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Abstract Native tissues possess unparalleled physiochemical and biological functions, which can be attributed to
their hybrid polymer composition and intrinsic bioactivity. However, there are also various concerns or limitations
over the use of natural materials derived from animals or cadavers, including the potential immunogenicity,
pathogen transmission, batch to batch consistence and mismatch in properties for various applications. Therefore,
there is an increasing interest in developing degradable hybrid polymer biomaterials with controlled properties for
highly efficient biomedical applications. There have been efforts to mimic the extracellular protein structure such
as nanofibrous and composite scaffolds, to functionalize scaffold surface for improved cellular interaction, to
incorporate controlled biomolecule release capacity to impart biological signaling, and to vary physical properties
of scaffolds to regulate cellular behavior. In this review, we highlight the design and synthesis of degradable hybrid
polymer biomaterials and focus on recent developments in osteoconductive, elastomeric, photoluminescent and

electroactive hybrid polymers. The review further exemplifies their applications for bone tissue regeneration.
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Introduction

The extracellular matrix (ECM) of native tissues is
composed of a hybrid polymer nanostructure at the
molecular level, organized with different biopolymers
and nanocrystallites [1]. Due to their hybrid and well-
organized structure, both hard and soft native tissues
demonstrate excellent physicochemical properties includ-
ing viscoelasticity and strength. They also demonstrate
excellent biological activity including cellular biocompat-
ibility and tissue-inductive ability [2]. Development of new
biodegradable biomaterials by mimicking the physico-
chemical properties and biological activity has therefore
gained increasing attention in recent years [3]. Biomimetic
polymer hybrid biomaterials play an important role
because they can be synthesized with highly tailored
physicochemical properties and bioactivity, through com-
bining different polymers and inorganic phases at the
multiple levels [4]. In past decades, biodegradable natural-
based polymers (collagen, silk, alginate, chitosan, hya-
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luronic acid) and synthetic polymers (poly(lactic acid):
PLA, poly(glycolic acid):PGA, poly(lactic-co-glycolide):
PLGA, Poly(e-caprolactone):PCL, Polyhydroxyalkano-
ates: PHA) have been widely studied and their promising
biomedical applications are also well demonstrated [5—S8].
These polymers have been hybridized in many forms
including 3D scaffolds, hydrogels, microspheres, and their
composites [9-14]. Hybrid hydrogel-microsphere poly-
mers with osteoconductive properties have also been
synthesized [15-17].

In addition to the hybrid structure, osteocondutive
property and electroactive ability are also very important
for the application of hybrid polymers to regenerate bone
[18]. Regeneration of bone can be accomplished by a
combination of osteoinductive materials, regenerative cells
and osteogenic growth factors. Local and long-term
treatment with bone morphogenetic protein 7 (BMP-7)
was accomplished by encapsulation of bioactive protein in
PLGA microspheres. In combination with a nanofibrous
and porous scaffold, treatment with BMP-7 significantly
enhanced in vitro osteogenic differentiation and in vivo
bone regeneration [19].

Pure biomedical polymers such as those listed above
cannot mimic the mechanical properties of native tissues
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especially the strength, elasticity and modulus, due to
intrinsic shortcomings. Nevertheless, they provide certain
advantages. It is possible to use these polymers to design
precise micro and nanoscale environments that are
beneficial for cell attachment, proliferation and differentia-
tion. They can also be tailored for tunable drug delivery.
Because of these advantages, they are being developed
widely for tissue regeneration. To improve their mechan-
ical and osteogenic properties, bioactive ceramic-based
nanophases (bioactive glass and calcium phosphate) and
various polymers (natural and synthetic polymers) have
been hybridized [20-27]. To induce elastomeric behavior,
highly elastomeric hybrid polymers were also synthesized
through incorporating inorganic phase into biodegradable
elastomers [28]. In particular, siloxane-based biodegrad-
able hybrid polymer elastomers were developed with
significantly enhanced mechanical properties and biocom-
patibility [29-31]. In recent years, electric stimulation has
been shown to exhibit a positive effect on tissue
regeneration through enhancing cell proliferation and
differentiation [32]. Therefore, conductive components
such as carbon-based materials and polymer semiconduc-
tors were added to fabricate electroactive hybrid polymer
biomaterials for tissue regeneration applications [33].

