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Abstract Fractures are frequently occurring diseases that endanger human health. Crucial to fracture healing is
cartilage formation, which provides a bone-regeneration environment. Cartilage consists of both chondrocytes and
extracellular matrix (ECM). The ECM of cartilage includes collagens and various types of proteoglycans (PGs),
which play important roles in maintaining primary stability in fracture healing. The PG form of dentin matrix
protein 1 (DMP1-PG) is involved in maintaining the health of articular cartilage and bone. Our previous data have
shown that DMP1-PG is richly expressed in the cartilaginous calluses of fracture sites. However, the possible
significant role of DMP1-PG in chondrogenesis and fracture healing is unknown. To further detect the potential
role of DMP1-PG in fracture repair, we established a mouse fracture model by using a glycosylation site mutant
DMP1 mouse (S89G-DMP1 mouse). Upon inspection, fewer cartilaginous calluses and down-regulated expression
levels of chondrogenesis genes were observed in the fracture sites of S§9G-DMP1 mice. Given the deficiency of
DMP1-PG, the impaired IL-6/JAK/STAT signaling pathway was observed to affect the chondrogenesis of fracture
healing. Overall, these results suggest that DMP1-PG is an indispensable proteoglycan in chondrogenesis during
fracture healing.
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Introduction finally replaced by cortical bone to support mechanical
loading [1,2]. Thus, cartilage formation is critical in
fracture healing.

The cartilage consists of chondrocytes and extracellular

Fracture healing is a complex and sequential process
consisting of four overlapping phases: activated inflamma-

tion, cartilaginous callus formation, hard callus formation,
and callus remodeling [1,2]. The initial phase of bone
repair is hematoma formation, followed by inflammation
cascades [3,4]. Inflammatory cells enter into the fibrin
network of hematoma and release cytokines into fracture
sites [S]. Under the stimulation of cytokines, mesenchymal
stem cells (MSCs) differentiate into chondrocytes under-
going hypertrophy and secreting cartilage matrix, which is
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matrix (ECM), including types II and X collagens and
proteoglycans (PGs) [6]. PGs are composed of small core
proteins and relatively large glycosaminoglycan chains
that are connected to core proteins through the covalent
bonds [7]. Although the percentage of PGs in the cartilage
matrix is less than 5%, PGs play a critical role in
maintaining cartilage properties by maintaining mechan-
ical strength [8]. PGs also possess functions, such as
maintaining the durability of mineralized matrix, filling
extracellular space, maintaining tissue hydration, storing
growth factors and enzymes, maintaining organizational
flexibility, providing protective barriers, and mediating the
activities of secreted proteins [9-11]. The breakdown of
PGs is closely associated with cartilage degeneration,
osteoarthritis development, and fracture healing [12—14].
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Dentin matrix protein 1 (DMP1) is an acid non-collagen
ECM protein first found in odontoblasts and highly
expressed in the bone matrix [15,16]. After posttransla-
tional modification, the full-length form of DMP1 protein
can be processed into two terminal fragments, namely, the
N- and C-terminal fragments [17,18]. DMP1 C-terminal
fragment, which is highly phosphorylated, is closely
involved in bone mineralization [19,20]. Interestingly,
the DMP1 N-terminal can be modified into a form of
glycosylation, named the PG form of dentin matrix protein
1 (DMP1-PG), which is also a key molecule in osteogen-
esis. In addition to the expression of DMPI1-PG in the
mineralization matrix, it is highly expressed in the cartilage
matrix, and its loss can accelerate the destruction of
articular cartilage in the temporal-mandibular joint
[9,21,22]. Importantly, the serine® of bone and cartilage
matrix is a highly conserved glycosylated amino acid site
and is the only glycosylation site of DMP1-PG in mice
[7,23,24].

Chondrogenesis is one of the major steps of fracture
healing [25]. DMP1-PG is a newly identified PG, which is
a key molecule in chondrogenesis [9]. In the current study,
we found that DMP1-PG was highly expressed in the
cartilage matrix of fracture callus. We further compared the
expression levels of several types of PGs during fracture
healing. The increased Dmp I was the largest observed, and
the expression level of Dmpl was continuously upregu-
lated at days 7 and 21 post-operation. Thus, we
hypothesized that DMP1-PG may play an essential role
in chondrogenesis during bone fracture repair. By using a
genetically modified DMP1 mouse (S89G-DMP1 mouse),
we set up a stable femur fracture model to verify the critical
role of DMP1-PG within the process of fracture healing.
The role of DMP1-PG in modulating the formation of
cartilaginous calluses was systematically analyzed during
the fracture healing. Using data from RNA sequencing and
related techniques, we investigated the potential mechan-
ism of DMPI1-PG in regulating cartilaginous callus
formation.

