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Abstract Alternative splicing is a tightly regulated process that contributes to cancer development. CRNDE is a
long noncoding RNA with alternative splicing and is implicated in the pathogenesis of several cancers. However,
whether deregulated expression of CRNDE is common and which isoforms are mainly involved in cancers remain
unclear. In this study, we report that CRNDE is aberrantly expressed in the majority of solid and hematopoietic
malignancies. The investigation of CRNDE expression in normal samples revealed that CRNDE was expressed in a
tissue- and cell-specific manner. Further comparison of CRNDE expression in 2938 patient samples from 15 solid
and hematopoietic tumors showed that CRNDE was significantly overexpressed in 11 malignancies, including 3
reported and 8 unreported, and also implicated that the overexpressed isoforms differed in various cancer types.
Furthermore, anti-cancer drugs could efficiently repress CRNDE overexpression in cancer cell lines and primary
samples, and even had different impacts on the expression of CRNDE isoforms. Finally, experimental profiles of 12
alternatively spliced isoforms demonstrated that the spliced variant CRNDE-g was the most highly expressed
isoform in multiple cancer types. Collectively, our results emphasize the cancer-associated feature of CRNDE and

its spliced isoforms, and may provide promising targets for cancer diagnosis and therapy.
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Introduction

Alternative splicing is an important process in post-
transcriptional regulation and significantly increases the
complexity of the transcriptome by generating multiple
splice isoforms. The process of alternative splicing is
regulated in a tissue- and cell-specific manner and
contributes to the pathogenesis of many cancers. Conse-
quently, cancer signatures based on specific isoforms are
usually more precise than those based on gene expression
[1]. Thus, the cancer-specific isoforms may serve as new
diagnostic biomarkers to distinguish various cancer types
and provide potential targets for drug discovery [2].
Therefore, identifying and characterizing alternative spli-
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cing isoforms are essential for generating specific cancer
signatures and developing new strategies for precision
medicine.

Recent advances in high-throughput sequencing tech-
nologies have elucidated that in human genome the
number of long noncoding RNAs (IncRNAs) is signifi-
cantly larger than that of coding genes, and many IncRNAs
have multiple alternatively spliced isoforms [3-5].
IncRNAs are recognized as important regulators of
gene expression and play key roles in tumor initiation,
progression, and metastasis [6,7]. For example, IncRNA
DANCR and HOTTIP are closely related to tumor
progression and poor prognosis in patients with colorectal
cancer (CRC) [8,9]. HOTAIRMI1 is a myeloid-specific
IncRNA, and its deregulation is involved in leukemogen-
esis and impacts prognosis in some types of acute
myeloid leukemia (AML) [10]. Thus, tissue-specific or
cancer-specific IncRNAs emerge as a novel assortment of
molecular biomarkers for cancer prognosis.

Alternative splicing of IncRNAs further expands their
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regulatory and functional complexity in tumorigenesis.
IncRNAs are predominately transcribed by RNA poly-
merase Il and often multiexonic and polyadenylated.
Therefore, the alternative splicing of IncRNAs may be
executed through canonical splice sites, which is similar to
that of protein-coding mRNAs [11]. Especially, IncRNAs
tend to undergo incomplete splicing due to the co-
transcriptional splicing weakening close to the polyade-
nylation site [12]. In addition, studies have shown that
IncRNAs can be transcribed by RNA polymerase 111 (Pol
IIT), which has also been reported to drive alternative
splicing through Pol IlI-transcribed noncoding RNA such
as 38A and 17A [13]. Therefore, determination of the
differential expression pattern of different IncRNA iso-
forms in cancer can be of help to more precisely identify
cancer-specific biomarkers, provide potential targets for
developing new therapeutic strategies, and elucidate the
accurate regulation mechanisms of IncRNAs in tumor-
igenesis.

Colorectal Neoplasia Differentially Expressed (non-
protein-coding) (gene symbol CRNDE) was first identified
to be overexpressed in CRC [14]. Later on, CRNDE has
also been found to be upregulated in patients with
pancreatic cancer [15] and glioma [16]. It is located on
chromosome 16 and adjacent to the /RX5 gene on the
opposite strand. Studies have shown that CRNDE and
IRX5 genes share a bidirectional promoter, and their
expression can be coregulated in a concordant pattern [17].
CRNDE confers multiple functions in tumorigenesis. It
can promote tumor cell proliferation and chemoresistance
through Wnt/B-catenin signaling in CRC and renal cell
carcinoma [18,19]. CRNDE can also exert migration and
invasion effects in CRC cells and glioma stem cells and
inhibit cell apoptosis [20]. Notably, it has at least 12
different alternative transcript isoforms generated from six
exons at the CRNDE locus. Among these isoforms, the
CRNDE-h isoform has been reported to be specifically
upregulated and associated with poor prognosis of CRC
and glioma [21,22]. This finding implicates that the spliced
variants of CRNDE, particularly the CRNDE-h isoform,
might exhibit tissue-specific cancer types. However, the
expression pattern of CRNDE and its various spliced
isoforms in the majority of cancer types and drug influence
on its expression remain unclear.