This work reviews the design, fabrication, and properties
of biodegradable hybrid polymers with a focus on their
osteoconductive functions, elastomeric property, and
electroactivity. The prospective application of hybrid
materials for bone tissue regeneration is also covered in
this review.

Synthesis and properties of hybrid
polymers

Osteoconductive hybrid polymers

Osteoconductive hybrid polymer biomaterials can be

fabricated by incorporating osteoconductive materials
into biodegradable polymers. Biodegradable polymers
typically have low elastic modulus and poor osteoconduc-
tive activity [34]. Bioactive inorganic biomaterials includ-
ing bioactive glass (BG) and calcium phosphate (CP) have
high conductive activity and bone-bonding ability, and
their enhanced potential for bone regeneration have been
well described in the literature [35-39]. Therefore, BG and
CP-based nanoparticles have been added into various
polymers to fabricate osteoconductive hybrid polymers for
bone tissue regeneration [40-43]. CP-based polymer
hybrid biomaterials have been fabricated successfully by
melting, solvent-casting and in situ precipitation [44].
Most reports showed that addition of low content-CP-
based nanoparticles can efficiently improve the mechanical
strength and modulus of polymers and improve osteocon-
ductive bioactivity [44]. Bioactive glass nanoparticles
(BGN) have an amorphous structure and typical chemical
composition of Si0,-Ca0O-P,0s5 that enable the controlled
biodegradation and high bone-bonding activity for in vivo
implanting applications [45]. By the facile solvent-casting
method, BGNs with different morphology and size were
added into various polymers including gelatin, chitosan,
PLA, PCL, PLGA [41,46-48]. These hybrid BGN-
polymers significantly enhanced compressive strength,
tensile strength, elastic modulus, biominerialization, and
osteoblast biocompatibility (Fig. 1). Although BGN-
polymer nanocomposites have been developed well in
past years, the nanoparticle-based polymer composites still
showed uncontrolled biodegradation and mechanical
properties in vivo due to the low interface strength between
nanoparticles and polymers. These are known challenges
associated with certain BGN-polymer nanocomposites.
Advances have been made in hybrid polymer materials
to maintain controlled degradation and mechanical proper-
ties while also enhancing in vitro osteoconductive activity
[49]. Gelatin-apatite hybrid nanofibrous scaffolds fabri-
cated by thermally induced phase separation were

Fig. 1 Bioactive glass particles reinforced PCL osteoconductive hybrid polymers. Reproduced from Ref. [41] with permission.
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evaluated for biominerialization in simulated body fluid
(SBF) [49]. The gelatin-apatite hybrid scaffolds demon-
strated significantly enhanced mechanical strength and
enhanced expression of osteogenic genes in cells.
Additionally, the hybrid scaffold was coated with biolo-
gical apatite nanocrystals through an electrochemical
deposition technology (Fig. 2) [50]. The apatite layer
thickness could be tailored efficiently by the electroche-
mical parameters. The deposited hybrid polymer scaffolds
also showed enhanced physiochemical properties and
osteoconductive activity.

Agglomeration of BGNs within the polymer matrix is a
challenge associated with hybrid polymers, as these
materials may exhibit unfavorable mechanical and phy-
siochemical properties [43]. To overcome this limitation,
silica-based bioactive glass sol (SBGS) at the molecular
level has been used to develop hybrid polymer biomater-
ials for applications in tissue regeneration. For example,
SBGS-reinforced gelatin, chitosan, polyethylene glycol
(PEG) and PCL hybrid polymers have been fabricated
successfully through one-step hybridization process [51—
57]. SBGS reinforced hybrid polymers showed signifi-
cantly improved mechanical properties including strength,
toughness, controlled biodegradation and biominerializa-
tion, as well as high osteoblastic activity. The SBGS-
reinforced gelatin hybrid polymer was synthesized through
typical sol-gel process, and the interface strength between
organic and inorganic phase was controlled by siloxane
coupling agents (Fig. 3). The resulting SBGS-gelatin
hybrid showed strong compressive strength, mimicking
native bone tissue and providing evidence for its potential
application in bone fixation and repair [51]. SBGS-based
gelatin hybrid scaffolds and nanofibrous scaffolds were

