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Abstract Human leukocyte antigen (HLA)-matched donors for hematopoietic stem cell transplantation (HSCT)
have long been scarce in China. Haploidentical (haplo) donors are available for the vast majority of patients, but
toxicity has limited this approach. Three new approaches for haplo-HSCToriginated from Italy, China, and USA
in 1990 and have been developed to world-renowned system up to now. The Chinese approach have been greatly
improved by implementing new individualized conditioning regimens, donor selection based on non-HLA systems,
risk-directed strategies for graft-versus-host disease and relapse, and infection management. Haplo-HSCT has
exhibited similar efficacy to HLA-matched HSCT and has gradually become the predominant donor source and
the first alternative donor choice for allo-HSCT in China. Registry-based analyses and multicenter studies
adhering to international standards facilitated the transformation of the unique Chinese experience into an
inspiration for the refinement of global practice. This review will focus on how the new era in which “everyone has
a donor” will become a reality in China.

Keywords haploidentical hematopoietic stem cell transplantation; conditioning; graft-versus-host disease; relapse; infection;
donor selection

Introduction

Hematopoietic stem cell transplantation (HSCT) is the
most powerful curative therapy for the majority of
hematological malignancies. However, human leukocyte
antigen (HLA)-matched HSCT donors have long been
scarce in China due to a deficiency of HLA-identical
siblings and a relatively small unrelated donor (URD)
program [1,2]. Haploidentical (haplo) family donors, such
as parents or children, offer the benefits of rapid and nearly
universal donor availability. However, the HLA barrier of
haplo-HSCT has been formidable until recent decades due
to the high incidence of rejection and severe graft-versus-
host disease (GvHD) [3–5]. The three main approaches for
haplo-HSCT in the world are as follows [6–8]: (1) T cell
depletion (TCD)-based regimens, which originated from
the Perugia group, Italy [9–11]; (2) granulocyte colony-

stimulating factor (G-CSF) plus anti-thymocyte globulin
(ATG)-based regimens with unmanipulated T cell replete
graft, which originated from the Peking group, China
[12,13]; and (3) post-transplantation cyclophosphamide
(PT-CY)-based regimens with unmanipulated T cell replete
graft, which originated from the Baltimore group, USA
[14,15]. The historical aspects of these approaches had
been previously reviewed [7]. The present review will
focus on the progress of the Chinese experience with
haplo-HSCT and its potential global contributions.

Unmanipulated haplo-HSCT with G-CSF
and ATG

New approaches to haplo-HSCT have been continually
pursued over the past two decades. The Western world first
introduced in vitro TCD in the 1990s. However, this
method required expensive laboratory facilities with
significant expertise in cell manipulation. Furthermore,
this technique was associated with poor T cell function and
thus high incidence of mortality because of infections and
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relapse rates [7,9–11]. Since the 2000s, two haplo-HSCT
regimens using unmanipulated T cell replete grafts were
developed in China and USA; these regimens have now
become popular approaches [8].
In a series of pilot studies on G-CSF-induced immune

tolerance by Huang’s group, bone marrow T cell
hyporesponsiveness could be induced by the upregulation
of monocytes and plasmacytoid dendritic cells (DC2) and
the downregulation of co-stimulatory signals during in vivo
G-CSF administration. The polarization of T cells from
Th1 to Th2 could be maintained after in vitromixture of G-
CSF-mobilized peripheral blood grafts (G-PB) and G-CSF
primed bone marrow grafts (G-BM) [16,17]. Combina-
tions of G-CSF and ATG were proposed to play a
fundamental role in overcoming HLA barriers [18] through
the action of regulatory B cell, regulatory T cell, Th17/Tc
17, and myeloid-derived suppressor cells [19–25].
Based on the mechanistic research on cytokine-induced

