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Abstract

Parkinson disease has traditionally been classified as a movement disorder, despite patients’ accounts of diverse symptoms
stemming from impairments in numerous body systems. Today, Parkinson disease is increasingly recognized by clinicians
and scientists as a complex neurodegenerative disorder featuring both motor and nonmotor manifestations concomitant with
pathology throughout all major branches of the nervous system. Dysfunction of the autonomic nervous system, or dysauto-
nomia, is a common feature of Parkinson disease. It produces signs and symptoms that severely affect patients’ quality of
life, such as blood pressure dysregulation, hyperhidrosis, and constipation. Treatment options for dysautonomia are limited
to symptom alleviation because the cause of these symptoms and Parkinson disease overall are still unknown. Animal mod-
els provide a platform to interrogate mechanisms of Parkinson disease-related autonomic nervous system dysfunction and
test novel treatment strategies. Several animal models of Parkinson disease are available, each with different effects on the
autonomic nervous system. This review critically analyses key dysautonomia signs and symptoms and associated pathol-
ogy in Parkinson disease patients and relevant findings in animal models. We focus on the cardiovascular system, adrenal
medulla, skin/thermoregulation, bladder, pupils, and gastrointestinal tract, to assess the contribution of animal models to
the understanding of Parkinson disease autonomic dysfunction.
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Introduction

Dr. James Parkinson’s 1817 “An Essay on the Shaking
Palsy” is the first account of the devastating impact of Par-
kinson disease (PD) and details the breadth of symptoms
these patients suffered. In addition to the tremor and rigidity
characteristic of PD motor symptoms, Dr. Parkinson shares
stories of “bowels, which had been all along torpid, now, in
most cases, demand stimulating medicines”, sleep “much
disturbed”, and food “with much difficulty retained in the
mouth [...] then as difficultly swallowed” [1]. 200 years of
research following Dr. Parkinson’s seminal essay have led to

< Marina E. Emborg
emborg @primate.wisc.edu

Preclinical Parkinson’s Research Program, Wisconsin
National Primate Research Center, University of Wisconsin—
Madison, Madison, WI, USA

Cellular and Molecular Pathology Graduate Program,
University of Wisconsin-Madison, Madison, WI, USA

Department of Medical Physics, University of Wisconsin—
Madison, Madison, WI, USA

the characterization of a wide array of PD nonmotor signs
and symptoms. A subset of these are associated with altered
function of one or more components of the autonomic nerv-
ous system (ANS), termed dysautonomia. Orthostatic hypo-
tension, hyperhidrosis, and gastrointestinal (GI) dysfunction
are common manifestations of PD dysautonomia that greatly
affect patient quality of life [2]. Treatment options for dysau-
tonomia are limited to symptom alleviation because the eti-
ology of these features and PD overall is still unknown.
Animal and clinical research efforts have largely focused
on PD motor signs and symptoms, as they are the basis for
PD diagnosis. The extrapyramidal motor features of PD
emerge when 30-50% of dopamine producing neurons in the
substantia nigra have been lost [3]. This neurodegeneration
is associated with the presence of alpha-synuclein (a-syn)-
immunoreactive intraneuronal inclusions termed Lewy
bodies (LBs) in neuronal soma and Lewy neurites (LNs)
in axons or dendrites. The trigger for LB and LN formation
and the precise mechanistic link between a-syn aggregation
and nigral neuronal loss have yet to be defined; notably, PD
protein accumulation is associated with increased inflam-
mation and oxidative stress [4]. In addition to the substantia
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nigra, LBs and LNs are found throughout the central and
peripheral nervous systems of PD patients, including in the
ANS. a-Syn accumulation and neuronal loss are proposed
to also be involved in PD dysautonomia.

The ANS is well conserved across mammalian spe-
cies [5], thus making animal models an excellent platform
for investigating the effects of PD on the ANS. The ANS
consists of the sympathetic, parasympathetic, and enteric
nervous systems. Sympathetic and parasympathetic nerv-
ous systems have both pre- and post-ganglionic neurons,
and pre-ganglionic neurons of both systems are choliner-
gic. Sympathetic preganglionic neurons reside in the thora-
columbar spinal cord and synapse with noradrenergic post-
ganglionic neurons in the paravertebral ganglia, which then
innervate appropriate organs. Parasympathetic preganglionic
neurons originate in either brainstem nuclei or the sacral
spinal cord and extend long axons to cholinergic postgangli-
onic neurons in terminal ganglia near target organs. Enteric
nervous system (ENS) ganglia are embedded in the wall
of the GI tract in the net-like submucosal and myenteric
plexuses; they also receive input from the sympathetic and
parasympathetic nervous systems. ENS neurons express,
and often co-express, diverse neurotransmitters including
acetylcholine, dopamine, and serotonin.

Animal research has been critical to understanding the
neurophysiological basis of PD motor symptoms and devel-
oping treatments including dopamine replacement therapy
and deep brain stimulation. Novel modeling methods are
helping to shed light on PD etiology. Can current animal
models provide the same insight into PD dysautonomia
causes and potential treatments? What signs and pathology
would an ideal PD dysautonomia animal model display?
This review critically analyses dysautonomia manifestations
and hypothesized associated pathology in PD patients, rel-
evant findings in animal models of PD, and the contribution
of animal models to the understanding of PD autonomic
dysfunction.

Clinical features and pathology of PD
autonomic dysfunction

An important step in modeling and treating PD dysautono-
mia is determining which nonmotor signs and symptoms
are tied to ANS dysfunction. This has proven to be difficult,
due to the widespread pathology of PD and the complex
interrelationship of the ANS with the somatic and central
nervous systems. In this section, we review clinical evidence
of PD nonmotor features association with ANS dysfunction
and pathology in key organ systems: cardiovascular system,
adrenal medulla, skin/thermoregulation, bladder, pupils, and
gastrointestinal tract (Table 1).
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Cardiovascular system

An estimated 80% of PD patients experience heart rate
and blood pressure abnormalities [6]. Heart rate variabil-
ity decreases in PD, and a lower maximum heart rate can
be present at PD diagnosis [7]. Prolonged QT interval of
the heartbeat is observed in association with accelerated
worsening of the disease over 5 years [8]. Blood pressure
variability is increased in PD, leading to signs and symp-
toms ranging from fatigue during exercise to orthostatic
hypotension [9]. Orthostatic hypotension, the inability to
regulate blood pressure with changes in body position,
affects 40% of PD patients, causes dizziness and syncope,
and increases the risk of falls and injury [9, 10]. It fre-
quently coexists in PD with other manifestations of blood
pressure dysregulation including supine hypertension, loss
of nocturnal blood pressure dips (non-dipping), and low
blood pressure after eating (post-prandial hypotension)
[9].