- |
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fabricated through alkaline treatment technology and
thermal-induced phase separation (Figs. 4-6). Signifi-
cantly improved mechanical properties and biocompat-
ibility of SBGS-gelatin hybrids were observed
[41,43,51,58-60]. The SBGS-based hybrid polymer bio-
materials have shown promise for bone tissue regeneration.

Additional advances have been reported in the use of
carbon biomaterial-polymer hybrids as osteoconductive
scaffolds for bone regeneration. Carbon nanomaterials are
often synthesized as single sheets, referred to as graphene,
or hollow structures referred to as carbon nanotubes
(CNTs). CNTs can be single-walled or multi-walled,
consisting of concentric tubular layers of graphene. One
study compared CNT-PLLA scaffolds with graphene-
PLLA scaffolds and reported that both carbon nanomater-
ial hybrids enhanced in vivo bone regeneration but
graphene-PLLA scaffolds showed more osteoconductive
capacity than CNT-PLLA scaffolds [61]. Polymeric
scaffolds reinforced with ultrashort (US)-single walled
CNTs enhanced both ectopic and in sifu bone regeneration
in rabbit subcutaneous and femoral condyle models [62].
Adsorption of ampiphilic comb-like polymer (APCLP) to
CNTs allowed for more homogenous integration of carbon
nanotubes into a bacterial cellulose (BC) scaffold [63]. In a
mouse calvarial defect model, this hybrid CNT-BC
scaffold improved bone formation and expression of
osteocalcin. Vertically aligned CNTs combined with
hydroxyapatite were made to be superhydrophilic and
subsequently dispersed in poly (D, L, lactic acid)
(PDLLA). The resulting hybrid scaffold showed suitable
mineralization and cytocompatibility in vitro and demon-
strated enhanced in vivo bone regeneration capacity in a rat
calvarial defect model [64]. In addition to increasing

Time = 30 min

Fig. 2 Schematic illustration of a hypothesized mechanism for the growth of calcium phosphate crystals over time. When a deposition voltage is
applied, pH in the vicinity of electrode increases, and some calcium phosphate crystals deposited onto the surface of PLLA nanofibers. Further
increase of deposition time leads to the generation of hydrogen bubbles and larger flower-like crystals. Reproduced from Ref. [50] with permission.
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Fig. 4 Schematic diagram showing an experimental procedure for producing anisotropic porous gelatin-silica hybrid polymer scaffolds by
ammonium hydroxide treatment. Reproduced from Ref. [68] with permission.

hydrophilicity, functionalization of CNT-polymer hybrids
may improve mechanical characteristics and cytocompat-
ibility of scaffolds and was reported to enhance in vitro and
in vivo bone regeneration [65-67].

Elastomeric hybrid polymers
Many tissues in the body possess elastomeric properties.

Therefore, the development of biomaterials that demon-
strate highly elastomeric behavior has garmered much

attention. Elastomeric materials are of particular interest
because of their biomimetic mechanical properties, which
enable their use in the complicated in vivo load environ-
ment [69]. Current biodegradable elastomers include
physically crosslinked polymers such as polyurethanes
and polyesters, chemically crosslinked polymers such as
poly(glycerol sebacate) (PGS) and poly(citrate diol) (PCD)
[70]. These biodegradable elastomers have shown highly
tunable degradation, moderate biocompatibility and
good elastomeric mechanical behavior [70]. They have
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Fig. 5 Porous morphology of gelatin-silica hybrid polymer scaffolds. (A, C) Transverse direction; (B, D) Axial direction. Reproduced from Ref.
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Fig. 6 Schematic diagram showing an experimental procedure for producing nanofibrous gelatin-silica hybrid scaffolds by the thermally induced
phase separation (TIPS) technique using the mixtures of the gelatin solution and sol—gel derived silica sol. Reproduced from Ref. [59] with permission

from the Royal Society of Chemistry.