Materials and methods
Animals

The generation of S89G-DMP1 mice is described in a
recent study [7]. In brief, the gene knock-in technique was
adopted to substitute the serine® of DMP1 with glycine to
interfere with the normal glycosylation of DMP1-PG. All
of the experimental animals were raised in the SPF facility
under a 12-h light/dark cycle. All of the experimental
protocols performed on the mice were approved by the
Animal Welfare Committee of Tongji University (TILAC-
017-027).

Fracture model

An established fracture model was generated as previously
described [26]. In brief, 3-month-old male wild-type (WT)
mice, 3-month-old male S89G-DMP1 mice, and 12-
month-old male WT mice were employed to establish the
fracture models. After anesthesia induction with isoflurane
inhalation, the skin of surgical area was disinfected, and a
2 c¢m skin incision was made along the anterolateral shaved
femur. A 24-gauge sterile needle was inserted into the
medullary canal through the femur plateau, and the syringe
needle was partially removed. A no. 11 surgical blade was
used to transect the middle diaphysis of the femur, and the
fracture site was stabilized by re-inserting the syringe. The
periosteum adjacent to the fracture site was protected
carefully to avoid human intervention. After washing with
0.9% normal saline carefully, a 4-0 silk suture was used to
close the muscle flap and skin. Buprenorphine was used as
analgesic via intraperitoneal injection for 3 d post-fracture.

Micro-computed tomography (CT) analysis

The 3-month-old WT mice and 3-month-old S§9G-DMP1
mice were sacrificed at indicated time points post-fracture
(5 mice per group per time point), and the femur fracture
specimens were fixed in 4% paraformaldehyde overnight
at 4 °C. A Scanco micro-CT 50 instrument at a scan
resolution of 10 pm was used to perform radiological
imaging analysis with a voltage of 70 kV and a current of
200 pA. The calluses of specimens were scanned and
analyzed at 1 mm distal and 1 mm proximal from the
fracture ends [27]. The parameters of callus bone volume/
total volume, bone mineral density (BMD), trabecular
number, trabecular thickness, and trabecular space were
quantified according to the standard procedures.

Biomechanical testing

A three-point bending test was performed to examine the
new bone mechanical properties of fractured femurs. In
brief, at 4 weeks post-operation, the femur fracture samples
(5 mice per group) isolated from the 3-month-old WT mice
and 3-month-old S89G-DMP1 mice were tested to failure
by using a biomechanical testing machine (Farui Co.,
China). Loading force in testing was exerted at a rate of 10
mm/min until failure. The maximum displacement (mm)
and maximum bending load (N) were determined and
analyzed from bending force—deflection curves.

Histology, immunohistochemistry, and immunofluores-
cence

After fixation in paraformaldehyde and removal of the
surgical pins, the isolated femur fracture specimens were
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demineralized in 10% EDTA for 3 weeks at 4 °C. The
muscle and surrounding soft tissues were not removed
completely to preserve the basic callus structures around
the fracture sites. The samples were then embedded into
paraffin and cut into 5 um sections. Histological staining,
including hematoxylin and eosin (H&E), Toluidine blue,
and Safranin O staining, was conducted. Safranin O
staining was applied to detect and calculate an interesting
area of the fracture callus. For immunohistochemistry
staining, the following primary antibodies were used to
observe the protein expression of the cartilage matrix: anti-
collagen IT (COL-II, 1:200; Boster), anti-collagen X (COL-
X, 1:200; Boster), anti-SOX9 (1:200; Boster), anti-
aggrecan (ACAN, 1:100; Boster), anti-decorin (DCN,
1:100; Boster), anti-versican (VCAN, 1:100; Boster), and
anti-DMP1-N-9B6.3 (1:500; gift from Dr. Chunlin Qin,
Baylor College of Dentistry). Protein expression was
detected by a DAB detection kit. The areas of positive
staining zones (COL-II, COL-X, ACAN, DCN, and
VCAN), number of positive cells (SOX 9), total callus
areas, and number of total cells in the callus were analyzed
using the ImageJ software (NIH, Bethesda, MD, USA).
The positive area/total callus area or the number of positive
cells/the number of total cells were used to compare the
immunohistochemistry difference between WT mice and
S89G-DMP1 mice, and detailed semiquantitative methods
have been described [9]. The sections for immunofluores-
cence were incubated with IL-6 antibody (1:300; Abcam)
at 4 °C overnight and then incubated with Alexa Fluor 488
IgG (1:800; Invitrogen) for 1 h at room temperature.
Finally, DAPI was applied to counterstain the sections.

