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Abstract Cholera is a secretory diarrhoeal disease caused by infection with Vibrio cholerae, primarily the V.
cholerae O1 El Tor biotype. There are approximately 2.9 million cases in 69 endemic countries annually, resulting
in 95 000 deaths. Cholera is associated with poor infrastructure and lack of access to sanitation and clean drinking
water. The current cholera epidemic in Yemen, linked to spread of V. cholerae O1 (Ogawa serotype), is associated
with the ongoing war. This has devastated infrastructure and health services. The World Health Organization had
estimated that 172 286 suspected cases arose between 27th April and 19th June 2017, including 1170 deaths. While
there are three oral cholera vaccines prequalified by the World Health Organization, there are issues surrounding
vaccination campaigns in conflict situations, exacerbated by external factors such as a global vaccine shortage.
Major movements of people complicates surveillance and administration of double doses of vaccines. Cholera
therapy mainly depends on rehydration, with use of antibiotics in more severe infections. Concerns have arisen
about the rise of antibiotic resistance in cholera, due to mobile genetic elements. In this review, we give an overview
of cholera epidemiology, virulence, antibiotic resistance, therapy and vaccines, in the light of the ongoing epidemic

in Yemen.
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Introduction

Cholera is a secretory diarrheal disease which is caused by
infection with Vibrio cholerae, and is associated with high
mortality if left untreated. Estimates suggest that there are
approximately 2.9 million cases in 69 endemic countries
every year, resulting in 95 000 deaths, mainly in Sub-
Saharan Africa where approximately 60% of cases and
68% of deaths occur annually [1]. However, in 2015 World
Health Organization (WHO) was notified of only 172 454
cases from 42 countries, resulting in 1304 deaths [2]. The
discrepancy between actual and recorded disease burden is
thought to result from low reporting for a variety of
reasons, including limitations in environmental, commu-
nity and public health surveillance systems in endemic
countries, and financial and commercial concerns on
potential consequences for trade and tourism [1,3-5].
The disease is associated with developing countries and
poor infrastructure, especially in relation to sanitation and
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access to clean drinking water. It has been essentially
eradicated in developed countries, with cases arising
mainly due to travel to endemic countries [6,7]. For
example, between 2010 and 2011 an increase in travel-
associated cases observed in the United States was
attributed mainly to travel to Hispaniola in Haiti, linked
to a major cholera outbreak there in the aftermath of a
devastating earthquake [7]. V. cholerae strains are natural
inhabitants of the marine environment, found attached to
multiple surfaces, with water temperature, saline content
and seasonality being vital components in distribution and
bacterial counts [8]. This explains the importance of
sanitation and access to clean drinking water in cholera
spread and also the importance of natural disasters and
climate change in causing “spillover” into the human
population. The disease is transmitted by the faecal-oral
route, and contaminated food and water act as disease
transmission vehicles.

Cholera epidemic in Yemen

Yemen, a country with a population of approximately 27
million people at the southern end of the Arabian
Peninsula, is currently in the grip of a devastating cholera
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epidemic. The outbreak was first announced in October
2016, and a surge in cases has occurred since 27th April
2017. The speed of this surge has been described as
“unprecedented” by Dr. Nevio Zagaria, the WHO
representative in Yemen. WHO and the United Nations
Children’s Fund (UNICEF) have estimated that 172 286
suspected cases arose between 27th April and 19th June
2017, associated with 1170 deaths [9]; on 26th October
there was a cumulative total of 862 858 suspected cases.
Aid efforts are currently hampered by closure of all air, sea
and land ports. The most vulnerable citizens are suffering
most, with 46% of cases occurring in those age under 15
years and 33% of fatalities in those aged over 60 years. The
epidemic has been designated as a WHO Grade 3
emergency. Spread has been facilitated by the ongoing
war in Yemen, which has left 18.8 million people in need
of humanitarian assistance. The infrastructure of the
country has been left in ruins, leaving little or no access
to safe drinking-water or sanitation for more than 14
million people [10]. Cholera is a disease of poverty, which
flourishes and spreads in such conditions. The war has also
destroyed the health system in the country; a WHO survey
carried out in November 2016 found that only 45% of the
facilities surveyed were fully functional and accessible,
while 274 health facilities had been damaged as a result of
the war [11]. There are fears that there is a risk of further
spread due to the rainy season, as well as high levels of
malnutrition and lack of food security for most Yemeni
people [10]. While WHO has responded to the crisis by
beginning to set up 350 cholera treatment centers and 2000
oral rehydration points, as well as tracing infection
hotspots, this epidemic underlines the need to increase
our understanding of cholera and in particular to ensure
that the best possible options are available in terms of
vaccination and therapy in outbreak situations. In this
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Fig. 1 Overview of V. cholerae classification by serogroup and biotype.

review, we give an overview of cholera epidemiology,
virulence, antibiotic resistance, vaccination and therapy.