demonstrated promising applications in regeneration of
soft tissue due to their low mechanical strength or poor
bioactivity [70]. To make these elastomers effective for a
wider number of biomedical applications, developing
hybrid polymers has become an attractive option to obtain
biodegradable elastomers with optimized properties to
meet different tissue-specific requirements.

PGS-PCL hybrid elastomers have been developed
successfully by solvent electrospinning. The incorporation

of PCL significantly enhanced formation of the nanofi-
brous structure and the hybrid materials showed mechan-
ical properties in the range of human aortic valve tissues
[71]. Gelatin was also added into PGS elastomer to
fabricate hybrid polymers for tissue regeneration. The
addition of gelatin significantly enhanced the mechanical
properties and bioactivity of PGS elastomers [72].
Although polymer-polymer hybrid elastomers have been
well developed, their limited elastomeric behavior and
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mechanical strength still prevent their wide application in
bone tissue regeneration.

To overcome the limitations of polymer-based elasto-
mers, inorganic phase reinforced hybrid polymer elasto-
mers have been developed in recent years [73—75]. As
osteoconductive biomaterials, hydroxyapatite nanoparti-
cles were incorporated into PCD-based elastomers to
fabricate composites for orthopedic implants [76]. Uniform
distribution of HA in the polymer matrix significantly
enhanced the mechanical properties and osteoconductive
biocompatibility of PCD-HA hybrid elastomers. Melt-
derived bioglass particles were also introduced into PGS
elastomers to improve their range of biomedical applica-
tions [77]. Bioglass particles efficiently enhanced the
elastomeric strain and cellular biocompatibility of PGS.
These hybrid elastomers still have the intrinsic problem of
poor interface intensity between the inorganic phase and
polymers. Therefore, our group introduced bioactive silica
into PCD elastomers through a one-step thermal polymer-
ization method [30,31,78,79]. The inorganic silica phase
was bonded with the PCD polymer chain through covalent
bonds. The resulting hybrid polycitrate-silicon (PCS)
elastomers demonstrated significantly improved elasto-

meric behavior, mechanical strength and cellular biocom-
patibility (Fig. 7) [30]. SBGS-based PGS hybrid
elastomers were also fabricated successfully through the
direct hybridization of SBGS and PGS solution [29].
SBGS-PGS hybrid elastomers exhibited significantly
enhanced mechanical properties, biominerialization and
cellular biocompatibility (Fig. 8). The inorganic phase-
grafted PGS and PCD hybrid elastomers have shown
promise for applications in bone tissue regeneration.

Electroactive hybrid polymers

Conducting polymers are organic polymers that possess
electrical, magnetic and optical properties that are similar
to metal, while maintaining desirable mechanical proper-
ties as well as ease of processing of polymers [80,81].
Recently, it was found that conductive polymers could tune
the properties of cells in electrically sensitive tissues under
electrical stimulation, including neural, muscle, cardiac,
and bone [82-84]. Regenerative biomaterials for the
treatment of bone diseases that need surgical intervention
have attracted more attention, particularly with extended
life expectancies. Scaffolds that regulate cellular behavior
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from the Royal Society of Chemistry.