Bone marrow MSC (BMSCs) isolation and culture

BMSCs were isolated from the medullary cavities of 4-
week-old WT mice and S§89G-DMP1 mice (12 mice per
group). In brief, after anesthesia induction, the mice femurs
and tibias were separated carefully and cut at both ends.
The bone marrows were then aseptically rinsed into petri
dishes. The marrow tissues were cultured with growth
media consisting of a-MEM, 10% FBS (Excell) and 1%
penicillin/streptomycin (Gibco). BMSCs were cultured in
osteoblastic (Gibco) and chondrogenic (Gibco) medium
for 21 d. For chondrogenesis induction, BMSCs were
cured in micromass culture system as previously reported
[28]. The cells were then stained with Alizarin red and
Toluidine blue to observe the culture aggregates. Cell
Counting Kit-8 Assay (Dojindo) was performed in
accordance with the manufacture’s protocols to evaluate
the proliferative ability of the BMSC. Cell proliferation
was measured at days 1, 3, 5, and 7. For Transwell
migration assay, 1 x 10* BMSCs were seeded in the
upper chamber with 100 pL of serum-free medium. The
lower chamber was filled with 700 pL of medium

containing 10% FBS. Crystal violet and DAPI staining
were performed after 12 h of incubation.

Real-time quantitative polymerase chain reaction

The calluses, including 4 mm bony segments from 3-
month-old WT mice and 3-month-old S89G-DMP1 mice
fracture sites were isolated carefully at days 1, 3, 7, 14, and
21 post-fracture (4—6 mice per group per time point) and
then placed into liquid nitrogen immediately for homo-
genization. The homogenized samples and chondrogenic
or osteogenic cultured BMSCs were added with TRIzol
reagent (Invitrogen). Total RNA was extracted and reverse-
transcribed into ¢cDNA at a volume of 20 uL of a
commercial kit (Roche). The expression of the target gene
was observed and detected using a Light Cycler 96 PCR
system (Roche). The reactions of each sample needed to be
run in triplicate. The gene-specific primers are listed in
Table S1.

RNA sequencing and data analysis

Total RNA was extracted from the fracture calluses of 3-
month-old WT and 3-month-old S§89G-DMP1 group at day
3 post-fracture (5 mice per group). A Nano Vue (GE) was
used to assess RNA purity, and an Agilent 2200 Tape
Station (Agilent Technologies) was employed to evaluate
RNA integrity. RNA sequencing was performed at
Novogene Co., Ltd., Beijing. The detailed protocol was
similar to that described previously [29]. All differentially
expressed genes were collected for the heat map. Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis was performed to detect the changed signaling
pathway, and a threshold of Q-value of < 0.05 was used to
determine significant enrichment of gene sets.

Western immunoblotting

Total proteins were harvested from the fracture calluses of
femurs of WT mice and S89G-DMP1 mice at day 1 (3-
month-old WT mice, n = 3; 3-month-old S89G-DMP1
mice, n=3), day 3 (3-month-old WT mice, n = 3; 3-month-
old S89G-DMP1 mice, n = 3) and day 7 (3-month-old WT
mice, n = 3; 3-month-old S§89G-DMP1 mice, n = 3; 12-
month-old WT mice, n = 3) post-fracture. BCA protein
assay kit was used to determine protein concentration after
extraction. The expression levels of DMPI1-PG, signal
transducers, activators of transcription 3 (STAT-3), and P-
STAT-3 were detected, and the following monoclonal
antibodies were employed at different dilutions: anti-
DMP1-N-9B6.3 (1:1500; gift from Dr. Chunlin Qin,
Baylor College of Dentistry), anti-STAT3 (1:500; Boster),
and anti-P-STAT3 (1:500; Boster). Anti-B-actin antibodies
were used to probe each sample.
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Statistical analysis

Student’s ¢ test for comparing the difference between two
groups was performed using the GraphPad Prism 7.00
software. For the comparison of three groups, two-way
ANOVA was applied. Results were deemed statistically
significant at P values < 0.05, and all values were
presented as mean + SEM.