immune tolerance, in 2000 Huang and colleagues at
Peking University initiated a pilot study investigating
unmanipulated haplo-HSCT without in vitro TCD for the
treatment of acute leukemia. The study mainly included
mixed grafts of G-PB and G-BM, modified busulfan/
cyclophosphamide (Bu/Cy) plus ATG for myeloablative
conditioning, and cyclosporine A+ methotrexate+
mycophenolate mofetil for intensified GvHD prophylaxis.
All patients (n = 58) in the pilot cohort achieved sustained,
full donor-type engraftment with an acceptable incidence
of grades II–IV acute GvHD (aGvHD, 37.9%) and chronic
GvHD (cGvHD, 65.4%). The 2-year disease-free survival
(DFS) rates for standard- and high-risk patients were
77.6% and 63.2%, respectively [26,27]. The cohort was
updated [13,28–30] and expanded to 756 cases in 2010,
with 99.5% sustained myeloid engraftment, 43% grades
II–IV aGvHD, and 53% cGvHD. The three-year DFS for
standard- and high-risk patients was 68% and 49%,
respectively [31]. During the same period, haplo-HSCT
following ATG+ G-CSF experience was also developed
by the airforce group [32,33].
These promising results justified studies on the feasi-

bility of unmanipulated haplo-HSCTwith G-CSF and ATG
for leukemia. During the last 10 years, several key
techniques have been improved by clinical studies from
various centers (Table 1), including new conditioning
regimens and improved management of complications,
such as GvHD, relapse, and infection.

Individualized protocols expand the target
patient population

ATG is a critical component of the conditioning of T cell
replete haplo-HSCT, but its optimal dose remains
unknown. In a prospective, randomized trial, the Peking
group revealed that 10 mg/kg thymoglobulin (rabbit ATG

by Genzyme) reduced grades III and IV severe aGVHD
(4.5% vs.16.1%) and moderate-to-severe cGVHD (30.4%
vs. 56.3%) compared with 6 mg/kg, with comparable five-
year DFS (75.6% vs. 69.6%, P = 0.283) and improved the
5-year probability of GVHD relapse-free survival (41.0%
vs. 26.8%) [34,35]. Another haplo-HSCT regimen, which
utilized low-dose ATG-F (10 mg/kg rabbit ATG by
Fresenius, standard 30–60 mg/kg), introduced by the
Zhejiang group also achieved acceptable incidences of
severe aGvHD (17.2%) and cGVHD (41.4%) [36].
In addition to standard Bu/Cy conditioning, a new

regimen introduced by the Peking group, which included
TBI (700 cGy)/Cy (3.6 g/m2) plus ATG, was also proven to
be feasible for the treatment of unmanipulated haplo-
HSCT. Compared with the Bu/Cy regimen, TBI/Cy plus
ATG exhibited stable engraftment and a low incidence of
liver toxicity (10.5% vs. 37.7%) and hemorrhagic cystitis
(23.7% vs. 49.3%) for treating acute lymphoblastic
leukemia and provided comparable results to sibling
donors in high-risk acute leukemia [37].
For patients with refractory leukemia, intensified con-

ditioning introduced by the Nanfang group may reduce the
high leukemia cell burden and improve outcomes. Using a
combination of Flu, cytarabine, TBI, Cy, and etoposide for
conditioning in the haplo-setting, Liu et al. showed that
intensified conditioning decreases the five-year relapse rate
from 33.9% to 27.3% and might be a good approach for
refractory leukemia, as well as acute leukemia of
ambiguous lineage [38–40]. IDA-intensified haplo-HSCT
introduced by the Wuhan Union group improved the
dismal prognosis of pre-transplant MRD, yielding 3-year
DFS of 47.3% [41].
Selected older patients (age > 50) with low HCT-CI

( ≤ 2) and good performance status could tolerate
myeloablative haplo-HSCT with similar outcomes com-
pared with younger adults [42]. For patients above 60 years
of age, haplo-HSCT with a reduced intensity regimen by
substitution of cyclophosphamide with Flu was proven to
be feasible with similar engraftment and relapse rates to
myeloablative conditioning [43]. Utilizing induction
chemotherapy with the infusion of HLA-mismatched G-
PB, Ai et al. from the military medical sciences group
showed the superiority of “microtransplantation” over
chemotherapy for elderly patients suffering from AML
(two-year DFS 38.9% vs. 10.0%) [44]. Further multicenter
studies will be needed to compare standard induction
followed by microtransplantation with traditional HLA-
matched HSCT or haplo-HSCT.
Compared with the mixed grafts of G-PB and G-BM in

haplo-HSCT introduced by the Beijing group, the modified
G-CSF+ ATG protocols with pure G-BM or G-PB were
also feasible as proven by various centers. A propensity
score method-based multicenter study demonstrated that
haplo-HSCTwith mixed grafts achieved better 3-year-DFS
compared with G-PB alone (59.9% vs. 44.3%) [45]. Most
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unmanipulated haplo-HSCTs with G-CSF and ATG for
leukemia are summarized in Table 1 [46–55].
Haplo-HSCT has been considered only as a third-line

