGF23 (and not decreased 1,25(OH)₂D₃) is an initial event in CKD, a biomarker for CKD progression and a predictor of cardiovascular disease [64,66]. FGF23 would result in the decrease in 1,25(OH)₂D₃ which would be followed by an increase in PTH [64]. Hyperphosphatemia is observed at the end stage of CKD when the kidney is incapable of excreting ingested phosphate [64] (Fig. 3). Recent findings suggest that a novel distal enhancer mediates the early rise in the expression of FGF23 in a diet induced CKD mouse model [67]. FGF23 antagonism combined with vitamin D supplementation and phosphate control has now been suggested as therapeutic treatment in CKD [66].

5. Non-classical actions of vitamin D

Although the essential role of vitamin D in calcium homeostasis is well documented, the possibility that 1,25(OH)₂D₃ also affects numerous other physiological processes has been considered for decades due to the presence of VDR in numerous tissues and cells that are not involved in calcium regulation including pancreas, brain, skin, placenta, colon, breast and prostate cancer cells and immune cells [68,69]. In the innate immune system antimicrobial peptides provide protection against bacterial infection [70]. The human cathelicidin antimicrobial peptide has broad antibacterial activity against both Gram-positive and Gram negative bacteria [71,72]. 1,25(OH)₂D₃ has been reported to induce the expression of the human cathelicidin antimicrobial peptide in monocytes, lung epithelial cells, intestinal epithelial cells, keratinocytes and trophoblasts of the placenta [72]. Recent studies have identified novel networks involved in vitamin D mediated regulation of cathelicidin [73]. Understanding the mechanisms involved in the regulation of cathelicidin may suggest new approaches to treat infection caused by antibiotic resistant pathogens. In addition to the innate immune system, 1,25(OH)₂D₃ also affects adaptive immunity [reviewed in 9,72,74]. 1,25(OH)₂D₃ inhibits the production of inflammatory cytokines in T cells including IL-2, IFNγ, IL-12 and IL-17. 1,25(OH)₂D₃ also suppresses antigen-presentation by dendritic cells and promotes activation of T regulatory cells which are involved in inhibition of inflammation [9,72,74]. Due to the effects of 1,25(OH)₂D₃ on the adaptive
immune system, it has been suggested that 1,25(OH)₂D₃ may play an important role in the prevention or treatment of autoimmune diseases such as multiple sclerosis, inflammatory bowel disease and rheumatoid arthritis [74]. In addition to its immunomodulatory effects a role for 1,25(OH)₂D₃ on cancer prevention or treatment has been suggested due, at least in part, to the effect of 1,25(OH)₂D₃ on inhibition of cancer cell growth [9,75]. Studies in mouse models have shown inhibition of mammary, prostate, colon and skin cancer by 1,25(OH)₂D₃/VDR [75]. It has also been reported in clinical studies that a large number of diseases are associated with low 25(OH)D levels [9]. It should be noted however that, at this time, only a limited number of randomized controlled clinical trials (RCTs) have convincingly shown benefit from vitamin D supplementation [9,74,76]. One major exception to this is psoriasis, a chronic autoimmune inflammatory skin disease, involving hyperproliferation of keratinocytes [77]. Topical application of 1,25(OH)₂D₃ and its analogs (calcipotriol, tacalcitol and maxacalcitol), which have been shown to increase differentiation and decrease proliferation of keratinocytes, and also have anti-inflammatory properties, are currently approved for use to treat psoriatic skin lesions [9,78]. Although, for most diseases, large scale clinical trials to determine effects of vitamin D on extraskeletal health are not yet available, compelling evidence in the laboratory indicates beneficial effects of 1,25(OH)₂D₃ beyond bone and suggest that analogs of 1,25(OH)₂D₃ may have a role together with traditional therapies to treat specific diseases including autoimmune diseases and some cancers at least in vitamin D deficient individuals [9,74,76,78].