Cholera serology

Serologically, V. cholerae has been classified into more
than 200 O serogroups according to variations of the V.
cholerae “O”antigen [12—15]. However, only the O139
and O1 serogroups have been identified as causative agents
in epidemics [15,16]. The O1 serogroup can be sub-
classified into three serotypes, Ogawa, Inaba and Hiko-
jima, based on expression of antigenic factors A, B and C,
and into two biotypes, Classical and El Tor [15]. The Ol
serogroup is responsible for more than 99% of global
cholera cases [17]. Stool samples from patients in the
current outbreak in Yemen have tested positive for the Ol
serogroup, Ogawa serotype [18,19]. However, O139 arises
from time to time, for example as a major cause of
infection among older individuals in Pakistan between
1995 and 2010 [20], as an important pathogenic strain in
Thailand [21], and sporadically in Bangladesh [22] and
China [23]. Non-O1/non-O139 serogroups occur rarely
and are not considered to be of great clinical significance,
although they have been associated with cholera cases in
Czechoslovakia in 1960, caused by the O5 serogroup [24]
and Sudan in 1970, caused by the O37 serogroup [25].
Fig.1 shows an overview of the classification of V
cholerae by serogroup and biotype. The development of
molecular tools to study V. cholerae, including pulsed field
gel electrophoresis (PFGE), ribotyping, polymerase chain
reaction (PCR)-based methods, and sequencing-based
methods such as variable number of tandem repeats
(VNTR) analysis, multi-locus sequence typing (MLST)
and multi-locus variable tandem repeat analysis (MLVA),
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means that we now have a better understanding of the
evolution and molecular epidemiology of cholera [26].
Historically there have been six pandemics of cholera
prior to 1961, caused by the Classical O1 biotype which
emerged in the Indian subcontinent and spread worldwide
between 1817 and 1923 [27,28]. Currently, we are in the
seventh pandemic, which is believed to have originated in
Indonesia in 1961 and is caused by the El Tor biotype; it
has spread throughout Asia, Africa and Latin America. It
has caused large epidemics such as the 2010 epidemic in
Haiti, and major outbreaks in several African countries,
including epidemics in Mozambique in 1997—-1999 and
2012—-2014 and Cameroon in 2010 [4,15,29-31]. Some
commentators suggest that there may also be an ongoing
eight pandemic, which began in 1992, based on serogroup
0139 and “atypical El Tor” [15,26]. These atypical El Tor
strains have traits of both classical and El Tor biotypes.
Pathogenic V. cholerae strains carry a prophage, CTX®,
which carries the gene encoding cholera toxin, the major
cholera virulence factor. Atypical El Tor strains isolated in
Matlab in Bangladesh in 1991 and 1994 carried the ctxB
allele which is characteristic of the classical CTX®
(CTX® ") and are designated “MB El Tor” [32]. In fact,
all El Tor strains isolated in Bangladesh since 2001 express
ctxB and have been designated “altered El Tor.” Variants
isolated in Mozambique in a 2004 outbreak contained two
copies of a prophage almost identical to CTX®" on the
small chromosome, but had the El Tor phenotype and was
otherwise genotypically El Tor (“Mozambique El Tor™)
[33,34]. Meanwhile, it was also shown that strain VC44
isolated in Kolkata, India in 1992 also carried the classical
ctxB [33]. Further atypical El Tor strains termed “hybrid El
Tor” carrying classical ctxB and the rstR gene, needed for
phage gene expression regulation, from both classical and
El Tor strains were isolated between 1991 and 2004 in
various African and Asian countries. These variants have
arisen due to transfer of mobile genetic elements. There is

Table 1 Timeline of large cholera outbreaks in last decade

as yet no information on the serogroups or biotypes mainly
responsible for the Yemen outbreak.

Epidemiology of cholera

The seventh cholera pandemic is the latest manifestation of
a disease that has been recognized since the time of
Hippocrates [35]. As mentioned in Section 2.0, we are
currently experiencing the seventh pandemic which began
in 1961 when the El Tor biotype, named after the town of
El Tor in Egypt where it was first identified in 1905, was
the cause of an epidemic in Indonesia. In recent years El
Tor and “atypical El Tor” strains have caused several major
outbreaks and epidemics throughout Asia, Africa and Latin
America. Table 1 shows a timeline of some of the
important cholera epidemics and outbreaks within the
last decade.

Most cholera cases and deaths occur in Africa,
especially in sub-Saharan Africa, including the Great
Lakes Region, which has had the highest burden of cholera
in the world over the past 20 years. For example, among
fishing communities of Uganda, there are recurrent
seasonal outbreaks of cholera. Between 2011 and 2015,
several outbreaks occurred in these communities with a
high case fatality rate, associated with contaminated lake
water use, and poor sanitation and hygiene [36]. Cholera
outbreaks also occur regularly in Tanzania, with seven
outbreaks reported between 2011 and 2016 due to
genetically diverse V. cholerae O1 isolates [37]. However,
both O1 and O139 have been identified in estuaries in
Tanzania, although O1 predominates [38]. Other outbreaks
in the African Great Lakes Region include 2009 and 2011/
2012 outbreaks in the Democratic Republic of Congo
(DRC) and a 2012 outbreak in Zambia caused by V.
cholerae Ol isolates which clustered closely together
genotypically according to Multi-locus VNTR (variable
number tandem repeat) Analysis (MLVA) [39].

Year Location References

2008 Mozambique (9087 cases); Zimbabwe (2008 —2009; 98 522 cases) [30, 44]

2009 DRC; Mozambique (19 679 cases); Zimbabwe (continued from 2008); Tanzania (7700 cases); Kenya (11 769 cases) [30, 39, 44]

2010 Haiti (epidemic begins October; approximately 700 000 cases to date); Zimbabwe (Kadoma City, 127 cases); Cameroon [4,29-31, 43,
(2010—-2011; 23 152 cases); Nigeria (41 787 cases); Bangladesh (MDR resistance rising— 93% of isolates from coastal 44,50, 51, 63]
areas 2010—2014— approximately 450 000 cases/year); India (El Tor variant; 2152 cases)

2011 Philippines (O1 hybrid El Tor; Palawan, 1226 cases); DRC (8038 cases); Uganda (fishing villages— recurrent yearly [36—39, 48]
outbreaks 2011 -2015, 5059 cases); Cameroon (continued from 2010)