Heart rate abnormalities appear to be due to dysfunc-
tional parasympathetic responses, while the inability to
regulate blood pressure is related to loss of sympathetic
regulation [9]. a-Syn accumulates in the vagus nerve [11],
potentially blunting cardiovascular parasympathetic tone.
a-Syn pathology and neurodegeneration are also observed
in the parasympathetic neurons of the dorsal motor nucleus
of the vagus (DMV) [12], but the relevance of this to car-
diovascular autonomic dysfunction is unclear as the main
source of vagal afferents to the heart is nucleus ambiguous.
Postganglionic parasympathetic loss may also be a feature
of PD, as positron emission tomography (PET) with the
radioligand 5-[(11)C]-methoxy-donepezil shows decreased
acetylcholinesterase in the myocardium [13].

Extensive clinical research illustrates that PD orthos-
tatic hypotension is related to both the loss of postgangli-
onic sympathetic innervation to the heart and baroreflex
failure. Radioimaging evidence of decreased cardiac post-
ganglionic sympathetic innervation is well documented in
PD and is now a supportive criterion for clinical diagnosis
[14]. 60% of PD patients have loss of cardiac sympathetic
innervation at diagnosis [15], which is estimated to affect
100% of patients as the disease progresses [16]. PD car-
diac sympathetic nerve loss is heterogeneous in the left
ventricle, with the cardiac apex more affected than the
base [17, 18] and sparing of the anterior and proximal
regions [17, 19]; this loss progresses and becomes diffuse
over time [20]. A chronological relationship between sym-
pathetic nerve loss and a-syn has been suggested [21]. In
patients with intact cardiac sympathetic innervation, a-syn
is abundant in distal postganglionic axons and minimal in
sympathetic ganglia. However, loss of sympathetic inner-
vation to the heart is accompanied by decreased a-syn in
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Table 1 Summary of dysautonomia signs and symptoms and proposed areas of associated pathology in Parkinson disease patients

Organ/Organ . . . ANS a-Syn .
System Major Sign(s) and Symptom(s) ANS Neurodegeneration Accumulation Pathology Outside of the ANS
. . Vagus Nerve” .
- Cardiac Parasympathetic LBs and Neuron Loss in the Locus
Decreased Heart Rate Variability X o
Innervation (?) . Coeruleus
Cardiac Plexus
Cardiac Sympathetic
Innervation
Cardiovascular . . .
System Cardiac Sympathetic Innervation Cervicothoracic _Sglmpathetlc .
S Ganglia LBs and Neuron Loss in the Locus
Increased Blood Pressure Variability
(OH) Thoracic Intermediolateral Spinal Cocruleus and Rostral
b Thoracolumbar Ventrolateral Medulla
Column . .
Intermediolateral Spinal
Column®
Cardiac Plexus
Increased Blood Pressure Variability ~ Chromaffin Cells of the Adrenal
Adrenal Medulla (OH) Associated with Decreased Medulla (Reduced Catecholamine Adrenal Medulla NR
Plasma Norepinephrine Markers)
. Cutaneous Sympathetic . .
Skin/ . Axial Hyperhidrosis Innervation of Blood Vessels and ~ Cutaneous Sympathetic Fibers Hypothalamic LBs and Dopamine
Thermoregulation Loss
Sweat Glands
Lumbar Spinal Cord” Nigrostriatal Neurodegeneration
Urinary Frequency and Urgency
Bladder NR Sacral Parasympathetic Nuclei®  LBs in Numerous Central Nuclei
Nocturia (Onuf's Nucleus, Raphe Nuclei,
Pelvic Plexus® Locus Coeruleus)
Sympathetic Innervation of the
Iris Dilator Muscle (?)* Superior Cervical Ganglion®
Pupils Irregular Pupil Reactivity NR

Parasympathetic Innervation of
the Iris Sphincter Muscle (?)*

Edinger-Westphal Nucleus

Upper GI Tract

Dysphagia

NR

Esophageal Enteric Neurons

Thoracic Intermediolateral
Spinal Column®

Cervicothoracic Sympathetic
Ganglia®

DMV and Vagus Nerve”

Nigrostriatal Neurodegeneration

LBs in the Submandibular Gland
and Glossopharyngeal Nerve

Delayed Gastric Emptying

NR

Gastric Enteric Neurons
Thoracic Intermediolateral
Spinal Column and
Sympathetic Gamglialb

DMV and Vagus Nerve”

Nigrostriatal Neurodegeneration

Lower GI Tract

Constipation

Colonic Parasympathetic
Innervation (?)*

Colonic Dopamine Content (?)*

Colonic Enteric Neurons

Thoracolumbar
Intermediolateral Spinal
Column and Sympathetic
Gangliab

DMV and Vagus Nerve®

Nigrostriatal Neurodegeneration

ANS autonomic nervous system, a-Syn alpha-synuclein, LB lewy bodies, OH orthostatic hypotension, GI gastrointestinal, DMV dorsal motor
nucleus of the vagus, NR not reported in current literature

2(?) refers to limited data or mixed evidence

Panatomical areas of the ANS in which pathology could affect numerous organs/organ systems; areas are listed when literature strongly suggests
a relationship between pathology and signs/symptoms

@ Springer



400

Clinical Autonomic Research (2019) 29:397-414

cardiac nerve fibers and increased a-syn in paravertebral
ganglia. LBs are also found in the cardiac plexus itself
[22]. Baroreflex failure is thought to be elicited by cur-
rently unknown central lesions. For example, a-syn pathol-
ogy and neuron loss have been found in the thoracolumbar
intermediolateral spinal column, the nucleus from which
preganglionic sympathetic neurons originate [11, 23], in
addition to cell loss observed in the locus coeruleus [24]
and in rostral ventrolateral medulla in some patients [25].