Results
DMP1-PG expression during fracture healing

To observe the expression of DMP1-PG in cartilaginous
callus, we set up a femur fracture model in WT mice. The
Toluidine blue staining (i.e., a specific blue staining for
proteoglycan molecules in tissue) indicated that the PGs
were involved in fracture repair (Fig. 1A). Compared with
the 3-month-old WT mice, the 12-month-old WT mice
showed less cartilaginous callus and more fibrous callus in
their fracture sites (Fig. 1B). During fracture healing, the
gene expression levels of PGs that correlated with
chondrogenesis were evaluated. Among the significantly
upregulated PGs, Dmpl was continuously increased at
both days 7 and 21 post-fracture. Except for Dmp1, other
PG molecules showed downregulated expression at day 21
post-fracture (Fig. 1C). Immunohistochemistry staining
was performed to observe the expression of DMP1-full-
length (DMP1-F)/DMP1-PG by using an anti DMP1-N-
terminal antibody, and the DMP1-F/DMP1-PG was
extensively expressed in cartilaginous calluses at day 7
post-operation (Fig. 1D). Western immunoblotting con-
firmed that DMP1-PG in femur callus samples was rich in
3 months and downregulated in 12 months (Fig. 1E).

Impaired chondrogenesis and fracture healing in
S89G-DMP1 mice

To further investigate the role of DMP1-PG in fracture
healing, we employed a DMP1 point mutation mice called
S89G-DMP1 mice, where S* is the only glycosylation site
in mice (Fig. 2A). Western immunoblotting showed
significantly downregulated DMP1-PG expression in the
protein extracts from fracture calluses of the S89G-DMP1
femurs compared with WT controls at day 7 post-fracture
(Fig. 2B). To monitor the fracture healing of femurs in
S89G-DMP1 and WT mice, we performed micro-CT
scanning to compare the differences of callus formation. A
decreased total volume of mineralized calluses and
increased numbers of porous new bones were detected in
the fracture areas of S§9G-DMP1 mice at both days 14 and
21 post-fracture. At day 28 post-fracture, partial fracture
gaps can still be observed on the specimens of S89G-
DMP1 mice, which was caused by blocking the PG of

DMP1 (Fig. 2C). Compared with WT mice, micro-CT
quantification assessment displayed abnormal changes in
fracture callus in the S89G-DMP1 mice (Fig. 2D).
Biomechanical testing, a definitive measure of fracture
repair [30], was employed on the fractured femurs of WT
and S89G-DMP1 mice to examine the mechanical property
of the new bone at day 28 post-fracture when the bony
callus has matured. Three-point bending tests displayed a
marked decrease of bending resistance ability in the S89G-
DMP1 mice compared with the control group (Fig. 2E).

H&E, Toluidine blue, and Safranin O staining were
conducted to evaluate callus formation at days 7, 14, 21,
and 28 post-fracture. At day 7, cartilage areas were
significantly decreased in S§9G-DMP1 mice, suggesting
an impairment of chondrogenesis (Fig. 3A). At day 14
after fracture, a large callus, including cartilaginous callus
and osseous callus, can be observed in WT mice.
Compared with the control groups, the callus in S89G-
DMP1 mice displayed lesser cartilage and deposited new
bone areas (Fig. 3A). At day 21 post-fracture, most of the
cartilaginous calluses were replaced by the woven bone in
both S89G-DMP1 and WT mice. The areas of bony callus
in the S89G-DMP1 mice were much smaller than those of
the WT controls. The cortical bone continuity remained
poor in the S89G-DMP1 mice (Fig. 3A). After 4 weeks,
compared with the WT controls, the S89G-DMP1 mice
showed significantly smaller areas of new bone bridging
the fracture sites (Fig. 3A). Histomorphometric measure-
ments of cartilaginous and osseous callus at days 7, 14, 21,
and 28 post-fracture showed significantly decreased
cartilage and new bone areas in the S89G-DMP1 group
(Fig. 3B and 3C).