2012 Guinea (2009—-2012, >15 500 cases) ; DRC (Betou, 355 cases); Tanzania; India (El Tor ctxB7 allele) [37, 39, 47]

2013 India (MDR O1 Ogawa, Bagalkot, 49 cases); Tanzania (Dar Es Salaam, approximately 3400 cases) [37, 52]

2014 Ghana (Accra region, continued into 2015, more than 20 500 cases) [37]

2015 Tanzania (approximately 9900 cases); Southern Sudan (began 2014; insufficient vaccines; 2260 cases) [37, 40]

2016 Yemen (epidemic begins October; ongoing); Tanzania [9, 37]

2017 Surge in cases in Yemen since April; 862 858 suspected cases (26/10/17 WHO update) [9]




216

An update on cholera epidemics

An International Coordination Group under the WHO
Secretariat manages the global cholera vaccine stockpile,
and countries or agencies who need to access the stockpile,
for example, in the event of an outbreak, must submit a
detailed request to this group. While this system has been
designed to ensure that scarce vaccine stocks are targeted
to areas where they are most needed, the obstacles that can
arise were highlighted in another study from the African
Great Lakes Region, this time from Southern Sudan [40].
The study concerned an outbreak that occurred in the city
of Juba in June 2015. Like Yemen, this city was suffering
from civil strife, which began in December 2013 and
resulted in major movement of people in and out of the
city, making Juba a potential submission hub for the whole
country. Global shortages of cholera vaccine meant that
there were insufficient doses to vaccinate the entire at-risk
population, which numbered approximately 1 million in
Juba alone, with the usual two-dose regime [40]. After
internal consultations, a request was made to the Interna-
tional Coordination Group two weeks after the epidemic
start was declared. Three weeks after the International
Coordination Group made a decision to release 270 340
doses, a targeted vaccination campaign was eventually
agreed among stakeholders, in which a single dose strategy
was used and 140 249 doses were targeted to areas of Juba
in which transmission was sustained or increasing, as well
as to high-risk groups. Remaining doses were used in a
program combining sanitation and hygiene promotion, and
for use among internally displaced people outside Juba in
places where fighting was ongoing and where there had
been recent large population movement [40]. This study
has parallels to the current situation in Yemen, and
highlights the issues arising from civil unrest and internal
displacement of people. It makes clear the challenges to
planning effective vaccination campaigns in the face of
outbreaks in areas of civil unrest, the lack of data-based
guidance on when, where and how vaccines should be used
reactively, the time that can be lost when a country’s
surveillance and laboratory capacity is undermined, in
applications to the International Coordination Group, and
consultations with stakeholders, and the difficulties
inherent in prioritising competing needs in the context of
a global vaccine shortage [40]. Another study focused on
the issue of cross-border cholera outbreaks in the African
Great Lakes Region, for example, on the borders between
Malawi and Mozambique and between Uganda and DRC
[41]. These cross-border outbreaks accounted for 603
cases and five deaths in Malawi and Uganda in 2015.
Contributing factors included poor sanitation and hygiene,
contaminated water and environmental factors such as
flooding. Children of school age or aged under five years
were the most commonly affected age groups. Typically,
there were only unilateral efforts by one affected country to
control such outbreaks and they were increased by frequent

cross-border movements between countries [41]. This type
of cross-border outbreak could be a risk in the current
situation in Yemen, if affected individuals crossed borders
into neighboring countries such as Saudi Arabia or Oman.
Other studies from the Middle East have shown how travel
between neighboring countries can contribute to cholera
spread. For example, in a study on cases arising in Iran in
2013, 83% of cases were associated with individuals
traveling from Afghanistan or Pakistan, and were domi-
nated by the V. cholerae O1 Inaba serotype, with evidence
of increasing antibiotic resistance compared to previous
years [42].

Outbreaks of cholera in West Africa and in Zimbabwe
have highlighted the importance of seasonality and climate
[43,44]. In a study on cholera outbreaks which occurred in
Cameroon between 2000 and 2012, seasonal patterns of
the three waves of outbreaks which occurred in this time
period differed significantly depending on climate sub-
zone, emphasizing the need to understand local climate
and environmental conditions when considering cholera
transmission patterns [43]. Other studies in Cameroon also
identified the importance of poor food preservation
methods as a risk factor in contracting cholera, as well as
the necessity for improvements in hygiene and sanitation
and in water infrastructure in tackling current and
preventing future epidemics and outbreaks [31]. This
further highlights the difficulties currently faced in Yemen,
where the ongoing war is undermining the water
infrastructure and leaving citizens without reliable food
sources or food preservation resources.

The issue of contamination of water sources is further
underlined in studies in Southern Asia, especially in
Bangladesh [45,46] and India [47], and in South-East Asia,
for example, in the Philippines [48]. In Bangladesh,
cholera is endemic and epidemic, with approximately
450 000 cholera cases every year [1,45]. Both Ol and
0139 biotypes are found in ponds, river water and
irrigation canals [46], with outbreaks displaying a robust
seasonality [49]. As in other areas, the emergence of
increased multi-drug resistant (MDR) strains is causing
concern. In a study on V. cholerae O1 isolates from remote
coastal areas of Bangladesh, 93% of isolates were MDR,
with evidence of reduced susceptibility to ciprofloxacin
and azithromycin among other antibiotics [50]. Outbreaks
and epidemics in India have been associated with both El
Tor and atypical El Tor O1 isolates. A tetracycline-resistant
O1 El Tor variant was associated with a 2010 epidemic in
the tribal area of Odisha in India [51], and a hybrid O1 El
Tor carrying the ctxB7 allele was associated with two
outbreaks that occurred in South-West India in 2012,
originating with faecal contamination of the potable water
supply leading to the first outbreak, which then spread to
other areas and caused the second outbreak [47]. Another
hybrid El Tor variant was responsible for a large outbreak
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in the Philippines in 2011, which was found to be
indigenous and present locally in the aquatic ecosystem
[48]. The Philippine isolates were unique and differed from
O1 isolates found in other countries in Asia, or in Africa or
Haiti. Again, in India outbreaks tend to be seasonally
driven, such as the clusters that occur during the monsoon
season every year in Karnataka. During the outbreaks of
2013, an MDR variant of V. cholerae O1 (Ogawa serotype)
was identified in cases in the remote Bagalkot area of
Karnataka [52]. In Mumbai, a waxing and waning of MDR
among V. cholerae O1 El Tor (most commonly Ogawa
serotype) has been observed among isolates gathered
between 2004 and 2013 [53]. These studies highlight the
need to be vigilant about seasonal changes in Yemen
potentially affecting cholera transmission and to be aware
of possible MDR arising, making it essential that antibiotic
sensitivity testing be facilitated as much as possible. At
present it is unclear what the predominant variants are in
the Yemen outbreak.