Adrenal medulla

Most PD patients with orthostatic hypotension present
reduced supine plasma norepinephrine [26]. Sympathetic
postganglionic neurons and the adrenal medulla are both
important sources of circulating norepinephrine. Histologi-
cal evaluation of the adrenal medulla in PD patients has
confirmed that this organ is affected by the disease. Typical
findings are reduced catecholamine content [27], LBs [28],
and inclusions known as ‘hyaline globules’ or ‘adrenal bod-
ies’ [29].

Interestingly, 10% of PD patients with early PD in one
study had orthostatic hypotension with high supine norepi-
nephrine [30], suggesting that PD orthostatic hypotension
can present with sparing of the peripheral sympathetic sys-
tem and greater deterioration of central components.

Skin/thermoregulation

Effective thermoregulation depends on a delicate balance
between cooling (e.g.: vasodilation) and warming (e.g.:
thermogenesis) responses [31]. Sudomotor, thermoregu-
latory, and vasomotor dysfunction occur in two-thirds of
PD patients [32]. Features include heat intolerance, cold
intolerance, and profuse periodic sweating [32]. Excessive
sweating of the face, neck, and upper body, known as axial
hyperhidrosis, is common in PD [33] and can occur epi-
sodically without a stimulus, especially at night [34]. Axial
hyperhidrosis is hypothesized to be a compensatory phe-
nomenon for lower sympathetic activity in extremities [35].

Clinical tests confirm decreased sympathetic nerve
function in the skin of hands, feet [35], and legs [36] of
PD patients. This dysfunction has been linked to histologi-
cal findings of loss of cutaneous nerves innervating blood
vessels, sweat glands, and erector pili muscles [37]. a-Syn
pathology is observed in autonomic cutaneous fibers [38,
39], although both autonomic [38] and sensory [38, 40]
fibers are lost in PD. It should be noted that not all studies
replicated the findings of a-syn accumulation in cutaneous
fibers in PD, likely due to methodological differences [41].
Additionally, the hypothalamus is a critical coordinator of
thermoregulation [31]. Decreased hypothalamic dopamine
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[42] and LBs found in every nucleus of the hypothalamus
[28, 43] may also elicit these symptoms.

Bladder

Lower urinary tract signs and symptoms such as nocturia
and increased frequency and urgency to urinate occur in
27-85% of patients [44]. Moreover, the detrusor muscle,
which contracts during urination, is overactive in 58% of
untreated PD patients [45].

The pathophysiology of PD bladder dysfunction is
likely multifocal [46, 47]. The bladder itself appears unaf-
fected [44]. However, the basal ganglia are known to regu-
late micturition [48], and clinical imaging demonstrates a
correlation between severity of striatal dopamine trans-
porter loss and bladder symptoms [49], suggesting a con-
nection to nigral neurodegeneration. In the ANS, LBs are
found in micturition-associated autonomic preganglionic
neurons in the lumbar and sacral spinal cord and in the
pelvic plexus [11, 28]. PD pathology also affects addi-
tional anatomical structures involved in bladder function
including Onuf’s nucleus, the raphe nuclei, and the locus
coeruleus [50, 51].

Pupils

PD impact on patients’ vision encompasses visual hallu-
cinations, abnormal eye movements, decreased blinking,
and deficits in visual acuity, motion perception, contrast
sensitivity, and pupil reactivity [52]. Dopamine loss in the
CNS and the retina are likely responsible for most of the
issues listed above, with exception of pupillary abnormali-
ties, which are thought to be related to autonomic dysfunc-
tion [52]. PD patients exhibit decreased pupil constric-
tion speed and decreased light-induced pupil constriction
amplitude [53, 54]. Clinical tests show supersensitivity
to the 0.05% pilocarpine hydrochloride eye drop test and
abnormal responses to 0.02% dipivefrine hydrochloride
eye drops, suggesting compromised parasympathetic and
sympathetic innervation of the iris sphincter and dilator
muscles, respectively [55].

Parasympathetic pupillary constriction dysregulation
may be related to 54% neuron reduction and 2-3% neurons
containing LBs in the Edinger—Westphal nucleus [56], the
parasympathetic preganglionic nucleus that innervates the
iris sphincter muscle and the ciliary muscle. LBs have also
been identified in the origin of sympathetic postganglionic
innervation to the eye, the superior cervical ganglion [57].
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Gastrointestinal tract
Upper gastrointestinal tract

The upper GI tract includes structures from the mouth to the
stomach. In PD, drooling occurs in 10-81% of patients and
is hypothesized to be due to insufficient salivary clearance
in association with difficulty swallowing [58], as salivary
production is actually decreased in PD [59]. The stomach
is also affected in PD; delayed gastric emptying occurs in
70-100% of patients causing nausea, vomiting, early satiety,
and bloating [60].

It is unclear what role ANS dysfunction plays in PD
upper GI abnormalities. Decreased saliva production could
be related to LBs in the superior cervical ganglion, vagus
nerve, and submandibular glands [57] or to central dopa-
mine deficiency [61]. Swallowing is a complex but ste-
reotyped activity regulated by a central pattern generator
in the medulla oblongata [58]. Oropharyngeal dysphagia
in PD is thought to be associated with central dopamine
insufficiency-related bradykinesia and poor muscle control
of the tongue [58, 62]. Aggregates of a-syn in the glos-
sopharyngeal and vagus nerves innervating the pharynx
may also impact swallowing [63]. a-Syn aggregation in the
DMV could disturb both esophageal and gastric motility
[64]. The ENS itself is affected in PD, in both the myenteric
and submucosal plexuses [11], with a rostrocaudal gradient
of serine 129 phosphorylated a-syn (p-a-syn), a marker of
a-syn pathology associated with mitochondrial impairment
[65]. Subthalamic nucleus deep brain stimulation improves
gastric emptying in PD, substantiating a connection between
PD upper GI clinical features and nigrostriatal loss [66].