Molecular changes of cartilaginous calluses between
WT and S89G-DMP1 mice

To further analyze the effects of DMP1-PG on cartilagi-
nous callus formation, the expression levels of cartilage
markers, such as collagen II, collagen X, SOX9, aggrecan,
decorin, and versican, were evaluated by immunohisto-
chemistry staining (Fig. 4A1-4A6, 4B1-4B6, 4C1-4C6).
The decreased expression levels of cartilage markers were
observed in cartilaginous calluses of S§89G-DMP1 mice at
day 7 post-fracture. In addition to the immunohistochem-
istry staining, RT-qPCR was performed to determine the
expression levels of chondrogenic markers. Lower expres-
sion levels of marker genes were evident in S§9G-DMP1
mice compared with controls at days 7 and 14 post-fracture
but were not yet apparent at day 21 post-fracture due to the
shift from cartilage to woven bone (Fig. 4D1-4D6).
Collectively, our data demonstrated a positive effect of
DMPI1-PG in regulating chondrogenesis during fracture
repair.
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Fig. 1 Expression of DMP1-PG in cartilage callus during fracture healing. (A) H&E and Toluidine blue staining of unfractured femurs
and fractured femurs is shown at days 7, 21, and 28 post-fracture in WT mice. Scale bars = 500 um. (B) Weaker cartilaginous calluses were
formed in the 12-month-old WT mice compared with those of the 3-month-old WT mice at day 7 post-fracture. Lower magnification, scale
bars = 500 pm; higher magnification, scale bars =200 um. (C) RT-qPCR quantification of Acan, Bgn, Dcn, Vcan, and Dmp 1 in the fracture
calluses from normal mice and fracture model mice. Data are shown as mean + SEM. *P < 0.05, n = 3 per time point. NS, not
significant. (D) DMP1-F/DMPI1-PG was expressed in the cartilaginous calluses of the fracture model mice. Lower magnification, scale
bars = 100 pm; higher magnification, scale bars = 50 pm. (E) The expression level of DMP1-PG was downregulated in the fracture callus
of the 12-month-old WT mice compared that of the 3-month-old WT mice at day 7 post-operation by Western immunoblotting.
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Fig. 2 Delayed femur fracture healing in S§89G-DMP1 mice. (A) A schematic of the DMP1-PG point mutation model is shown.
(B) Decreased DMP1-PG expression in the fracture callus of the S89G-DMPI mice is shown at day 7 post-fracture by Western
immunoblotting. (C) Representative three-dimensional reconstruction of micro-CT images of fracture sites at days 7, 14, 21, and 28 post-
fracture. Arrows show the fracture gaps and calluses. (D) The quantitative micro-CT analysis of fracture callus is shown as mean + SEM.
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trabecular thickness; Tb.Sp, trabecular space. (E) Biomechanical testing of the fractured femurs displaying the impaired mechanical
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Impaired chondrogenic and osteogenic differentiation

of BMSCs of S89G-DMP1 mice

Given the close association of MSCs and fracture healing,
BMSCs were isolated from both groups to assess

proliferation, differentiation, and migration. Following

the chondrogenic induction for 21 days, Toluidine blue
staining was performed to observe the culture aggregates.

The BMSCs of the S89G-DMP1 mice displayed lesser
staining compared with those of the WT mice (Fig. 5A).



Hui Xue et al.

581

A H&E

S89G-DMP1

Day 21 Day 14 Day 7

Day 28

v3)
@]

Toluidine blue

Safranin O

S89G-DMP1 S89G-DMP1

- WT
= S89G-DMP1

¥ +—

L0y, ~ 20-
4 £

£ i

£ 038 * % s
S 0.6- o

g 5 1.0-
5] 4 =1

é{) 0.4 —8

£ 021 z 097
° “

P

Q'\ Q\b‘ Q’»\ Q'{»b

Fig. 3 Histological analysis of the femur fracture healing in WT and S89G-DMP1 mice. (A) H&E, Toluidine blue, and Safranin O
staining of fracture calluses showed small cartilaginous calluses and new bone calluses in S89G-DMP1 mice. Scale bars= 500 pm.
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After chondrogenic induction, decreased expression levels
of chondrogenic marker genes were evident in S89G-
DMP1 mice at day 7 (Fig. 5B). CCK-8 assay displayed a
weak proliferation capacity of BMSCs from S89G-DMP1
mice at Day 3 but not at other time points (Fig. 5C). In
Transwell migration assay, no alteration in cell migration
can be detected in either groups (Fig. 5D and 5E).