In October 2010, one of the largest ever recorded cholera
outbreaks began in Haiti in the aftermath of a devastating
7.0 magnitude earthquake which struck on January 12th,
2010. The cholera epidemic has since caused approxi-
mately 700 000 cases and 10 000 deaths to date. The
experience of Haiti highlights how this disease flourishes
in conditions where infrastructure is damaged, sanitation
and hygiene breaks down and the healthcare system is
compromised. The Haiti outbreak originated with the
introduction in 2010 of the hybrid O1 El Tor carrying the
ctxB7 allele, which also caused outbreaks in India,
including the two outbreaks in South-West India in 2012
[47], as well as outbreaks in Cameroon and Zimbabwe in
2009, and Nepal in 2010 [54,55]. Prior to this outbreak,
there had been no cases of cholera in Haiti for a century. It
was established by genomic epidemiology studies that the
epidemic originated due to a single introduction from
Nepal, followed by rapid clonal spread [29]. It has since
been widely accepted that the original source of the
infection was Nepalese soldiers who arrived in October
2010 as part of the United Nations Stabilization Mission in
Haiti (MINUSTAH), although there is still some debate on
the matter [56,57]. The Artibonite watershed was con-
taminated with infected sewage, leading to downstream
cases within days [57,58]. Two years on, toxigenic V.
cholerae of the outbreak strain was still detectable in
surface waters [59], while between April 2013 to March
2014, the number of surface water samples containing
culturable V. cholerae O1 increased more than 5-fold from
the previous year, with seasonal water temperatures and
precipitation playing a significant role [60].

The nature of the way in which cholera was introduced
to Haiti has resulted in an UN-commissioned independent
report with recommendations on pre-deployment interven-
tions to reduce risk of transmission of diseases such as

cholera from endemic to non-endemic regions by peace-
keepers [61,62]. A recent computational modeling analysis
suggested that of the three options suggested — screening
for V. cholerae carriage, immunisation with oral cholera
vaccines (OCV) or administering prophylactic antibiotic
chemotherapies — the latter would be the most efficient
and cost-effective, although all would be effective to some
extent [62]. The administration of prophylactic antibiotics
would be somewhat controversial in the current era of
increased antimicrobial resistance among pathogens.

The altered El Tor variant strain responsible for the Haiti
epidemic is part of Wave 3 of the spread of El Tor strains
that have evolved since their emergence in 1961. When
compared to strains from Wave 1, the Haiti strain is
hypervirulent, with greater cholera toxin (CT) and
hemolysin production [63]. It has caused a substantial
mortality rate [4]. Risk factors for transmission in intra-
peak periods in Haiti have been identified as close contact
with cholera patients, eating food bought from street
vendors or drinking/washing dishes with untreated tap
water, while protection is associated with prevention
messages such as hygiene promotion [64]. Living in
remote areas poorly accessible by road was identified as a
mortality risk factor [65]. This is relevant in the Yemen
situation, where the damage to the infrastructure leaves
greater numbers of people remote from help.

Cholera virulence genes and CTX® phage
infection process

As mentioned above, pathogenic V. cholerae strains carry a
prophage CTX®, which expresses the CT-encoding ctxAB
genes. Production of CT is central to V. cholerae
pathogenicity and its ability to cause outbreaks and
epidemics, and is responsible for the disease symptoms.
CT causes the watery diarrhea associated with cholera by
binding to the GM1 ganglioside receptor on erythrocytes,
which leads to its internalization and consequent cAMP
increases, which then leads to catastrophic water and
electrolyte loss in the form of diarrhea [66,67]. The non-
toxic CT subunit, CTB, from both classical and El Tor
biotypes also complexes with blood group determinants
when binding to its primary GM1 receptor. This mediates
blood-group-dependence of cholera infection; individuals
with blood group O suffer the most severe symptoms,
probably because blood group H determinant, character-
istic of blood group O, binds CT with higher affinity than
blood group A-determinant [68]. CTB can also bind to
other mediators beyond as well as GM1 on immune cells
such as monocytes, including the Toll-like receptor TLR4,
and the immunoglobulin (Ig) superfamily members,
TREM2 (triggering receptor expressed on myeloid cells
2) and LMIR5/CD300b (leukocyte mono-immunoglobulin
(Ig)-like receptor 5) [69]. This immunological targeting is
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implicated in the inflammatory responses induced by V.
cholerae infection.

The CTX® consists of core and RS2 gene clusters
[15,70]. The ctxAB genes are carried on the core cluster,
along with other virulence and phage morphogenesis-
associated genes including psh, core-encoded pilin (cep),
pIII™, accessory cholera enterotoxin (ace) and zonula
occludens (zot). The RS2 cluster contains the genes rstR,
rstA and rstB, which are associated with the regulation of
CTX® gene expression, phage replication and phage
integration respectively [15]. In O1 El Tor strains, the
CTX® RS2 and core elements are flanked by satellite
phages called RS1, which resemble RS2 but have an extra
gene, rstC, encoding an anti-repressor protein that
enhances CTX® gene transcription [15].

CTX® infection and virulence also requires the host-
encoded toxin co-regulated pilus (TCP), which is encoded
on the VPI-1 pathogenic island and which mediates small
intestine colonization. The CTX® interacts with TCP and
TolQRA division proteins for delivery to the host cell
cytoplasm, then undergoes rolling circle replication (RCR)
as the host replication machinery converts its single-
stranded DNA genome into double-stranded [70,71]. This
allows RCR to proceed, with production of new CTX®
particles [72]. CTX® is then irreversibly integrated into V.
cholerae at integration sites called dif, via the action of host
tyrosine recombinases XerC and XerD, part of the
chromosomally encoded site-specific recombination
machinery [73]. While integration of non-replicative
forms of CTX® tends to be inefficient, the integration of
replicative forms is highly efficient and usually results in
multiple tandem integrations. RCR is dependent on the
CTX® HUH endonuclease protein RstA, which is in turn
controlled by the CTX® repressor protein RstR and the
host cell SOS machinery [74]. RstA creates a nick at the
CTX® ori(+) to give a 5’ phosphotyrosine intermediate
and free 3'-OH in replicative CTX®, and primes the
remainder of the replication process to be carried out by
host proteins [74,75]. Various host proteins have been
identified as essential in CTX® replication including
histone-like protein HU, which is needed by RstA to
introduce the nick at CTX® ori(+), and UvrD, a DNA
helicase usually involved in DNA repair [76]. HU and
UvrD are therefore potential candidates for targeting of
live attenuated cholera vaccines.

Transcriptional activation of CT and TCP depends on
the ToxT protein, a member of the AraC/XylS transcription
factor family [77,78]. Activation of the foxT gene depends
in turn on synergistic coupling of the membrane-located
heterodimers ToxR/ToxS and TcpP/TcpH [79]. These
virulence transcriptional regulator proteins, in particular
ToxT itself, are potentially effective targets for cholera
therapies. Targeting of the bacterial pathogenesis rather
than its survival would have the advantage that resistance
would be unlikely to develop.