Lower gastrointestinal tract

The lower GI tract includes structures from the small intes-
tine to the anal canal. 50-80% of patients experience consti-
pation and it can onset many years before PD motor symp-
toms [67]. Clinical evaluation reveals both increased transit
time in the small and large intestine [68] and dyssynergic
defecation, in which a paradoxical increase in puborectalis
muscle activity occurs during attempted defecation [69].
Histopathologically, a significant decrease in dopamine
immunoreactivity has been reported in the colon of PD
patients with extremely severe constipation [70]. However,
more recent publications find no changes in ENS neuro-
chemical phenotypes or evidence of ENS neurodegeneration
in PD [71, 72]. Interestingly, mRNA expression is reported
to be increased for dopamine receptor D1, vasoactive intes-
tinal peptide, and serotonin receptor 3A and decreased for
serotonin receptor 4 and muscarinic receptor 3 in submu-
cosal rectal biopsies from PD patients; alterations in protein
levels were not investigated [73]. As mentioned above, a-syn

pathology is found extensively throughout the myenteric and
submucosal plexuses of the ENS in PD, including in the
small and large intestine [11]. LBs can also be present in the
thoracolumbar intermediolateral spinal column, paraverte-
bral sympathetic ganglia, DMV, and sacral parasympathetic
nuclei [28], which may dysregulate autonomic coordination
of colonic activity. Decreased acetylcholinesterase (a marker
of cholinergic neurons) in the small intestine as detected by
PET further implicates parasympathetic abnormalities [13].
Neuronal density in the substantia nigra [74] and reduced
dopamine transporter availability in the caudate nucleus
[75] have been reported to correlate with bowel movement
frequency in PD patients, and administration of the dopa-
minergic type-2 agonist apomorphine improves symptoms
of dyssynergic defecation [76], implicating central dopamine
deficiency in PD constipation. Recent clinical evidence indi-
cates that intestinal microbiome and permeability alterations
may contribute to PD GI dysmotility [77]. In addition, pres-
ence of aggregated a-syn has been reported in the vermiform
appendix, and appendectomies are associated with decreased
risk and delayed onset of PD, suggesting that the appendix
may be involved in PD initiation [78].

Animal models of PD dysautonomia

Understanding the characteristics and limitations of differ-
ent animal models is critical to appropriately matching the
model to the scientific question. As PD neuropathology has
been identified beyond the nigrostriatal system, classic ani-
mal models are being re-evaluated and novel models are
being developed with the goal of capturing the complexity
of PD.

Classic PD animal models use catecholaminergic
neurotoxins such as 6-hydroxydopamine (6-OHDA) or
1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)
to target the dopamine producing neurons of the substan-
tia nigra and recreate the cardinal motor features of the
disease [79, 80]. 6-OHDA can be injected unilaterally
or bilaterally into the substantia nigra or medial fore-
brain bundle to cause rapid (days) nigrostriatal loss or
into the striatum to cause a slower (weeks) partial loss
[81]. 6-OHDA does not cross the blood brain barrier, but
systemic injection can be used to model PD peripheral
nervous system sympathetic loss [81, 82]. MPTP is typi-
cally administered systemically, although delivery to the
brain via carotid artery infusion is a common technique
performed in nonhuman primates [83]. MPTP is blood
brain barrier permeable, therefore systemic administra-
tion results in catecholaminergic loss in the central and
peripheral nervous systems, with the severity and sta-
bility of the lesion dependent on dosing regimen. Uni-
lateral intracarotid delivery of MPTP induces nigral
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Table2 Summary of key organ/organ systems with Parkinson disease (PD) dysautonomia-like signs and symptoms and pathology in animal

models

Animal Model of PD"
Symptoms

PD Dysautonomia-like Signs and

PD Dysautonomia-like Pathology®

Cardiovascular System
Bladder
6-OHDA (CNS)
Upper GI Tract

Lower GI Tract

NR

Cardiovascular (Loss of Sympathetic Innervation)

Adrenal Medulla (Loss of Catecholamine Producing

6-OHDA (systemic) Adrenal Medulla Enzymes)
Skin/Thermoregulation (Loss of Sympathetic Innervation)
. Pupil (Loss of Sympathetic Innervation)
Neurotoxin
Bladder Cardiovascular (Transient Loss of Sympathetic Innervation)
MPTP (systemic)
Pupil (?)° Pupil (Loss of Sympathetic Innervation)
. Cardiovascular (Rostral Ventrolateral Medulla
Cardiovascular System .
Neurodegeneration)
Adrenal Medulla Upper GI Tract (a-Syn Accumulation and Phosphorylation
Rotenone in the ENS, Intermediolateral Spinal Cord, and DMV)
Upper GI Tract (?)* ’ P ?
Lower GI Tract (0-Syn Accumulation and Phosphorylation
Lower GI Tract in the ENS, Intermediolateral Spinal Cord, and DMV)
Upper GI Tract (Neurodegeneration and Increase in a-Syn in
Paraquat Upper GI Tract the DMV)
Cardiovascular (a-Syn Aggregation in Nerves in the Heart)
Cardiovascular System
Adrenal (0-Syn Oligomerization)
Bladder
Transgenic® Upper Gastrointestinal Tract (a-Syn Aggregation in the
Upper GI Tract Gastric ENS and Accumulation in the DMV)
a-Syn
Lower GI Tract Lower Gastrointestinal Tract (a-Syn Aggregation in the
Colonic ENS and Accumulation in the DMV)
Upper/Lower Gastrointestinal Tract (Increase in
Fibrils (ENS) Lower GI Tract (Transient) Phosphorylated a-Syn in the ENS and Transient Increase in

the DMV)

CNS central nervous system, 6-OHDA 6-hydroxydopamine, MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, G/ gastrointestinal, a-Syn
alpha-synuclein, ENS enteric nervous system, DMV dorsal motor nucleus of the vagus, NR not reported in current literature