In addition to the induction of chondrogenesis, osteo-
genic induction was conducted to detect the discrepancy of
bone matrix deposition between the two groups. After 21
days of osteogenic induction, a statistical decrease in
matrix deposition was presented by observing the Alizarin
red-stained area, which revealed the decreased osteogenic
differentiation (Fig. S1A and S1C). The expression levels
of osteogenic genes confirmed the impaired differentiation

capacity (Fig. SIB). The impaired osteogenic differentia-
tion capacity of BMSCs from S89G-DMP1 mice indicated
the potential regulatory role of DMPI1-PG in the
subsequent woven bone formation at the late stage of
fracture healing.

Transcriptome differences in fracture sites between
WT and S89G-DMP1 mice

To probe the overall biological functions of DMP1-PG in
regulating chondrogenesis within fracture repair, we
performed RNA sequencing of the genes from fracture
calluses in the S89G-DMP1 and WT mice at day 3 post-
fracture. A total of 993 genes showed change, including
382 upregulated genes and 611 downregulated genes
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Fig. 4 Alterations of cartilage markers in the cartilaginous calluses of the WT and S89G-DMP1 mice. (A1-A6, B1-B6)
Immunohistochemistry staining of COL-II, COL-X, SOX9, ACAN, DCN, and VCAN in cartilaginous callus at day 7 post-fracture.
Samples from S89G-DMP1 mice showed remarkably decreased immunoreactivity. Scale bars= 100 pm. (C1-C6) Quantitative
measurements of the positive zone area/total callus area or the number of positive cells/number of total cells from the WT and S89G-
DMP1 mice are shown as mean = SEM. *P < 0.05, n = 4 per group. (D1-D6) RT-qPCR quantification analysis of Col-1I, Col-X, Sox9
Acan, Dcn, and Vcan is presented as mean £ SEM. *P < 0.05, n = 4-5 per group per time point.

(Fig. 6A and 6B). These altered genes can be categorized
into several pathways according to the KEGG analysis
(Fig. 6C and 6D). Among these pathways, signaling
pathways associated with cell senescence and Janus
Kinase/signal transducers and activators of transcription
(JAK/STAT) were the top two altered gene pathways.

Changes of IL-6/JAK/STAT signaling in the S89G-
DMP1 mice during the fracture healing

RNA sequencing and KEGG analysis showed an impaired
JAK/STAT signaling pathway, which indicated that the
downregulation of DMP1-PG can affect inflammatory
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Fig. 5 BMSCs differentiation, proliferation, and migration of WT and S§9G-DMP1 mice. (A) Comparison of cultured aggregates from
WT and S89G-DMP1 mice is shown by Toluidine blue staining. Scale bars = 1500 um. (B) The mRNA levels of chondrogenesis-related
genes and proteoglycan genes were determined by RT-qPCR. *P < 0.05, n = 3 samples per group. (C) A CCKS8 assay was performed to
analyze the proliferation ability of BMSCs. *P < 0.05, n =5 samples per group. (D) Representative images of Transwell migration assay
of BMSCS from the WT group and the S89G-DMP1 group. (E) The quantification of invasive cells of Transwell migration assay is shown
asmean £ SEM. *P < 0.05, n =4 samples per group. No difference was found in the ability of migration of BMSCs between the WT and

S89G-DMP1 mice.

factors, which in turn disturbed chondrogenesis in fracture
repair. Here, we further investigated whether major
inflammatory genes related to trauma repair [25], such as
IL-1B,IL-6,IL-12, IL-17, and TNF-a, were involved in PG
signaling during fracture healing. The gene expression
level of /L-6 was significantly downregulated in the callus
extracts of the S§9G-DMP1 mice in contrast to the WT
mice at days 1 and 3 post-fracture (Fig. 7A). Immuno-
fluorescence staining confirmed that expression of IL-6
was downregulated in the callus of S§9G-DMP1 mice
(Fig. 7B). Significantly decreased gene expression levels
of JAK-2 and STAT-3 were observed, which are core
molecules of the JAK/STAT signaling pathway (Fig. 7C).
The phosphorylation levels of STAT-3 were downregulated
in S89G-DMP1 mice at days 1 and 3 post-fracture based
on Western immunoblotting (Fig. 7D). The data presented
above indicated that the impaired IL-6/JAK/STAT signal-

ing pathway in the inflammation stage may be one of the
mechanisms affecting subsequent chondrogenesis in
fracture repair.