Cholera therapy
Antibiotic resistance and mobile genetic elements

Therapy for cholera generally relies on rehydration,
supplemented by antimicrobial treatment in the case of
severe infection and septicaemia, as recommended by
WHO guidelines [80]. A Cochrane systematic review
confirmed the improvements that result from antimicrobial
treatment, both clinically and microbiologically, with
azithromycin and tetracycline emerging as having possibly
increased benefits compared to other antibiotics [81].
There is, however, an increasing problem of emergence of
antibiotic-resistant strains of V. cholerae, for example
strains that are resistant to the fluoroquinolones such as
norfloxacin, which had previously had consistently high
activity against V. cholerae, and P-lactam-resistant strains
which have arisen due to acquisition of extended-spectrum
B-lactamases (ESBLs) [52,81-85]. Comprehensive infor-
mation on antibiotic resistance genes associated with
cholera can be sources from the DBDiaSNP database, an
open-source facility containing information on mutations
and antibiotic resistance genes for a range of diarrhea-
causing pathogens including V. cholerae [86]. This rise in
resistance to previously effective antibiotics has further
increased interest in use of other antibiotic classes, such as
the macrolide antibiotic azithromycin. A randomized
control trial carried out on 120 adult cholera patients in
India revealed that a single dose of azithromycin was as
efficacious in treatment of watery diarrhea and dehydration
as three days of twice-daily doses of norfloxacin [87].
However, reduced susceptibility to azithromycin has been
observed in strains isolated, for example during outbreaks
in Bangladesh [50] and Thailand [21]. Currently, the
tetracycline antibiotic doxycycline is recommended as the
first line antimicrobial treatment for adult patients with
either V. cholerae O1 or O139 infection, with erythromycin
or azithromycin recommended for children or pregnant
women [84,88]. However, the rise in antibiotic resistance
highlights the importance of reliably establishing antibiotic
susceptibility patterns, which is difficult in situations such
as the epidemic in Yemen where healthcare services are
seriously undermined. There are multiple reasons for the
rise in antibiotic resistance in V. cholerae, of which the
most important is horizontal gene transfer via mobile
genetic elements such as integrative and conjugative
elements (ICEs) of the SXT mobile integron family and
plasmids such as the IncA/C plasmid family [84,89-94].
SXT family ICE linear DNA sequences have been
particularly important in conferring antibiotic resistance on
V. cholerae strains. Phylogenetic analyses have estimated
that between the first and second waves of the seventh
pandemic, an SXT ICE of the SXT-R391 family was
acquired, coincidental with the dating of the most recent
common ancestor (MRCA) of the O1 and O139 biotypes
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between 1978 and 1984 [91,95,96]. The SXT SXT-R391
family share a common 52 core-gene backbone, which
facilitates integration/excision and conjugation, as well as
variable regions which include elements such as antibiotic
resistance genes [91]. SXT is named for its conferring of
sulfamethoxazole and trimethoprim resistance. Since the
first V. cholerae-associated SXT was identified in O139
MOI10 in India (SXTM?'%) [97], several other SXT
elements have been identified in V. cholerae O1 or 0139
strains [91]. Examples include the hybrid SXT element
ICEVchCHNI1307, which was isolated from the ICDC-
1307 O1 strain from a patient in China in 1998 [93]. Along
with an IncA/C plasmid, pVC1307 and a chromosomal
integron, ICEVchCHN1307 confers intermediate or com-
plete resistance to 13 antibiotics. Other El-Tor OI-
expressed SXT elements include the ICEVchIndS and
ICEVchMoz10, both of which have rearrangements in
their variable regions when compared to basic SXT
[96,98]. Genetic analyses indicate that there has been
multiple acquisitions as well as homologous recombina-
tion between ICE elements, contributing to the diversity in
pathogenic V. cholerae strains [91]. There is also evidence
of mobile genetic elements carrying antibiotic resistance in
both environmental V. cholerae strains and non-O1/non-
0139 clinical isolates. For example, in Haiti a mobilizable
genomic island (MGI) called MGIVckHai6 which confers
resistance to multiple antibiotics was identified in a non-
O1/non-0139 MDR strain HC-36A1, and subsequently all
non-O1/non-0139 MDR clinical strains isolated in Haiti
[83]. MGIVchHai6 can be mobilized by IncA/C plasmids

Table 2 Overview of potential cholera therapies

and could therefore be transferred to other V. cholerae
strains in epidemic regions. It has already been identified in
strains from India and North and South America [83].
Meanwhile, in environmental strains class 1 integrons
conferring resistance to several antibiotics have been found
to persist in environmental non-O1/nonO-139 strains from
the Amazon region of Brazil, while class 2 integrons
conferring resistance to a different range of antibiotics
have been found in non-O1/non0O-139 environmental
strains from India, Bangladesh and Ghana, and one strain
of the V. cholerae O1 Amazonia lineage, suggesting that
these elements can be transferred between strains and
therefore act as a potential reservoir for further antibiotic
resistance in cholera [99].

Potential cholera therapies

The increase in antimicrobial resistance has also led to
increased interest in development of potential new cholera
therapies to supplement or replace antibiotic treatment. A
summary of some of the pathogen-directed and host-
directed agents which have been shown to have potential
utility in cholera treatment within the last three years is
shown in Table 2. These include use of natural products
such as seaweeds and herbal sources, quorum sensing,
host-directed therapeutic agents, re-purposing of existing
drugs such as ribavirin, use of bacteriophages, and use of
toxin inhibitors such as linoleic acid, bithianol, AraC
inhibitors, virstatin or dietary minerals [99—118].