2(?) refers to limited data or mixed evidence

>The information about each animal model combines reports from multiple species and agent delivery methods (e.g. mice administered intra-
peritoneal 6-OHDA and rhesus administered intravenous 6-OHDA in “6-OHDA (systemic)”; see text for more information)

“Table does not describe the effect of the model on the nigrostriatal system, which may be involved in multiple dysautonomia signs and symp-

toms (see text for more information)

YIncludes multiple transgenic murine models (Thy1-a-syn mice, Prnp-a-syn mice, Thy1-a-syn-A53T, Prnp-a-syn-A53T, PAC generated a-syn-

AS53T mice)

dopaminergic loss restricted to the ipsilateral adminis-
tration side [81, 83]. The pesticide rotenone and herbicide
paraquat have also been used to model PD, impacting
both the central and peripheral nervous systems, yet their
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application has been limited as their effects have large
inter-animal variability, affecting reproducibility [81, 84,
85]. These neurotoxins alter mitochondrial function in
dopaminergic neurons and increase oxidative stress and
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inflammation [80, 86]. Their effects on a-syn are vari-
able. Reports indicate that MPTP exposure leads to either
upregulation of a-syn protein levels immediately follow-
ing acute exposure or a-syn accumulation and aggrega-
tion following chronic exposure [87-89]; however, LBs
or LB-like inclusions have not been observed. Rotenone
appears to reliable produce accumulation of phosphoryl-
ated a-syn in affected rodents, which closely resembles
PD pathology [84, 90].

In 1997, the first genetic mutation associated with
familial PD was identified in the a-syn gene. The muta-
tion produces a threonine to alanine replacement in the
53rd residue of the protein (A53T) [91]. This watershed
discovery led to the identification of a-syn as the major
component of LBs and LNs [92] and the finding that the
AS53T mutation accelerates protein aggregation relative to
wild type a-syn [93]. PD-associated mutations have been
also identified in genes encoding LRRK?2, DJ-1, Parkin,
and other proteins, which are reviewed in detail elsewhere
[94]. Carriers of these mutations present a PD syndrome
largely similar to sporadic PD, including the typical nigral
dopaminergic loss and the presence of LBs and LNs (with
the exception being carriers of Parkin mutations, who
typically lack LBs) [94]. Animal models have since been
created to test the effects of knocking out, mutating, and
increasing the expression of these wild type and mutated
proteins. Additionally, reports of LBs in transplanted fetal
tissue grafted a decade earlier into the striatum of PD
patients [95, 96] have spurred questions about the abil-
ity of misfolded a-syn to spread trans-synaptically in a
prion-like fashion [97, 98]. Animal models to test the role
of a-syn in PD and the trans-synaptic spreading hypoth-
esis include a-syn transgenic mice, models of a-syn over-
expression induced by viral vector administration, and
injection of different forms of a-syn, such as monomers,
oligomers, fibrils, or PD patient-derived LB extracts.

In this section, we review current literature on animal
models of PD-associated ANS dysfunction and pathology.
Similar to the previous patient section, we focus in key
organ systems: cardiovascular system, adrenal medulla,
skin/thermoregulation, bladder, pupils, and gastrointesti-
nal tract (Table 2).

Cardiovascular system

The finding that PD cardiovascular autonomic dysfunc-
tion is associated with loss of postganglionic sympathetic
innervation in the heart has prompted the study of systemic
administration of catecholaminergic toxins to model this
pathology. Systemic MPTP mimics these findings, but the
effect is temporary at the administered doses in mice and
rhesus macaques [99, 100]. Systemic 6-OHDA creates a sta-
ble lesion model and has been evaluated in rats, dogs, and

rhesus macaques [82, 101-104]. In rhesus, cardiac nerve loss
induced by intravenous 6-OHDA mirrors the left ventricle
pattern observed in PD, with the greatest loss at the apex and
in the inferior region [82, 103, 104]. More traditional models
of PD point to a complex role of central dopamine deficiency
in cardiovascular autonomic dysfunction. For example, bilat-
eral 6-OHDA injection into the substantia nigra of rats has
been reported to either decrease or increase blood pressure,
heart rate variability, and baroreflex sensitivity [105, 106],
while unilateral nigral injection blunts baroreflex sensitiv-
ity and increases blood pressure variability [107]. Bilateral
striatal 6-OHDA injection to rats decreases night/day cycle
heart rate change [108, 109] and attenuates phenylephrine-
induced bradycardia [110], suggesting decreased heart rate
variability. Additionally, bilateral injection of 6-OHDA into
the rat ventral tegmental area eliminates loss of blood pres-
sure decrease during the light cycle in rats [111], mimick-
ing PD non-dipping pattern. Rotenone administration to rats
produces loss of neurons in the rostral ventrolateral medulla,
decreases cardiac sympathetic activity [112], increases blood
pressure variability, and reduces baroreflex sensitivity [107].
Rodent genetic models of PD have also been evaluated
for cardiovascular pathology and functional deficits. Mice
overexpressing human o-syn under the Thyl promoter
(Thy1-a-syn) show proteinase K resistant a-syn aggregates
in the heart [113], a sign of a-syn pathology, and abnormal
sympathetic and parasympathetic responses to sodium nitro-
prusside and atropine, respectively [114]. Thyl-a-syn-A53T
mice, which express the human A53T mutant a-syn, experi-
ence dampened heart rate response to atropine and increased
baseline heart rate [115]. In contrast, heart rate variability
is not altered in A53T mice generated using P1-derived
artificial chromosome (PAC) transgenesis [116], poten-
tially related to lower transgene protein expression [114].
Knockout of other PD associated genes, DJ-1, PINK1, and
Parkin, affects cardiomyocyte mitochondrial function and/or
oxidative stress sensitivity in mice, but cardiovascular auto-
nomic dysfunction has not been reported in these models
[117-119]. LRRK?2 knockout in rats is not associated with
histopathological changes in the heart [120].