option for patients with severe aplastic anemia (SAA) in
the absence of HLA identical sibling donor (ISD) or URD,
with a 25% probability of graft failure and five-year OS of
less than 30% [56,57]. However, a new regimen, including
Bu/Cy and ATG combined with unmanipulated grafts, led
to the increasing usage of haplo-HSCT in SAA. According
to Xu et al., all patients (n = 19) in the pilot cohort achieved
100% donor myeloid engraftment, with a 5-year OS of
68.4% [58]. In a later multicenter study that compared
haplo-HSCT and ISD HSCT as salvage treatments for
SAA, the rates of grades II–IV aGvHD (33.7% vs. 4.2%)
and one-year cGvHD (22.4% vs. 6.6%) were still high in
the haplo setting. However, the 3-year OS (89.0% vs.
91.0%), failure-free survival (86.8% vs. 80.3%), and
grades III and IV aGvHD (7.9% vs. 2.1%) were similar
among the groups [59]. In a later registry-based analysis of
SAA patients without previous failure of immunosuppres-
sive therapy, haplo-HSCT achieved similar results to ISD
HSCT as early treatment. Aside from the G-CSF plus
ATG-based regimen, the People’s Liberation Army Gen-
eral Hospital introduced a PT-CY regimen in 20 SAA
patients, which was associated with 85% engraftment in
first transplant and 85% failure-free survival in short
follow-up (median 17 months). The efficacy needs to be
confirmed using increased sample size and long-term
follow-up [60]. Based on these promising experiences,
haplo-HSCT has been promoted to a second-line therapy in
the aplastic anemia guidelines of Asia-Pacific Hematology
Consortium [61] and the British guidelines [62].

Donor selection based on a non-HLA
system improves outcomes in haplo-HSCT

HLAmatch plays a predominant role in the selection of the
best donor among unrelated transplants but does not
influence the outcomes in haplo-HSCT [63,64]. A given
patient might have multiple choices for a haplo donor,
raising the question, “who is the best haplo donor?”
Donor-specific anti-HLA antibodies (DSAs) are asso-

ciated with primary graft failure and treatment mortality
(TRM). Chang et al. reported that DSAs (MFI ≥ 10 000)
were correlated with primary graft rejection and were
associated with poor primary graft function (MFI ≥
2000). This finding supported the rationale for screening
DSAs before haplo-HSCT for donor selection [65].
Basing on a large sample size and relative consistency of

transplant variables, young male NIMA-mismatched
donors were suggested to reduce the risk of severe
GvHD or relapse. As recommended, transplants from
older mothers and NIPA-mismatched donors should
probably be avoided [66]. CD4+CD25+CD45RA+ Treg

was reported to contribute to low aGvHD in NIMA-
mismatched haplo-HSCT. Additionally, other non-HLA
systems, such as donor inhibitory killer cell immunoglo-
bulin-like receptors (KIRs), might also facilitate donor
selection in haplo-HSCT. Currently, an algorithm based on
unmanipulated haplo-HSCT was proposed for donor
selection; however, the mechanisms remain to be further
elucidated [67].

Risk-adapted intervention to reduce GvHD
post-haplo-HSCT

As mentioned above, although rates of grades III and IV
aGvHD and extensive cGvHD were comparable between
haplo-HSCT and ISD HSCT, total GvHD remained a
common problem with high rates observed in haplo-HSCT.
As reported in a follow-up of the largest haplo-HSCT
cohort, the incidence of grades II–IV aGvHD was 43%,
and the two-year cumulative incidence of total cGvHDwas
53% [31]. Meanwhile, rates of grades II–IV aGvHD and
cGvHD were generally below 10%–20% in MSD-HSCT
[68–70].
In a series of studies of biomarkers for GvHD, CD4/CD8