Use of natural compounds from sources such as seaweed

Target Therapeutic agent Therapeutic target/mechanism References
Virulence/toxin mediators ~ Seaweed polysaccharide (in vivo- mice) CT; GM1 receptor [100]
Anethole (in vitro, in vivo-rabbits) Reduced CT and TCP expression via inhibition of ToxT [101]
Catechin and luteolin (in silico) Inhibition of ToxT [102]
Conjugated linoleic acid (CLA) (in vitro, in vivo-rabbits) Reduced CT and TCP expression via inhibition of ToxT [111]
Virstatin (in vitro, in vivo- mice) Reduced CT expression via inhibition of ToxT [113]
Model bicyclic compounds (in vitro) Reduced in vitro tcp expression via inhibition of ToxT  [110]
Ribavirin (in vitro) Inhibition of AphB [106]
Dietary minerals (Zn, Mg, Se) (in vitro, ex vivo) Reduction of transcription virulence genes ctx4B, flid, [114]
toxR
Lytic bacteriophages @VC8 (wastewater, Mexico) Lytic activity against V. cholerae Ol strain [108]
VPUSM 8 (sewage water, Malaysia) Lytic activity against V. cholerae O1 El Tor Inaba [109]
serotype
ICP 1, 2 and 3 (in vitro, in vivo-mice) Lytic activity against V. cholerae O1 [107]
Host-directed CFTR inhibitor ®-BPO-27 (in vitro, in vivo- mice) Inhibition of CFTR conductance [104]
Bithionol (caspase inhibition) (in vitro) Reduction of CT effects via inhibition of human [112]
caspases-1, -3, -6, =7, -9
Entinostat (in vitro, in vivo-rabbits) Restoration of antimicrobial peptide CAP-18 levels [105]
Quorum sensing Manipulation of the gut microbiota [103]




220

An update on cholera epidemics

or herbs presents attractive potential source of therapy.
Polysaccharides from the seaweed Gracilaria caudate
have been shown to reduce secretory diarrhea, loss of
chloride ions and fluid secretion in response to CT in in
vivo studies in mice [100]. There was evidence that these
polysaccharides interacted directly with both CT and its
GM1 receptor. In in vitro studies, the sweet fennel
component anethole reduced CT and TCP expression in
a toxT-dependent, toxR/toxS-independent manner, via
tcpPltcpH repression [101]. This was mediated by over-
expression of the cyad and crp genes of the cAMP-cAMP
receptor protein (CRP) system. Anethole also reduced fluid
accumulation mediated by V. cholerae in rabbit ileum,
suggesting its possible utility as an anti-cholera agent
[101]. Meanwhile, in silico screening, absorption, diges-
tion, metabolism, and excretion (ADME) of a range of
herbal herbal compounds, with docking on ToxT, indicated
that catechin and Iuteolin were potentially inhibitory of
ToxT and had good ADME properties, suggesting that they
are potential lead molecules for therapeutic development
[102]. Another compound that has potential utility against
ToxT include the unsaturated fatty acid (UFA) linoleic
acid, including conjugated linoleic acid (CLA), which is
currently commercially available as an over-the-counter
weight loss supplement. In in vitro studies, CLA reduced
CT and TCP expression via inhibition of ToxT [111].
Furthermore, in vivo studies in an adult rabbit ileal loop
model indicated that CT production was reduced in
response to CLA after infection with V. cholerae El Tor
strain C6706 and that fluid accumulation was also
significantly reduced [111]. Another ToxT-targeting agent
is the synthetic isoquinolone alkaloid virstatin [113]. It
reduces CT expression via ToxT inhibition and reduces
intestinal colonisation of infant mice after V. cholerae
infection [113]. A recent study designed to design,
synthesize and characterize a new set of potent ToxT
inhibitors used a structure-based approach with the folded
conformation of UFAs such as CLA to design model
bicyclic compounds [110]. The resulting “pre-folded”
small molecule inhibitors bound more tightly to ToxT than
UFAs or virstatin and reduced in vitro tcp expression; they
have potential to be developed as anti-diarrhea therapies
both in cholera and in disease caused by other enteric
pathogens [110]. An advantage of all of these ToxT-
directed inhibitors is that they target V. cholerae virulence
rather than survival, therefore resistance is less likely to
arise. Ribavirin, which is an FDA-approved drug, was
recently shown to inhibit the V. cholerae protein AphB,
which is a LysR-type transcriptional regulator (LTTR)
involved in tcpP and tcpH expression [106]. Thus, this
represents an opportunity to consider an already-approved,
safe drug for repurposing in cholera treatment. Dietary
minerals including zinc (Zn), manganese (Mn) and
selenium (Se) have also been shown to reduce transcription
of V. cholerae virulence genes including ctxAB, flid and tox

R in an ex vivo mouse intestine model, as well as reducing
bacterial motility, Caco-2 cell adhesion and CT expression
in vitro [114].

Another possible strategy for cholera therapy is use of V.
cholerae lytic phages. They are thought to be important in
modulation of V. cholerae O1 and O139 populations in
aquatic environments, with effects on seasonality of
cholera outbreaks depending on their levels [115]. In a
study from Mexico, phages with lytic and lysogenic
activity were isolated from V. cholerae O1 strains found in
wastewater samples [108]. Of the 16 phages isolated, only
the OVCS phage, a member of the VP2-like phage
subfamily, had specific lytic activity against V. cholerae
Ol strains. Bioinformatics studies revealed conserved
domains within the @VC8 phage such as immunoglobulin
domains that could enable it to bind to mucus substrates,
for example in human intestine. Another lytic environ-
mental bacteriophage active against the O1 El Tor Inaba
serotype, VPUSM 8§, was recently isolated from sewage
water in Malaysia, and its complete genome sequence was
reported [109]. It has potential as a therapeutic or
biocontrol agent. The potential of such bacteriophages
was strikingly demonstrated in a recent in vivo study using
both infant mouse and rabbit models of cholera showed
that administration of a cocktail of three virulent
bacteriophages, ICP 1, 2 and 3, up to 24 h before V.
cholerae infection reduced both intestinal tract coloniza-
tion and diarrhea [107]. None of the V. cholerae colonies
that survived were resistant to all of the three bacter-
iophages, while any resistance was mainly due to
mutations in genes encoding bacteriophage receptors.
This suggests that prophylactic administration of ICP
bacteriophages could be an effective method preventing
cholera infection, for example in the context of a
household of an infected individual [107]. Bacteriophages
have also shown promising results in other animal model
studies from India. For example, in a removable intestinal
tie—adult rabbit diarrhea (RITARD) model, a mixture of O1
biotype El Tor typing phages reduced diarrhea grade in V.
cholerae MAK 757-infected animals [116]. Results from
another study in rabbits suggested that efficacy of a
bacteriophage cocktail in reducing bacterial shedding in a
model of V. cholerae O1 infection depended on oral
administration of the phage cocktail after rather than before
infection [117]. Treatment with a phage cocktail subse-
quent to V. cholerae MAK 757 infection of mice reduced
bacterial colony numbers and inflammatory cytokine
levels [118].