Adrenal medulla

Similar to its transitory impact on the heart sympathetic
system, MPTP effects in the adrenal gland and on circulat-
ing catecholamines appear to be variable and temporary in
rats [121]. Systemic administration of 6-OHDA to rhesus
macaques significantly decreases plasma norepinephrine and
3,4-dihydroxyphenylacetic acid (DOPAC), a metabolite of
dopamine, and the expression of the catecholamine-produc-
ing enzyme tyrosine hydroxylase in the adrenal medulla;
these changes persist up to 3 months post-neurotoxin admin-
istration [82]. Rotenone treatment to rats seems to increase
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adrenal tyrosine hydroxylase levels [122], although a sepa-
rate study reports a rotenone-induced decrease in plasma
norepinephrine and epinephrine [112].

Transgenic mice expressing human A53T a-syn under the
prion protein promoter (Prnp-a-syn-A53T) exhibit increased
a-syn oligomerization (indicative of pathological accumu-
lation) in the adrenal gland and hyperactivity of tyrosine
hydroxylase [123].

Skin/thermoregulation

6-OHDA and MPTP, but not paraquat, affect thermoregula-
tion, producing acute hypothermia in mice requiring sup-
plemental heating post-intoxication, which resolves over
time [124, 125]. Axial hyperhidrosis cannot be evaluated in
mice and rats, as eccrine sweat glands are limited to the foot
pads of rodents and function in frictional gripping [126]. To
the authors’ knowledge, there are no reports of axial hyper-
hidrosis in nonhuman primate PD models. Intraperitoneal
injections of 6-OHDA to mice and rats reproduces the loss
of sympathetic innervation of sweat glands and blood ves-
sels documented in PD [127, 128].

In genetic PD models, Thy1-a-syn mice show expression
of human a-syn in the skin [113], although this report did
not evaluate for a-syn aggregation or p-a-syn. Thy1-a-syn-
AS53T mice did not show altered thermoregulation [115].

Bladder

In agreement with clinical research, multiple animal mod-
els of nigrostriatal degeneration support the involvement of
central dopamine loss in PD-associated bladder dysfunc-
tion. Unilateral 6-OHDA injection into the middle forebrain
bundle [129] or substantia nigra [130, 131] of rats produces
bladder overactivity, which is attenuated by stem cell trans-
plantation [132]. MPTP injected intraperitoneally in mar-
mosets [133] or intravenously in cynomolgus macaques
[134] similarly provokes bladder hyperreflexia. Electrical
field stimulation of isolated strips of urinary detrusor muscle
generates increased contractile response in rats treated with
unilateral injection of 6-OHDA into the medial forebrain
bundle [135] and marmosets that received subcutaneous
MPTP [136], suggesting an impact on local neuronal cir-
cuits in the bladder.

Thy1-a-syn mice exhibit increased bladder size at post-
mortem; bladder function has not been assessed [113].
Prnp-a-syn mice show urinary bladder hyperreflexia with
increased voiding frequency, decreased voided volumes,
and the presence of non-voiding contractions at 4 months
of age which persisted to 16 months [137]. In these animals,
mRNA levels of in vasoactive intestinal peptide, substance
P, and neuronal nitric oxide synthase mRNA are altered
throughout the spinal cord, autonomic paravertebral ganglia,
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detrusor muscle, and bladder, but changes in protein levels
have not been confirmed and the electrical properties of the
pelvic ganglia are unaffected.

Pupils

Reports of toxin models of PD support clinical findings that
dopamine loss in the CNS [138, 139] or in the retina [140,
141] contribute to visuospatial abnormalities and visual
detection deficits in PD. Animal research connecting pupil-
lary abnormalities to specific pathological findings in PD
models is more limited.

Systemic administration of 6-OHDA intraperitoneally to
rats [142] and subcutaneous delivery of MPTP mice [143]
destroys sympathetic fibers or decreases norepinephrine in
the iris, respectively, although no functional deficits of the
eye have been reported. In one study, intravenous MPTP in
cynomolgus macaques diminished pupillary light-respon-
siveness in one animal out of five [144]. These animals also
exhibit electroretinogram irregularities, which the authors
suggest could be due to damage to sympathetic innervation
regulating retinal blood flow. 6-OHDA applied topically
to the eye in rabbits produces attenuated pupil response to
cholinergic agonists and supersensitivity to adrenergic ago-
nists [145], and intravitreal 6-OHDA-treated cynomolgus
macaques show electroretinogram and pattern visual evoked
potential abnormalities [146], highlighting the importance
of sympathetic innervation in iris function.

In murine genetic models of PD, overexpressing human
a-syn under either the Thyl or PDGFp promoter produces
accumulations of a-syn in the inner nuclear layer and gan-
glion cell layer of the retina and in the optic nerve [147].
Similarly, mice expressing a-syn fused to GFP under the
PDGF promoter accumulate a-syn in retinal ganglion cells
and the edges of arterial blood vessels [148].

Gastrointestinal tract
Upper gastrointestinal tract

PD animal models that exhibit swallowing difficulties
include both toxin-induced nigrostriatal degeneration [149]
and genetic models of the disease [150, 151]. However, this
work implicates central rather than ANS pathology in PD
dysphagia. It should be noted that the DMV, the source of
vagal innervation of the esophagus, is often affected in toxin
models of PD [152, 153], potentially leaving a role for ANS
dysfunction.