6. Vitamin D sufficiency

6.1. 25(OH)D: total vs. free 25(OH)D

25(OH)D is the principal yardstick by which vitamin D sufficiency is determined. There are several reasons for this. First, 25(OH)D is the vitamin D metabolite in highest concentration in the blood, so is easiest to measure. Second, nearly all 25(OH)D is in the blood, unlike vitamin D itself, which is stored in tissues such as fat. Third, the conversion of vitamin D to 25(OH)D follows first order kinetics, meaning that the level of 25(OH)D is linearly correlated to the levels of vitamin D, although there is individual variation in the relationship between vitamin D intake and 25(OH)D levels achieved. The 25-hydroxylases are little regulated under most circumstances, unlike CYP27B1, so the conversion of vitamin D to 25(OH)D is not influenced by changes in hormones such as PTH, FGF23, or feedback regulation by 25(OH)D or 1,25(OH)₂D₃. Finally, 25(OH)D has a half-life in blood measured in weeks, unlike hours for 1,25(OH)₂D₃. That said, total 25(OH)D may not be the best measure of vitamin D status. 25(OH)D, like other vitamin D metabolites, is carried in blood by two major proteins, vitamin D binding protein (DBP) and albumin. DBP binds approximately 85% of total 25(OH)D, albumin 15%, with approximately 0.03% free [79]. Except for tissues expressing the megalin/cubulin complex, it is the free fraction that enters the cells (the free hormone hypothesis). This is similar to that for the thyroid and steroid hormones [80,81], which like vitamin D metabolites are transported in blood bound to their respective binding proteins. Although an earlier monoclonal assay reported marked differences in DBP levels between racial groups, this appears to be due to a decreased ability to measure the GcIf allele of DBP found most commonly in individuals of African descent, and has not been seen with other polyclonal assays or mass spectroscopy [82]. There are a number of drugs and cytokines (dexamethasone and IL-6 for example) as well as clinical conditions (for example liver disease, nephrotic syndrome, primary hyperparathyroidism, acute trauma) that contribute to changes in DBP levels that alter the ratio of total to free 25(OH)D [83] suggesting that determination of the free level of 25(OH)D might be a better representation of vitamin D status than the total level, but this remains controversial [84].

6.2. Determination of 25(OH)D levels

The data used for determining recommended levels of 25(OH)D come primarily from association studies correlating 25(OH)D levels to disease incidence/prevalence, but with a growing number of randomized controlled clinical trials (RCTs) evaluating whether vitamin D supplementation reduces the incidence/prevalence of a given marker or disease. The most consistent data, and the data used in establishing recommendations either for optimal levels of circulating 25(OH)D levels or levels of dietary supplements, comes from studies involving the musculoskeletal system. To state the obvious, measurement of 25(OH)D is required in these studies, but unfortunately the assays that have been used vary [85]. Most of these assays involve antibodies that may differ between laboratories with variable ability to detect 25(OH)D₂ as well as 25(OH)D₃ and sensitivity to interfering substances [82]. As more laboratories implement LC/MS to measure vitamin D metabolites, many of the problems with immunometric assays will be solved. Meanwhile efforts are being made to harmonize the data from different laboratories in different countries [86], but recommendations based on earlier non-harmonized data persist. Moreover, different groups select different studies or weight them differently when establishing their recommendations. Finally, it is not clear that vitamin D levels that are optimal for Caucasians are the same as those for Black Africans or Asians. Not surprisingly current guidelines vary, but efforts to gain consensus are being made especially as new data from RCTs based on better assays are being generated [87].