Host-directed therapies are another potential anti-
cholera strategy. One example is possible use of cystic
fibrosis transmembrane conductance regulator (CFTR)
chloride channel inhibitors [104]. These channels are
inappropriately activated in secretory diarrhea associated
with cholera. The benzopyrimido-pyrrolo-oxazinedione
(R)-BPO-27 inhibits CFTR conductance in epithelial cell
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cultures and intestine after treatment with CT and also
prevented CT-induced fluid accumulation in small intest-
inal loops in an in vivo mouse model, with high
bioavailability for more than 4 h at non-toxic(R)-BPO-27
concentrations [104]. Thus re-purposing of CFTR inhibi-
tors is a possible strategy for treatment of secretory
diarrhea in cholera. Another approved drug, Bithionol,
which was originally approved for helminthic infection
treatment, has been found to directly inhibit human
caspases-1, -3, -6, -7, and -9, which are involved in
apoptosis [112]. It thereby reduced the in vitro detrimental
effects of CT, as well as a number of other toxins including
diphtheria toxin, Pseudomonas aeroginosa exotoxin A,
anthrax lethal toxin, ricin, Botfulinum neurotoxin A and
Zika virus [112]. Entinostat, an aroylated phenylenedia-
mine, was also an effective host-directed therapy used in
vivo in a recent study on V. cholerae-infected rabbits [105].
V. cholerae infection reduced the intestinal expression of
the antimicrobial peptide CAP-18. Entinostat treatment
restored CAP-18 levels and increased the levels of serum
zonulin, a gut permeability marker, as well as mediating
recovery from cholera and reduction in V. cholerae stool
counts [105]. Thus etinostat is a potential host-directed
therapeutic agent for cholera treatment which could
increase CAP-18 and regulate intestinal permeability.
Another possible host-directed “therapy” would be
manipulation of the gut microbiota in order to exploit the
fact that commensal gut microorganisms can apparently
antagonise V. cholerae and reduce its colonisation in an
interaction mediated by quorum sensing [103].

Cholera vaccines

Vaccination is an important element in the battle to prevent
cholera transmission, in conjunction with access to safe
water, sanitation and hygiene (WASH) [119,120]. There
are currently three oral cholera vaccines (OCVs) pre-
qualified by WHO, namely Dukoral®, Shanchol® and
Euvichol®, all of which are killed/inactivated vaccines
[120].

Dukoral®, which is manufactured by SBL Vaccines,
contains heat- and formalin-killed V. cholerae and CT
subunit B (CTB) and has shown efficacies ranging between
50% and 88% [121]. It is licensed for use in individuals
over two years of age in many countries. It has also been
shown to confer indirect (herd) protection as well as direct
protection in a sub-Saharan African setting [122]

Shanchol®, which is manufactured by Shantha Biotec in
India, contains killed whole cells of both V. cholerae O1 El
Tor and Classical biotypes, and of 0139 [120]. Its safety
and immunogenicity has been confirmed in both adults and
children as young as one year [123]. It is cheaper to
produce than Dukoral® because it does not contain CTB

and therefore does not need buffer. It has been used in
vaccination programs in many countries. In Haiti,
Shanchol® was used to vaccinate 97 774 people as part
of a reactive vaccination campaign in 2012 in the context
of the ongoing epidemic, as part of a package of measures
that also included establishment of cholera treatment
centers, promotion of WASH practices, and appropriate
use of antibiotics [124—126]. This represented the first use
of'an OCV in an outbreak situation in urban and rural areas
since prequalification by WHO. The effectiveness of the
measures were confirmed in follow-up studies conducted
37 months after vaccination which demonstrated an
efficacy of 97.5% [127]. It prompted the Ministry of
Health in Haiti to incorporate use of OCVs into its national
cholera control strategy [127]. However, despite this
demonstration of the effectiveness of a reactive use of
Shanchol®, administering such a scheme in Yemen
remains complicated by issues such as the local movement
of people and the difficulties in achieving WASH measures
with a compromised healthcare system and sanitation and
hygiene infrastructure, as well as issues such as global
shortage of OCVs and the recommendations that the OCV's
be administered in a two dose regimen [38]. Shanchol®
was shown to be more effective when delivered as part of
routine government services and combined with beha-
vioral interventions aimed at encouraging safe drinking
water and hand washing in a large cluster-randomized
open-label trial in Bangladesh [128]. Another double-
blind, cluster-randomized, placebo-controlled trial in
Kolkata in India confirmed the long-term efficacy during
a five-year follow-up study which showed cumulative
protective efficacy of 65%, with no evidence of decreased
efficacy [129]. Effectiveness of Shanchol® has also been
demonstrated in significantly reducing cholera transmis-
sion in settings such as refugee camps [130].

Euvichol®, which is manufactured by EuBiologics in
South Korea, contains killed whole cells of both V.
cholerae O1 El Tor and Classical biotypes, and of 0139
and is similar in formulation to Shanchol®. Its safety and
immunogenicity was confirmed in a Phase I trial in South
Korea [131], while its efficacy was confirmed in a Phase 111
trial on 1219 adults and children in the Philippines, in
comparison to Shanchol® [132]. It had similar vibriocidal
responses to Shanchol® in both adults and children [132].