Discussion

Although fractures are common and frequently-occurring
diseases that endanger human health, the knowledge about
fracture healing is still limited. Fracture healing is a well-
orchestrated process involving multiple cell types, includ-
ing MSCs, chondrocytes, osteoblasts, ECM, and signaling
molecules, such as components of the Hedgehog signaling
pathway [31], BMP/TGF-B signaling pathway, and
Wnt /B-catenin signaling pathway [32]. The healing
process is also regulated by mechanical environment [33]
and chemical factors [34,35]. Following the fracture, under
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the stimulation of various signals derived from inflamma-
tory cells, the MSCs surrounding injury sites begin to
differentiate into chondrocytes in the central area of
fracture gap [3,36,37]. Cartilages are then produced by
chondrocytes in the fracture sites to support endochondral
bone formation [3,36,38], which can provide mechanical
stability with the developing cartilaginous callus [25]. As a
key component of cartilage matrix, PGs play crucial roles
in cartilage development and maintenance. PGs can
condense mesenchyme and modulate the subsequent
chondrogenesis [39]. PGs can also interact with collagen
and other ECM molecules to maintain the balance of

cartilage metabolism. PGs are associated with the
degradation of cartilage matrix [9,40], which is critical
for the maintenance of cartilage health.

The role of DMPI1-PG, a newly identified PG, in
articular cartilage development has been studied [9]. Based
on this investigation, DMP1-PG was highly expressed in
cartilaginous callus after fracture. At day 7 post-fracture,
the expression level of DMP1-PG in callus was approxi-
mately 50 folds compared with that in the normal bone
matrix. However, the loss of DMP1-PG was observed with
increased fibrous callus in the aged WT mice at day 7 post-
fracture. In the fracture sites of aged mice, the down-
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regulation of DMP1-PG expression and histological
morphological changes of callus suggested that DMP1-
PG may be an essential molecule in controlling bone
fracture repair. Importantly, the expression level of Dmpl
continued to be upregulated at day 21 post-fracture,
whereas the expression levels of other PGs related to
cartilage biosynthesis began to decrease. Thus, DMP1-PG
may function to modulate both chondrogenesis and the
following endochondral ossification.

To further understand the functions of DMP1-PG in
regulating cartilaginous callus formation during fracture
healing, we employed DMP1 glycosylation site mutation
(S89G-DMP1) mice to establish the fracture model. In this
model, many types of key PGs are downregulated due to
the loss of DMP1-PG [7,9]. In terms of fracture healing,
the S89G-DMP1 mice displayed reduced cartilage brid-
ging the fracture sites and delayed endochondral ossifica-
tion, which resulted in poor fracture healing. In particular,
7 days after the fracture, the gene expression levels of
chondrogenesis significantly decreased in the fracture
callus of S89G-DMP1 mice. This finding was consistent
with the changes detected in Biglycan-deficient mice
model during fracture healing [14]. All of these changes
indicated that DMP1-PG is a key PG in fracture fusion.
The reason why the new bones of S89G-DMP1 mice
exhibit weak biomechanical prosperities must also be
considered. The decreased PGs can significantly affect
osteogenesis in the fracture area [8,41]. Altered PGs affect
BMD and strength, which contributes to providing
biomechanical properties to withstand loading [42].