ratios in G-BM allograft ≥ 1.16, CD56bright NK cells in
allograft > 1.9 � 106/kg, M-MDSC in allograft < 1.22 �
107/kg, and other components of grafts provided predictive
markers for the onset of aGvHD after haplo-HSCT
[23,71,72]. However, whether these biomarkers would be
useful for guiding interventions remained unknown.
Chang et al. reported that a cohort of patients (n = 228)
can be stratified into high-risk and low-risk arms according
to CD4/CD8 ratios in allografts. Patients in the high-risk
arms (CD4/CD8 ≥ 1.16) were randomly assigned at a 1:1
ratio to either the additional low-dose glucocorticoid
prophylaxis group or the control group. The cumulative
incidence of grades II–IVaGvHD on day 100 was reduced
from 48.1% to 20.9% by prophylaxis in the high-risk
group, a rate comparable to the low-risk group (25.5%),
without an increased rate of infections or delayed immune
recovery [73]. For the first time, intervention based on risk
stratification with biomarkers was proven feasible for the
management of GvHD. It also established a concrete
example of how precision medicine could be incorporated
into clinical practice.
Mesenchymal stem cells (MSCs) are multipotent

stromal cells with immunomodulatory properties. They
have demonstrated promising efficacy for treating steroid-
resistant GvHD. Co-transplantation of MSCs and HSCs
also reduces aGvHD and cGvHD rates in MSD-HSCT,
albeit with a potentially higher likelihood of leukemia
recurrence [74]. The mechanism and usage of MSC
infusions for GvHD prophylaxis remain to be evaluated.
In a new double-blind trial of haplo-HSCT reported by
Zhang et al., patients without cGvHD at day 100 were

48 Chinese experience of haploidentical hematopoietic stem cell transplantation



randomly selected to receive either umbilical cord-derived
MSCs (MSC group: 3 � 107 cells/100 mL per month) or
normal saline for more than 4 months after transplantation.
The 2-year cumulative incidence of cGVHD was reduced
in the MSC group compared with that in the control group
(27.4% vs. 49.0%, respectively, P = 0.021) without
increasing the risk of relapse [75]. This trial might provide
hope for preventing cGvHD after haplo-HSCT following
an ATG and G-CSF protocol. Further evaluation and
adjustment of infusion doses and intervals according to
biomarker-directed risk stratification would be desirable.

Prophylaxis, intervention, and treatment of
relapse post-haplo-HSCT

Relapse remains the most devastating problem after HSCT,
accounting for nearly half of deaths [76]. Recent biomarker
advances have facilitated the prediction of relapse risk by
dynamic monitoring of MRD, chimerism, and other factors
before or after allo-HSCT. Pre- and post-transplant risk-
stratification-directed strategies for intervention and treat-
ment might benefit patients by triggering more potent
graft-versus-tumor effects without increasing treatment-
associated mortality.
Donor lymphocyte infusion (DLI) is one of the most

effective strategies for patients with recurrent hematologi-
cal malignancies after allo-HSCT. However, traditional
DLI is more effective for CML than for acute leukemia and
carries a relatively high incidence of GvHD. Huang et al.
reported that an infusion of G-CSF-mobilized peripheral
blood progenitor cells with a short course of immunosup-
pression (modified DLI, mDLI) reduces the risk of aGvHD
while maintaining the GVL effects after MSD-HSCT and
haplo-HSCT [77,78]. Chemotherapy followed by mDLI
improved the clinical outcomes compared with chemother-
apy alone (DFS 36% vs. 0%) [79]. In a recent trial, MRD
and GvHD-guided multiple consolidation chemotherapy
and mDLI were proven to prevent a second relapse in
patients with acute leukemia relapse post-transplant (CIR
22% vs. 56%). Meanwhile, the cumulative incidences of
grades II or higher aGvHD were not associated with
chemotherapy or mDLI treatments [80].
Given its efficient anti-leukemia effects (GVL) and

safety by reducing TRM, mDLI could be used for
intervention or prophylaxis before hematological relapse.
Recent clinical trials and reports regarding the use of MRD
or chimerism for guiding pre-emptive intervention post-
allo-HSCT have been informative and helpful. In a cohort
of 814 patients receiving allo-HSCT, where 105 patients
were MRD+, mDLI reduced CIR from 64.4% to 27.8%,
with improved OS (28.1% vs. 58.3% previously). How-
ever, this result was not significantly different compared
with the MRD – patients [81]. Interferon-α (IFN-α), a
well-known antitumor agent for chronic myeloid leukemia,

has sparked renewed interest in its use for AML [82]. Mo
et al. demonstrated that for patients with an unsatisfactory
response to MRD-directed mDLI, IFN-α might induce a
graft-versus-leukemia effect to improve mDLI efficacy and
clear MRD [83]. Later, among patients who were MRD+,
IFN-α was found to be associated with cGvHD more
compared with mDLI (90.9% vs. 62.9%, P < 0.001).
While NRM and DFS were comparable, IFN-α could be
more easily used in an outpatient department [84].
For advanced leukemia with a high risk of relapse,