are particularly interesting for such applications [85-87]. A
3-D conductive scaffold that can locally deliver an
electrical signal is needed. 3D conductive scaffolds were
prepared using poly(3,4-ethylenedioxythiophene) poly(4-
styrene sulfonate) (PEDOT:PSS), gelatin, and bioactive
glass [88]. Introduction of PEDOT:PSS enhanced the
physiochemical stability and improved mechanical proper-
ties of the composite. Increasing the content of PEDOT:
PSS in the scaffolds improved cell viability. Together,
these results indicated that these conductive scaffolds
exhibited more favorable structural properties for bone
repair. The use of conducting polymers loaded with a
bioactive molecule has been an emerging approach to
functional biomaterial use in tissue regeneration. Chon-
droitin sulfate (CS)-doped polypyrrole (PPy) was coated
via an in situ chemical oxidative polymerization onto the
non-conductive polylactide to fabricate novel osteogenic
scaffolds [89]. Electrical conductivity of PPy-coated
polylactide (PPy-PLA) scaffolds was obvious, but it
decreased with time due to de-doping.

Applications in bone tissue regeneration

Biomaterials-based bone regeneration aims to develop
bioactive bone-substitutes that repair damaged issue and
restore tissue functionality. Native bone ECM is a hybrid
structure that consists of a polymer and inorganic phase.
Therefore, biodegradable hybrid polymer biomaterials

with representative nanostructures are desirable for bone
tissue regeneration [90]. Inorganic phase reinforced hybrid
biomaterials with multifunctional properties have demon-
strated enhanced bone-binding ability, osteoblast activity,
and bone regeneration potential as compared to pure
biodegradable polymers [91]. Here, we review the recent
development of biodegradable hybrid polymer biomater-
ials for osteoblastic proliferation, differentiation, and in
vivo bone regeneration.

Silicon-based BG particles with microscale and nanos-
cale sizes have been employed to enhance biominerializa-
tion and biocompatibility [41,43]. As shown in Fig. 6,
hybrid polymers reinforced with BG microparticles or
nanoparticles could efficiently induce deposition of
biological apatite after soaking in SBF [41]. Osteoblast
attachment was also improved on the hybrid BGN-PCL, as
compared to PCL scaffold alone [43]. In addition to
bioactive glass-based hybrid polymer, the apatite-based
polymer also showed enhanced osteoblastic activity
(Fig. 9). After 1 and 4 weeks culture of MC3T3-E1 cells
on nanofibrous gelatin-apatite hybrid scaffolds (NF-
gelatin/apatite) and pure NF-gelatin scaffolds, cells
grown on the hybrid scaffolds showed significantly
increased expression of genes for bone sialoprotein
(BSP) and osteocalcin (OCN) (Fig.10) [49]. In vivo
experimentation demonstrated that the incorporation of
osteoconductive components can significantly improve
bone formation. For example, compared with pure poly
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Fig. 9 In vitro biomineralization activity and osteoblast biocompatibility (MC3T3-E1) of BG micro-nanoscale particles-PCL hybrid polymers.
(A, B) Apatite formation on surface of PCL (A) and BG-PCL (B) after soaking in SBF for 7 days; (C, D) Cell attachment morphology on the surface of
PCL (C) and BG-PCL (D) after culture for 3 days. Reproduced from Refs. [41] and [43] with permission.
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Fig. 10 Quantitative RT-PCR results of bone sialoprotein (BSP)(A)
and osteocalcin (OCN)(B) gene expression. MC3T3-El cells were
cultured on NF-gelatin and NF-gelatin/apatite scaffolds for 1 and 4
weeks. The Y-axis of the figure is the gene expression results normalized
by B actin. * represents statistically significant differences (P < 0.05).
Reproduced from Ref. [49] with permission.

(lactide-co-glycolide) (PLGA), amorphous tricalcium
phosphate nanoparticles reinforced PLGA (PLGA-TCP)
nanocomposites enhanced the rapid regeneration of bone
defects in a New Zealand white rabbit model (Fig. 11) [92].