6.3. Evaluation of vitamin D deficiency and sufficiency and recommendations for achieving vitamin D sufficiency

Terms to consider are estimated average requirement (EAR)—the median level at which 50% of the population would be sufficient—and the required daily requirement (RDA)—the level that meets the needs of 97.5% of the population. Other countries use different terms such as adequate intake (AI), reference nutrient intake (RNI), and recommended intake (RI). The recommended levels assume no additional contribution from epidermal production of vitamin D. Thirty three nominated experts in pediatric endocrinology, pediatrics, nutrition, epidemiology, public health, and health economics from around the world recently published their consensus recommendations on the prevention and management of nutritional rickets [32]. They defined vitamin D sufficiency as 25(OH)D levels above 50 nM (20 ng/ml), insufficiency between 30 and 50 nM, and deficiency below 30 nM (12 ng/ml). Moreover, they noted that the consequences with respect to the development of rickets/osteomalacia were also dependent on calcium intake. They defined calcium sufficiency as ≫500 mg/d, insufficiency as 300–500 mg/d, and insufficiency as <300 mg/d. It was individuals with the combination of insufficient or deficient levels of either calcium or vitamin D and deficient levels of the other that were most at risk for rickets/osteomalacia. Deficiency of vitamin D with a normal calcium intake might lead to biochemical abnormalities but not rickets/osteomalacia according to their analysis. They recommended 400 iu vitamin D/d for infants up to 1 year and followed the Institute of Medicine (IOM) (now known as the National Academy of Medicine (NAM)) recommendations for older children and adults (see below) (also Table 1). They further recommended 200 mg calcium/d for infants up to 6mo, and 260 mg/d from 6 to 12 mo. Older children were recommended to consume at least 500 mg calcium/d. Other than the recommendation by NAM for adults to ingest 700–1300 mg calcium/d [88], most guidelines are silent with respect to calcium. Pilz et al. [89] recently tabulated dietary recommendations for vitamin D from a number of countries including those from the USA and Canada (Institute of Medicine, NAM); Europe (European Food Safety Authority, EFSA), Germany, Austria, Switzerland (DACH), United Kingdom (Scientific Advisory Committee on Nutrition (SACN)), and the Nordic countries (NORDEN). What was listed was the RDA (NAM), Adequate Intake (EFSA, DACH), Reference
Nutrition Intake (SACN), or Recommended Intake (NORDEN). The NAM recommended 600 IU from years 1–70 and 800 IU above 70; the EFSA recommended 400 IU/d for infants 7–12 mo and 600 IU/d for all older age groups; DACH recommended 400 IU/d for infants and 800 IU/d for all older age groups; SACN and NORDEN recommended 400 IU/d for all ages over 1 yr, with SACN recommending slightly lower (340–400 IU) for infants. The NAM considered a 25(OH)D serum level of 50 nM (20 ng/ml) to suffice for 97.5% of the population [88], whereas the Endocrine Society guidelines recommend 75 nM (30 ng/ml), considering levels between 50 and 75 nM as insufficient and <50 nM as deficient [90]. Although the Endocrine Society recommendations for children and adults are comparable to other groups (400 IU/d for infants, 600 IU/d from ages 1–70, 800 IU/d for those over 70), the Endocrine Society suggests that doses up to 2000 IU vitamin D/d may be necessary to achieve and maintain a serum 25(0H)D level of 75 nM (30 ng/ml) (Table 1).

Table 1

<table>
<thead>
<tr>
<th>Age</th>
<th>Dose</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Academy of Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td><1 yr</td>
<td>400 IU</td>
<td>20 ng/ml</td>
</tr>
<tr>
<td>1–70 yr</td>
<td>600 IU</td>
<td>20 ng/ml</td>
</tr>
<tr>
<td>>70 yr</td>
<td>800 IU</td>
<td>20 ng/ml</td>
</tr>
<tr>
<td>Endocrine Society</td>
<td></td>
<td></td>
</tr>
<tr>
<td><1 yr</td>
<td>400–1000 IU</td>
<td>30 ng/ml</td>
</tr>
<tr>
<td>1–18 yr</td>
<td>600–1000 IU</td>
<td>30 ng/ml</td>
</tr>
<tr>
<td>>18 yr</td>
<td>1500–2000 IU</td>
<td>30 ng/ml</td>
</tr>
</tbody>
</table>

The Nutrition Intake (SACN) and the American Society for Bone and Mineral Research (BSMR) recommended a daily intake of 1200–1500 IU for infants and 400–600 IU/d for children and adults. The Endocrine Society guidelines recommend 75 nM (30 ng/ml) for all ages over 1 yr, with SACN recommending slightly higher (340–400 IU) for infants. The NAM considered a 25(OH)D serum level of 50 nM (20 ng/ml) to suffice for 97.5% of the population [88], whereas the Endocrine Society guidelines recommend 75 nM (30 ng/ml), considering levels between 50 and 75 nM as insufficient and <50 nM as deficient [90]. Although the Endocrine Society recommendations for children and adults are comparable to other groups (400 IU/d for infants, 600 IU/d from ages 1–70, 800 IU/d for those over 70), the Endocrine Society suggests that doses up to 2000 IU vitamin D/d may be necessary to achieve and maintain a serum 25(0H)D level of 75 nM (30 ng/ml) (Table 1).