The presence of delayed gastric emptying in rats
injected with 6-OHDA into the substantia nigra either
bilaterally [152, 154] or unilaterally [155, 156], indicates
that central dopamine deficiency may contribute to this
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manifestation. Furthermore, while substantia nigra stimu-
lation with N-methyl-p-aspartate normally increases gas-
tric tone and motility, this effect is lost in rats previously
treated with unilateral nigral 6-OHDA [157]; cholera toxin
B tracing in this study validates the existence of a mono-
synaptic nigro-vagal pathway that modulates gastric tone.
Several studies demonstrate that toxin-induced nigrostri-
atal loss alters gastric ENS neurochemical phenotype, such
as increased tyrosine hydroxylase [155, 158] and dopa-
mine D2 receptor expression [154], in addition to reducing
choline acetyl transferase expression in the DMV [152].
Systemic administration of MPTP to mice via intraperito-
neal injection [159] does not induce delayed gastric emp-
tying. Rotenone models have also been evaluated for upper
GI changes; a delay in gastric emptying has been reported
[160] but not replicated [161]. Pathologically, rotenone
increases a-syn accumulation in the ENS and the inter-
mediolateral cell column of the spinal cord [162], which
contains preganglionic sympathetic neurons. Paraquat dos-
ing to rats leads to reduced gastric tone and motility, which
is associated with increased a-syn and decreased choline
acetyl transferase and tyrosine hydroxylase immunoreac-
tivity in the DMV [157]. Interestingly, in a subsequent
study by the same group, gastric gavage administration of
subthreshold doses of paraquat and lectin to rats for 7 days
led to misfolded a-syn in the DMV and substantia nigra.
Although loss of tyrosine hydroxylase-positive neurons in
the substantia nigra was observed, loss of cholinergic neu-
rons in the DMV was not identified. These findings were
associated with impaired nigro-vagally evoked gastric
motility prior to the onset of motor dysfunction; vagotomy
was sufficient to prevent motor dysfunction and the spread
of a-syn misfolding beyond the ENS [163].

Prnp-a-syn-A53T mice exhibit delayed gastric empty-
ing with age [164] concomitant with human A53T expres-
sion in the vagus nerve, but not in ENS neurons or sym-
pathetic ganglia. In contrast, A53T mice generated using
PAC transgenesis do show proteinase K resistant aggrega-
tions of a-syn in the gastric ENS [116]. Thyl-a-syn mice
do not show a delay in gastric emptying [165, 166].

Injection of different forms of a-syn (monomer, oli-
gomer, fibril, etc.) into the GI tract yields mixed results
regarding the ability of a-syn to spread trans-synaptically
and has not yet reproduced PD GI dysfunction. Two stud-
ies illustrate movement of a-syn injected into the stomach
to the DMV in rats [167] and mice [168]. In one study
[168], the number of aggregates in the DMV decreased
over time, DMV a-syn aggregation was abolished by cer-
vical vagotomy, and there was no finding of aggregated
a-syn in the thoracic spinal cord or any caudorostral
spread beyond the DMV.

Lower gastrointestinal tract

PD-like constipation can be seen in rodent models of PD
with nigrostriatal loss, such as those induced by unilateral
[155, 169—172] or bilateral [173] injection of 6-OHDA into
the substantia nigra or the medial forebrain bundle, as well
as rotenone-treated mice [174, 175]. Systemic administra-
tion of MPTP to mice shows mixed results [159, 176].

Reminiscent of findings in the upper GI tract of PD mod-
els, central dopamine deficiency impacts the neuronal com-
position of the colonic ENS. Rats injected unilaterally with
6-OHDA in the substantia nigra or medial forebrain bundle
that develop constipation-like signs can exhibit increased
colonic tyrosine hydroxylase [155], increased dopamine
levels [170], decreased neuronal nitric oxide synthase [155,
171, 172] among other alterations. This is dissimilar to find-
ings in PD patients, whose constipation is not associated
with neuron loss or change in proportions of types of neu-
rons in the ENS [71, 72], as discussed earlier. The explana-
tion for this discrepancy between the effect of PD-associated
and toxin-induced nigral degeneration on ENS neurons is
currently unclear. Systemic delivery of catecholaminergic
toxins such as intravenous 6-OHDA to rhesus macaques
[177] or intraperitoneal MPTP to mice [159, 178, 179]
decreases tyrosine hydroxylase-immunoreactivity in the
ENS; in rhesus this decrease is associated with increased
soft feces, while MPTP delivery to mice either increases
[159] or decreases [178, 179] colonic motility. Rotenone-
induced colonic dysfunction in mice is sometimes [175], but
not always [161] associated with changes in the ENS. Addi-
tionally, rotenone-treated mice frequently recapitulate the
accumulation [174, 180] and S129 phosphorylation [180] of
a-syn in the colonic ENS observed in PD. The murine rote-
none model of PD with constipation-like signs also shows
increased a-syn in the intermediolateral column of the spinal
cord, DMV [153], and nigrostriatal system [174, 180] in
addition to alterations in the fecal microbiome [180]. Inter-
estingly, hemi-vagotomy has been reported to reduce a-syn
accumulation in the ipsilateral DMV and neurodegeneration
in the ipsilateral substantia nigra following rotenone treat-
ment [153].

Murine models of a-syn overexpression such as Thyl-
a-syn [113, 165, 181], AS3T mice generated using PAC
transgenesis [116], and Prnp-a-syn-AS3T [164, 182], pre-
sent constipation-like features. They also present a-syn accu-
mulation in the ENS [113, 116, 165, 182] and sometimes
[164], but not always [113, 116], in the DMV. Because these
animals typically lack nigral cells loss [79], these findings
suggest that a-syn accumulation in the ANS is a contributor
to PD-like constipation.

Similar to studies discussed above related to upper GI
function, different forms of a-syn have been injected in
the descending colon of rats and the colon and stomach of
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crab-eating macaques [183] to test theories of trans-synaptic
a-syn spreading from the peripheral to the central nervous
system. 1 month after injection, the rats that received a-syn
pre-formed fibrils in the colonic ENS had decreased fecal
water content and a-syn accumulation in the DMV, yet both
effects disappeared by 12 months [183]. Aggregated a-syn
was found in the ENS of both species throughout the dura-
tion of the study (12 months). The monkeys showed nei-
ther functional deficits nor a-syn pathology outside of the
ENS, suggesting differences between species or modeling
strategies.

Discussion

Successful management of autonomic dysfunction remains
an unmet need in PD patient care. In addition to the signs
and symptoms addressed in this review, dysautonomia can
spill over into other facets of PD. Orthostatic hypotension
compounds the effects of PD motor dysfunction on body
movement and is associated with cerebral microbleeds
which contribute to dementia [184]. Nocturia worsens day-
time sleepiness [185]. Sexual dysfunction correlates with
PD autonomic dysfunction [186], although whether this is
a result of damage to the ANS or of autonomic dysfunction
making sexual activity more difficult is not known. Unfor-
tunately, the failure rate for drugs designed to prevent or
slow cell loss in neurodegenerative diseases is extremely
high in clinical trials [187, 188], and treating PD dysauto-
nomia is made more difficult by the limited understanding
of pathophysiology.