Despite the effectiveness of these prequalified OCVs,
there are constraints on their uptake and use. One major
issue for developing countries in particular is cost. In
considering cost-effectiveness of OCV use in Bangladesh,
the Foundation Mérieux and the International Centre for
Diarrheal Disease Research (ICDDR) found that use of
lower cost OCVs such as Shanchol® would be potentially
useful in combination with a range of WASH measures and
clinical and rehydration treatments [45]. Cost-effectiveness
was considered greatest for targeting of children aged
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between 1 and 14 years, while other potentially cost-
effective strategies would include targeting everyone aged
over 1 year in high risk areas, or targeting urban slums or
rural areas with poor water supply quality [45]. However
affordability was identified as a major driver of which
strategy would be chosen, while adequate global vaccine
availability was also pinpointed as a crucial factor. Data
from a vaccination campaign carried out in 2011 using
Shanchol® in a high-risk area in Dhaka in Bangladesh was
used to determine that total vaccination cost per person was
US$3.98, given that 123 661 people received two doses
and 18 178 people received one dose [133]. Vaccine
purchase cost accounted for 58% of the cost overall,
suggesting that reduction of cost-per-dose would impact
significantly on future vaccination campaigns. Cost and
global vaccine availability are both factors that have driven
studies in which efficacy of using only one vaccine dose, as
opposed to the recommended two, has been tested. Clinical
trial data from Bangladesh [134] and from South Sudan
[40] suggest that single-dose regimens can be efficacious.
However, efficacy in the Bangladesh study was limited to
adults and to children aged over five years, but not younger
children [134]. Another approach would be to consider
whether an alternative dosing schedule to the current two-
week schedule could be used. In a randomized control trial
with 356 participants conducted in Kolkata in India,
vibriocidal response rates against V. cholerae O1 Ogawa in
both adults and children were comparable for both two-
week and four-week Shanchol® dosing schedules [135].
Less strict requirements for two-week schedules could
improve vaccine uptake in situations where infrastructure
is compromised and there is less reliable access to
healthcare facilities. It is important that WHO and vaccine
manufacturers clarify recommendations on dosing regi-
mens in scenarios such as that currently existing in Yemen,
where local logistical issues in exercising adequate
surveillance in a country at war are compounding the
more general problems. These include the global OCV
shortage, the administrative difficulties inherent in sub-
mission of requests to the International Coordination
Group and accessing sufficient vaccine doses for a reactive
campaign in the face of competing demands in other
endemic and epidemic regions [40]. Mathematical model-
ing has suggested that the optimal strategy for allocation of
OCVs from the global stockpile is allocation of most doses
to reactive campaigns, unless requests are made late in the
epidemic, particularly when stocks are getting low [136].
This further emphasizes the desirability of having
sufficient surveillance mechanisms in place that allow
early reporting of epidemics.

Live OCVs have some advantages in some situations
over the killed OCVs used in mass vaccination campaigns.
Live-attenuated vaccines tend to require only one dose and
produce robust and rapid mucosal and protective immunity
responses. The live-attenuated vaccine CVD-103-HgR is a

single dose vaccine and the only cholera vaccine licensed
for use in the United States of America (USA) [17]. It was
approved in 2016 by the Food and Drug Administration
(FDA) for use in adults traveling to cholera endemic or
epidemic areas. Its efficacy against severe secretory
diarrhea has been estimated at 90% ten days post-
vaccination and 80% three months post-vaccination [17].
However, live-attenuated vaccines are expensive to
produce, may require refrigeration and may be risky for
use in immunocompromised individuals [120]. Live
attenuated vaccine currently under development include
the VA 1.3 and VA 1.4 vaccines, both of which have
undergone Phase I and II trials in India showing their
safety and immunogenicity [137,138]. They are based on a
non-toxigenic V. cholerae O1 El Tor strain and provide a
potential tool for single-dose vaccination strategies which
could be useful in reactive vaccination campaigns and
emergencies. However, phase III trials are required to
establish their efficacy and reservations remain on the use
of live-attenuated vaccines in immunocompromised indi-
viduals such as HIV patients. Another live-attenuated
cholera vaccine, derived from the 638 V. cholerae O1 El
Tor Ogawa strain has also been shown to be safe and
immunogenic in a placebo-controlled, double-blind rando-
mized control trial on 120 adults in an endemic cholera
area of Mozambique [139]. Conjugated vaccines are
presently at the pre-clinical stage but may eventually
provide an option for non-oral vaccination routes, or for
supplementation of OCVs in vaccination of children
[140,141]. Promising results have been obtained in vivo
in mouse models for conjugate vaccines based on the O-
specific polysaccharide (OSP) of the lipopolysaccharide
(LPS) antigen of O1 Inaba and O1 Ogawa serotype strains
[140,141].

Summary and perspectives

Cholera is a disease of poverty, as well as a frequent
consequence of events such as war and/or natural disasters
which undermine hygiene and health services. It remains
rampant in many developing countries despite being
readily preventable by access to adequate sanitation and
hygiene measures and clean drinking water. Its devastating
effects have been clear in the epidemic that occurred in
Haiti in the aftermath of the 2010 earthquake and in the
ongoing epidemic in Yemen, as well as in multiple
seasonal outbreaks which occur regularly in sub-Saharan
Africa and in Asia. It is readily treated by rehydration
therapy if identified in time, although antibiotic treatment
in the case of more serious infections has become more
complicated in the light of the rise in antibiotic resistance.
There are three killed OCVs which have been prequalified
by WHO, but there is also a global shortage of vaccines
despite the stockpile managed by the International
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Coordination Group under the WHO Secretariat. Also, in
situations of conflict or in the aftermath of natural disasters,
problems with disease surveillance complicate early
identification of cholera outbreaks and timely applications
to the International Coordination Group in the event of an
outbreak. While this system has been designed to ensure
that scarce vaccine stocks are effectively targeted, the
administration process and the vaccine shortage compli-
cates the prompt distribution of vaccines to where they are
urgently needed. Vaccination programs are most effective
as part of a suite of measures also tackling infrastructure,
sanitation and hygiene, which is difficult to establish in
conflict situations such as that currently ongoing in Yemen.
Clarity is needed on factors such as recommendations on
dosing regimens in reactive vaccination campaigns and
easier access to the vaccine stockpile in emergency
situations. It is also important to be able to clarify which
V. cholerae strains are dominant in the Yemen outbreak,
and their antibiotic sensitivity and resistance profiles.
Meanwhile, research is ongoing on several potential
therapeutic options, including therapies aimed at viral
virulence, host-directed options, or use of bacteriophages,
to try to overcome the rising antibiotic resistance of V.
cholerae strains. There are also promising developments in
research on live-attenuated vaccines and conjugated
vaccines which may be useful in one-dose administration
in emergency situations, or for administration by alter-
native means than the oral route.
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