As noted these recommendations are based primarily on data from studies of the musculoskeletal system. 400 IU vitamin D sufficed to prevent rickets in a study in Turkey where deficiency was extensive [91]. Other studies in adult populations demonstrate elevated PTH levels and reduced bone mineral density at 25(OH)D levels below 50 nM [92,93] and increased osteoid suggestive of osteomalacia in hip fracture patients with 25(OH)D levels below 30 nM [33,94]. At these levels vitamin D supplementation shows clear benefit [95]. Vitamin D supplementation works better when used in conjunction with calcium [96–98] especially in the elderly and vitamin D deficient. Although not all studies have demonstrated protection against fracture, several have when elderly vitamin D deficient populations are studied [98,99], but not when vitamin D sufficient populations are studied [100]. Moreover, the amount and administration schedule also matter. Use of very high doses of vitamin D (i.e., 300,000–500,000 IU given annually) seems to increase fracture risk [101,102]. Similar conclusions can be reached for falls. Daily doses of 700–1000 IU vitamin D reduce the risk of falls in the elderly especially those with vitamin D insufficiency [103,104], but higher doses intermittently administered appear to increase the risk of falling [101,105]. The reduction in falls likely related to improvement in muscle function is seen best in the most frail with lowest 25(OH)D levels [106]. Although vitamin D supplementation has been shown to reduce overall mortality and cancer mortality, with the exception of upper respiratory illnesses and asthma, most diseases which have shown an association with low 25(OH)D levels have not yet shown consistent benefit with vitamin D supplementation [107,108]. However, most of these studies have not discriminated between participants with sufficient vs insufficient 25(OH)D levels, so the jury is still out.

In conclusion, recommended levels of vitamin D intake and optimal levels of circulating 25(OH)D levels vary somewhat from country to country, and what is optimal for one group may differ for another group. Moreover, assays measuring 25(OH)D vary although with the development of mass spectrometry replacing immunoassays much of this variation can be eliminated. However, the question of whether free 25(OH)D measurements offer a better assessment of vitamin D status remains to be settled. Furthermore, recommended levels based on studies of the musculoskeletal system may or may not be appropriate for other vitamin D impacted conditions such as immune function, cancer prevention, cardiovascular health, neurologic function. Only further investigation will settle these issues.

7. Future directions

Tight regulation of vitamin D metabolism is critical to the maintenance of normal calcium homeostasis and bone health. However, we are only beginning to understand the molecular mechanisms involved in the control of the expression of the vitamin D hydroxylases. With the technologies now available new insight will be obtained related to the regulatory regions including individual enhancers as well as transcription factor complexes and histone modifications that are involved in 1,25(OH)2D3 synthesis and catabolism. Understanding the mechanisms involved is critical to understanding dysregulation of 1,25(OH)2D3 production that occurs for example in chronic kidney disease and with age related bone loss. New targets of 1,25(OH)2D3 will be identified which will provide a better understanding of 1,25(OH)2D3 actions in different regions of the intestine as well as in multiple other target tissues. New data from RCTs based on better assays of 25(OH)D3 will result in less variability and a gain in consensus for optimal vitamin D levels in different groups. In addition, further large scale clinical trials that discriminate between participants with sufficient and insufficient vitamin D levels will be needed to determine the suggested impact of vitamin D on immune function, cancer prevention and other diseases. These future studies will result in a new dimension in our understanding of the impact of the vitamin D endocrine system on skeletal health and on extraskeletal biological responses.

References

Cui M, Li Q, Johnson R, Deluca JC. Villin promoter-mediated transgenic expression of transient receptor potential cation channel, subfamily v, member 6 (TRPV6) increases intestinal calcium absorption in wild-type and vitamin D receptor knock-out mice. Endocrinology 2017;158:1095–107.