Huang et al. showed that prophylactic mDLI can reduce
the relapse rate to 51.3% after haplo-HSCT [78].
Intensified conditioning followed by early immunosup-
pressant withdrawal and DLI could further reduce the
relapse rate of refractory acute leukemia [40]. In a recent
multicenter study, prophylactic DLI at 45–60 days after
transplantation followed by MRD and GvHD-guided
multiple DLI for patients with refractory/relapsed leukemia
further reduced the cumulative relapse rate to 32.4% with
improved LFS and OS (50.3% and 51.4%) [85].

Infection management reduces TRM

Invasive fungal disease (IFD) remains a significant threat
post-HSCT, especially in the haplo setting. Sun et al.
reported in a single-center analysis that the incidence of
IFD after unmanipulated haplo-HSCT is significantly
higher than that after MSD-HSCT (7.1% vs. 3.3%), as
well as in multivariable analysis (HR = 2.648, 95% CI
1.111–6.310; P = 0.028). However, the response to
antifungal therapy and IFD-attributable mortality were
similar between the two types of transplantation. This
finding was further validated in the first large-scale
observational study of IFD in China, the China Assessment
of Antifungal Therapy in Hematological Disease. The
incidences of proven IFD following ISD, URD, and haplo-
HSCT were 4.47%, 11.64%, and 12.73%, respectively. In
total, 83.9% of patients received antifungal prophylaxis.
Empirical, pre-emptive, and targeted antifungals were used
in 82.3%, 13.6%, and 4.1% of cases, respectively [86].
This observational study provided abundant information
for refining future anti-IFD strategies.
As prolonged severe neutropenia ( > 14 days) was

identified as an independent risk factor for IFD [86],
strategies to address neutropenia are desirable for reducing
IFD-associated mortality. In a phase IV trial from the
Shanghai group, 206 patients were randomly assigned to
receive once-daily subcutaneous GM-CSF, G-CSF, or a
combination of both. The authors of the study found that
IFD-related mortality was lower in groups that received
GM-CSF or G-CSF+ GM-CSF compared with those that
received G-CSF (1.47%, 1.45%, and 11.59%, respectively;
P = 0.016). Furthermore, prophylactic GM-CSF was
associated with lower 100-day transplantation-related
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mortality and lower 100-day cumulative mortality, which
suggests that incorporation of GM-CSF with G-CSF may
promote myeloid engraftment in the haplo setting.
Among post-HSCT viral infections, Epstein–Barr virus

(EBV)-related post-transplantation lymphoproliferative
disorder (PTLD) after haplo-HSCT can seriously impair
patient survival. In a large cohort study, a low absolute
count of CD8 T lymphocytes and immunoglobulin M at
day 30 and cytomegalovirus DNAemia after HSCT were
found to be significantly associated with a high risk of
PTLD. Patients who received rituximab-based therapy had
significantly better two-year OS (48.2% vs. 13.2%, P =
0.02). EBV-specific cytotoxic T lymphocyte levels and
DLI following rituximab-based therapy were associated
with improved outcome after PTLD (five-year OS, 68.9%–
70%) [87].

Everyone has a donor with development of
the haplo-HSCT system

Numerous advances in stem cell transplantation during the
past 16 years have included unmanipulated haplo-HSCT
and the integration of G-CSF and ATG into new
conditioning regimens; management of complications
including GvHD, relapse, and infection; and refinement
of donor selection based on a non-HLA system (Table 1).
As a result, patient outcomes following this unique
protocol have steadily improved, bringing an end to the
old era of transplantation plagued by donor shortages.
According to a prospective study by Huang et al.,