As compared to osteoconductive particle-based hybrid
polymers, silica-based sol-polymers possessed uniform
nanostructure distribution and inorganic-organic interface,
which could mimic the structure of native bone ECM.
Silica-based chitosan hybrid polymer has been used to
guide bone tissue regeneration successfully [93]. As
compared to pure chitosan, new bone formation was
significantly enhanced by the hybrid polymer while the
hybrid membrane was degraded after 3 weeks implantation
at bone defect sites (Fig. 12). A significantly higher rate of
bone formation was observed for the hybrid (93%) but not
the chitosan membrane (60%) [93]. Due to the inherent
elastomeric behavior of native bone, elastomeric hybrid
biomaterials are appealing for applications in bone
regeneration [94]. Our group developed silicon-based
polymer elastomers with controlled biodegradation for
applications in bone regeneration [29-31]. The results
demonstrated that poly(citrate-siloxane) (PCS) hybrid
elastomers significantly enhanced attachment and prolif-
eration of various cells, including cells derived from both
hard and soft tissue [30,31]. PCS-based hybrid polymer
could also significantly enhance osteoblastic differentia-
tion, cellular biominerialization of MC3T3-E1 cells
[78,79]. PCS-based hybrid biomaterials have shown
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Fig. 11 Micro-computed tomography of the cranial defects (diameter=6 mm) in New Zealand White rabbits after 4-week implantation using
PLGA, PLGA/TCP composites. (A, B) Two examples of the CT of the entire cranial bone are shown. Defect margins and treatment modalities are

indicated. Adapted from Ref. [92] with permission.

Fig. 12

Optical micrographs of the rat bone tissue regeneration responses after the 3 weeks implantation of the membranes: (A, C) pure chitosan and

(B, D) the chitosan—silica xerogel hybrid. The fresh-formed bone tissue was revealed in blue, the calcified bones and materials were stained in red.

Reproduced from Ref. [93] with permission.

promising potential for in vivo bone tissue regeneration.
Additional in vivo experiments should be carried out to
evaluate the potential value of PCS-based hybrid bioma-
terials.

Proliferation and osteogenic differentiation of human
adipose stem cells (hASCs) on the coated and conductive

scaffolds was compared to non-coated polylactide scaf-
folds under electrical stimulation. The conductive hybrid
scaffolds greatly enhanced hASC proliferation compared
to pure PLA scaffolds [89]. Alkaline phosphatase (ALP)
activity of hASCs seeded on PLA-PPy scaffolds was
generally higher; however, electrical stimulation did not
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show a significant effect on hASCs. These results
highlighted the potential application of PPy-coated PLA
scaffolds for bone regeneration. Mesenchymal stem cells
(MSCs) have great potential and are commonly used
progenitor cells in bone tissue engineering. Osteogenic
differentiation of MSCs can be guided by various types of
biomaterials. Our group found that the electroactive
biodegradable copolymers can enhance osteogenic differ-
entiation of bone marrow derived MSCs (BMSCs) [95].
These copolymers were composed of polylactide and
tunable contents of conductive aniline tetramer. Culture of
BMSCs on the electroactive copolymer films indicated that
these copolymers were not cytotoxic, in fact proliferation
of BMSCs was significantly enhanced. Osteogenic differ-
entiation of BMSCs showed that the electroactive
copolymers greatly promoted osteogenic differentiation
compared to pure PLA with respect to expression of ALP,
OPN, and Runx2 and deposition of calcium measured by
von Kossa staining. The electroactive copolymer surface
can adsorb more protein than pure PLA, which may be a
factor that enhanced proliferation and differentiation of
MSCs. These results indicated that the electroactive
degradable polymers based on polylactide and aniline
tetramer have great potential as scaffolding materials for
bone regeneration.

Summary and perspectives

Degradable hybrid polymer biomaterials with osteocon-
ductivity, biomimetic elastomeric behavior and electro-
activity have shown promise in applications in bone tissue
repair and regeneration. However, to meet the require-
ments of efficient bone regeneration, there are still many
areas in need of improvement for these polymer hybrid
biomaterials. First, high osteoinductive activity should be
incorporated into these hybrid polymers. Second, main-
taining high mechanical strength of hybrid polymers while
preserving their elastomeric behavior should be prioritized.
Third, other functions including antibacterial activity and
bioimaging ability should be also considered in the design
of next generation hybrid polymer biomaterials.
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