As stated in the introduction, in this article we aimed
to answer two questions: First, can current animal models
provide insight into PD dysautonomia causes and potential
treatments? Second, what signs and pathology should an
ideal PD dysautonomia animal model display? Our review
of the literature supports the value of animal models in
discerning the neuroanatomy, pathology, and mechanisms
precipitating each manifestation of PD dysautonomia.
Toxin models give clues to the impact of loss of specific
neuronal populations in the development of clinical signs
and symptoms, while models of genetic mutations and/or
protein aggregation inform on pathways of cell dysfunc-
tion. For example, models of central dopamine loss have
provided evidence supporting a role for nigrostriatal neuro-
degeneration in a number of nonmotor symptoms, including
oropharyngeal dysphagia [58, 62] and bladder dysfunction
[48, 49]. Clinical investigation enhancing the understanding
of PD itself aids researchers in the identification of which
signs and pathology an ideal model of PD dysautonomia
should display (see Tables 1 and 2). A model does not need
to exhibit all of the features to add to our understanding
of PD autonomic dysfunction. An example is the research
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surrounding the cause of constipation in PD. It has pre-
viously been hypothesized that a loss of dopamine in the
colonic ENS leads to PD-associated constipation [70].
However, a combination of research in patients illustrating
a lack of neurodegeneration in the colonic ENS [71, 72]
and studies in animal models demonstrating that a loss of
ENS dopamine is not sufficient to produce constipation [159,
177] suggest an alternate cause. More recent work using
transgenic a-syn overexpressing mice [113, 116, 164, 165]
and injection of a-syn into the ENS [183], together with
evidence of LBs in human PD ENS [11], suggest that a-syn
pathology in enteric neurons, and possibly elsewhere in the
ANS, contributes to dysregulated GI motility. These models
can serve as platforms to test therapies aiming to affect a-syn
accumulation and to investigate the relationship between
ENS a-syn pathology and the development of the hallmark
PD CNS pathology and cardinal motor symptoms. Animal
models also allow for interrogation of neurodegenerative
mechanisms as they are occurring, ideally, at multiple time
points to monitor progression of the disease. For example,
our recent work in rhesus macaques used in vivo PET imag-
ing to map cardiac inflammation and oxidative stress before,
1, and 12 weeks after 6-OHDA-induced postganglionic sym-
pathetic nerve loss [104], providing clues to mechanisms of
neurodegeneration, possible biomarkers, and potential drug
targets. This novel mechanistic research approach is difficult
to apply in PD patients for several reasons, including the
extensive neuronal damage and dysfunction already present
by the time of diagnosis.

Honestly acknowledging the limitations of each ani-
mal model is critical to fruitful, translational experimen-
tal design. Toxin models can have confounding off-target
effects, such as vascular damage, myocardial degeneration,
and interstitial hemorrhages of the kidneys and lungs as
observed in rotenone-treated rats [189]. Murine models uti-
lizing a-syn transgenesis can result in aberrant expression
of a-syn in nonneuronal cell types; although Thyl is not
expressed on human mature T cells, it is extremely abun-
dant on murine T cells [190]. Age of the animal should also
be considered. PD is typically observed in patients over
60 years of age, and many PD symptoms worsen with age
[191]. In that regard, oligomerized a-syn has been shown
to increase in the aging cynomolgus ENS [192] and a-syn
to accumulate in the substantia nigra of aging rhesus [193].
Although the ANS is conserved across many species, dif-
ferences in neuroanatomy should also be considered when
selecting a research model. Notably, invertebrate species
such as the model organism Drosophila melanogaster do
not have a clear parallel to the human ANS [194]. Zebrafish
autonomic innervation shows noticeable differences in
the location of sympathetic ganglia [5] and in the lack of
organized ganglia in the ENS [195]. Comparing rodents to
humans, sympathetic preganglionic neurons are present in



Clinical Autonomic Research (2019) 29:397-414

407

the T1-L3 vertebrae of humans and rats, but they are limited
to T1-L2 in mice; parasympathetic preganglionic cell bodies
are in S2-S4 in humans but L6-S1 in rats and mice [196].
Additionally, rodent preganglionic sympathetic neurons
typically lack myelin, in contrast to large mammals [197].
The exact number and location of sympathetic ganglia differ
between species, but they also show variability between indi-
viduals within the same species [197], including in humans
[198]. Finally, researchers should verify that methods of
assessing autonomic function are species-appropriate, e.g.:
application of species-specific corrections for cardiovascular
parameters, including QT interval during ECG evaluations
[199].

Progress understanding the pathological basis of signs
and symptoms in clinically relevant animal models of ANS
dysfunction moves investigators one step closer to finding
solutions. Part of this scientific evolution is the recognition
that, like human PD, no single model can encompass all the
possible different risk factors of the disease (e.g.: LRRK2
G2019S mutation, SNCA AS53T mutation, environmen-
tal toxin exposure, age). Furthermore, the diversity of PD
clinical presentation cautions against oversimplification and
overinterpretation, as no single model can recapitulate all
of PD motor and nonmotor features, including the range of
autonomic dysfunction. An ongoing effort to address these
issues is the development of a new generation of PD mod-
els. A subset of them are based on the multiple-hit hypoth-
esis that different pathways synergistically contribute to PD
neurodegeneration. These mixed models combine catecho-
laminergic neurotoxins, transgenesis, and/or a-syn injection
[200] to assess links between PD associated genes and toxin
administration, such as DJ1-/- mice which are more vulner-
able to MPTP [201]. Additionally, transgenic and genome-
edited nonhuman primate PD models are currently being
developed [202]. Genetically modified monkeys will allow
investigators to study the impact of genetics in species more
physiologically and anatomically similar to humans, help-
ing to define the progression of PD, including when ANS
dysfunction first appears, and the best timing for introducing
disease-modifying therapies. Overall, future work in animal
models has great potential to bring important insights into
PD dysautonomia etiology and, ultimately, better treatments.
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