unmanipulated haplo-HSCT with G-CSF and ATG was
proven superior to chemotherapy as a post-remission
treatment for intermediate- or high-risk AML or ALL in
CR1. The cumulative relapse incidence for haplo-HSCT
was 12.0% vs. 57.8% for chemotherapy, and the four-year
DFS for haplo-HSCT was 73.1% vs. 44.2% for che-
motherapy. Additionally, in multicenter studies, Wang
et al. reported that haplo-HSCT had outcomes comparable
to MSD-HSCT for adults with intermediate- or high-risk
AML in CR1. Similar results were achieved in Philadel-
phia-negative high-risk ALL in CR1, MDS, and primary or
salvage treatment for SAA [62,68–70,88]. Haplo-HSCT
may also improve outcomes for children compared with
umbilical cord blood transplantation [89]. Accordingly,
haplo-HSCT was adopted as the first-choice alternative
donor to HLA-ISD. Based on these outcomes, this unique
system was named the “Beijing Protocol.”As Kodera et al.
from the Worldwide Network for Blood and Marrow
Transplantation (WBMT) commented, “The Beijing Pro-
tocol was shown to be a reliable treatment strategy for
patients without a suitable HLA-matched donor” [8].
The “Beijing Protocol” was adopted in the majority of

Chinese HSCT centers (n > 90), whereas transplants
following PT-CY- or TCD-based protocols were utilized

less than 1% in Chinese registries of HSCT. The number of
haplo-HSCT cases increased to approximately 2500 per
year, making it the largest source of allo-HSCT donors
(37.6%–51.5%) in China since 2013 (Fig. 1). The “Beijing
Protocol” was also reproduced successfully in Italy, Israel,
Korea, and Japan [4,47,90]. By contrast, according to the
global survey by WBMT, haplo-HSCT with PT-CY is
mainly used in the USA and partially in Europe and
Australia [8]. The European Society for Blood andMarrow
Transplantation reported that G-CSF+ ATG-based regi-
mens comprise 43%–45% of haplo-HSCT compared with
PTCy, which comprises 27%–57% of haplo-HSCT, in
Europe [91–93]. The largest cohorts from three different
approaches are summarized in Table 2 [66,94,95]. As R.
Handgretinger commented, “more than half of the HLA
haplotype mismatched transplantations performed world-
wide will follow similar protocols (to the Beijing
Protocol)”[96]. Correspondingly, haplo-HSCT has been a
global phenomenon as the frequency of haplo-HSCT has
grown steadily from 3% to 5% to more than 10% of allo-
HSCT in Europe and USA [97]. The global contribution of
the “Beijing Protocol” and PT-CY thus heralds a new era
where “everyone has a donor.”

Conclusions and perspectives

Substantial progress has been made in the field of haplo-
HSCT in recent years in China. From a broader
perspective, these innovative efforts from China may
have contributed to the worldwide practice of HSCT.
However, several critical questions remain to be

addressed. First, with the arrival of a new era where
“everyone has a donor” [98], is there a shift from donor
shortage to donor diversification? As most patients have
many potential donors, including ISD and alternative

Fig. 1 Annual allo-HSCT cases of the Chinese Registry and percentage
of different donor sources in 2008–2016. Haplo, haploidentical donors;
ISD, HLA identical sibling donor; URD, unrelated donor; cord: cord
blood.
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donors, the question changes from “who’s the best haplo
donor?” to “who’s the best alternative donor?” and, finally,
to “who’s the best donor?” Would an ISD donor always
remain the first choice regardless of disease status or donor
characteristics? Recent advances suggested that ABO
incompatibility, age, and sex of donor–patient will have
a major impact on outcomes instead of HLA compatibility
[99]. How can we predict the outcomes of different donor
sources under a uniform model? Addressing this question
through large-scale registry-based studies, especially those
involving the cooperation between China and the Western
world, is of great importance. In addition, considering the
rapid progression of immunotherapies, such as cellular
therapy including CAR-T, CAR-NK, leukemia gene-
specific CTL, and monoclonal antibodies such as PD-1/
PD-L1, how can they be incorporated or bridged with allo-
HSCT, especially in the largest pool of haplo-HSCT?
Third, though T cell replete haplo-HSCT took place of
TCD worldwide [100], trials of haplo-HSCT following
partial depletion of αβ T and B cells continue to be
explored [101]. Can we “design” the graft compositions
for haplo-HSCT to improve outcomes following G-CSF+
ATG or PT-CY regimens? Lastly, how can we further
improve outcomes for elderly patients or those with
comorbidities? Can we make treatment regimen decisions
according to a patient’s specific characteristics? All these
questions would be critical matters to be addressed at a
summit of international scholars.
With the development of international multicenter

clinical trials and advances in translational research, the
unique Chinese experience can continue to contribute to
global practice for haplo-HSCT.
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