To further detect the exact regulatory role of DMP1-PG
in cartilage formation during the fracture healing, we
conducted transcription analysis. The high-throughput
sequencing technique can provide a high coverage of the
transcriptome, facilitate the detection of new transcrip-
tome, and allow the investigation of differential gene
expression [43]. Clues from RNA sequencing of the
fracture callus revealed that JAK/STAT signaling were
significantly downregulated in the S89G-DMPI1 mice
compared with their controls, which indicated that the
deficiency of DMP1-PG can affect the expression of
inflammation response molecules at the early stage of
fracture healing. Based on both RNA sequencing and RT-
qPCR analyses, we found that the gene expression level of
IL-6 at the injury site decreased significantly in S89G-
DMP1 mice at the inflammatory stage. IL-6 is a pleiotropic
cytokine produced by a variety of cells and is involved not
only in immune events but also in hematopoiesis,
tumorigenesis, trauma repairing, stem cell differentiation,
and proliferation [44]. IL-6 can bind membrane-anchored
receptor (mIL-6R) or soluble receptor, and the association
of IL-6/IL-6 receptor with glycoprotein 130 leads to the
activation of the JAK/STAT signaling pathway, which
regulates cell proliferation, differentiation, and the activ-

ities of chondrocytes [45—47]. The release of IL-6 is
necessary and critical to initiate injury repair at the early
stage of fracture healing [48,49], which is crucial for
fracture repair and bone regeneration [50,51]. IL-6 initiates
the recruitment of MSCs, stimulates the differentiation of
MSCs into chondrocytes and osteoblasts, and promotes
angiogenesis [25,52]. In our previous studies, the down-
stream molecules of IL-6 genes and JAK-2/STAT-3
signaling molecules are markedly affected. The JAK/
STAT signaling pathway plays a notable role in the
differentiation of various cell types [53]. The crucial role of
JAK/STAT signaling pathway in skeletal metabolism and
development has been demonstrated using JAK/STAT
knockout mice; furthermore, compared with other STAT
family members, STAT3 profoundly affects osteoblast
differentiation and the transduction of anabolic signals
[54]. The alteration of IL-6/STAT-3 signaling can also
influence the chondrogenic differentiation of MSCs [54—
56].The impairment of the IL-6/JAK-2/STAT-3 signaling
affected the binding of STAT3 to target DNA sequences
and the following activation of transcription [57]. In the
current study, in vitro cell culture experiments revealed
impaired chondrogenic differentiation ability of BMSCs
indicated by decreased cartilage matrix deposition in
S89G-DMP1 mice. Based on previous research and the
findings of our studies, we speculated that the IL-6/JAK-2/
STAT-3 signaling pathway may be involved in cartilage
formation during fracture healing, and the downregulation
of the IL-6/JAK-2/STAT-3 signaling pathway caused by
DMPI1-PG deficiency may affect the differentiation of
MSCs into chondrocytes and in turn the cartilage-matrix
formation, which resulted in the impairment of endochon-
dral ossification and the subsequent bone deposition during
fracture healing.

In addition to the altered IL-6/JAK-2/STAT-3 signaling
pathway, several other key signaling pathways, such as the
cellular senescence pathway, VEGF signaling pathway,
and Hedgehog signaling pathway, were downregulated in
the S89G-DMP1 mice compared with those of the WT
mice during fracture healing. The decreased cellular
senescence pathway may trigger MSC influx into the
injury sites; however, the weakened differentiation capa-
city of BMSCs from S8§89G-DMP1 mice, as evidenced by
in vitro cell culture experiments, led to the diminished
chondrogenesis at the early stage of fracture healing.
Increasing reports have demonstrated the positive role of
the VEGF signaling pathway in regulating cellular ingress
and promoting angiogenesis and bone formation [58,59].
The Hedgehog signaling pathway is also essential for the
development of bone and endochondral fracture healing by
modulating mesenchymal cell differentiation [36,60].
Thus, DMP1-PG may help maintain several signaling
pathways related to trauma repair during healing.

The formation of woven bone is also pivotal at the late
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stage of fracture healing. DMP1 is known to exhibit a
positive function in bone formation [61]. Based on our
previous study, the loss of DMP1-PG can lead to bone loss
in both the trabecular bone and cortical bone area [7].
Based on in vitro cell culture experiments, we found an
impaired osteogenic differentiation capacity of BMSCs
from S89G-DMP1 mice. These data indicated that the
deficiency of DMP1-PG may also affect bone formation at
the late stage of fracture healing.

In summary, our studies support that DMP1-PG can
serve as one of the important ECM proteoglycans, which
positively regulates the chondrogenesis at the early stage
of fracture healing. DMP1-PG deficiency would result in
the impairment of cartilaginous callus formation by
influencing IL-6/JAK/STAT signaling molecules and
injury-related signaling pathways during fracture healing.
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