In this study, we retrieved the gene expression data sets
of 109 normal tissues, 67 normal cell types, and 15 types of
solid and hematopoietic tumors including 2938 patient
samples to investigate CRNDE distribution in normal
tissues and its abnormal expression in cancer samples. We
found that CRNDE was expressed in a tissue- and cell-
specific pattern. More importantly, we showed that
CRNDE was overexpressed in 11 of 15 tested cancer
types, especially in those whose corresponding normal
samples have little to no expression of CRNDE. Further
analysis of gene expression data sets of cancer cells with

drug treatment demonstrated that anti-cancer drugs could
efficiently repress the overexpression of CRNDE in cancer
cell lines and patient samples. Finally, quantitative real-
time PCR (qRT-PCR) assays by isoform-specific primers
for 12 CRNDE spliced variants illustrated that CRNDE-g
(previously defined CRNDE-h) was most abundant in the
majority of cancer cell lines. Collectively, our findings
demonstrate that CRNDE was commonly overexpressed in
most types of cancer, emphasizing its role in tumorigen-
esis, and suggest that CRNDE with its distinct alternatively
spliced isoforms might be promising biomarkers for cancer
diagnosis and potential targets for cancer therapy.

Materials and methods

Collection of microarray gene expression data sets

The normalized expression levels of CRNDE across all
normal human tissues and cell types were downloaded
from the Body Atlas database of NextBio (http://www.
nextbio.com) including 147 normal tissues and 173 cell
types. Excluding the unassayed tissues and cell types, we
finally retrieved the gene expression data from 109 normal
tissues and 67 cell types. Cancer-associated microarray
gene expression data sets were downloaded from the Gene
Expression Omnibus (GEO) at the National Center for
Biotechnology Information (NCBI, https://www.ncbi.nlm.
nih.gov). Detailed information of various data sets is
presented in Table 1.

To investigate the drug influence on CRNDE expres-
sion, we downloaded four gene expression data sets with
drug treatment, encompassing three data sets on cancer cell
lines and one data set on cancer patient samples. Two data
sets were generated from the CRC line HCTI116
(GSE15395) [23] and the prostate cancer cell line
DU145 (GSE15392) [23] with the treatment of R547.
One data set was generated from the AML cell line THP1
with the treatment of phorbol-12-myristate-13-acetate
(PMA) (GSE46599) [24]. One data set was generated
from nine chronic myeloid leukemia (CML) patients with
the treatment of imatinib (GSE33075) [25].

Integration of gene expression microarrays

We integrated microarray data sets from the same cancer
by reanalyzing their raw data and used robust multi-array
average approach for normalization among different data
sets. Subsequently, we pooled the patient samples and
corresponding normal control samples for further com-
parative analysis of CRNDE expression.

Cell culture and reagents

Solid cancer cell lines including CRC cell lines HCT116
and HT29 cells and glioma tumor cell lines U251 and
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Table 1 GEO data sets used to detect CRNDE expression in 15 types of cancers

Cancer type Cancer name GEO (No.) Cancer samples (No.) Control samples (No.) Ref.
Solid tumors CRC GSE32323 CRC tissues (17) Normal colorectal tissues® a7 [27]
GSE8671 Colorectal adenoma (32) Normal colorectal mucosa® (32) [28]
GSE37364 CRC tissues (14) Normal colonic mucosa (38) [29]
GSE4183 CRC and adenoma (30) Normal controls (8) [30]
Glioma GSE4290 Glioma samples (157) Non-tumor samples (23) [31]
ACC GSE19750 ACC samples (44) Normal adrenal glands (4) [32]
GSE10927 ACC samples (33) Normal adrenal cortex (10) [33]
Pancreatic cancer GSE16515 Pancreatic tumor (36) Normal pancreatic tissues (16) [34]
GSE22780 Pancreatic tumor (8) Normal tissues® 8) [35]
GSE15471 PDAC samples (36) Normal tissues® (36) [36]
Prostate cancer GSE55945 Prostate cancer (12) Normal tissues (7) [37]
GSE46602 Prostate cancer (36) Normal prostate (14) [38]
Ovarian cancer GSE14407 CEPI samples (12) Normal OSE (12) [39]
Cervical cancer GSE63514 Cervical cancer (28) Normal cervical epithelium (24) [40]
NSCLC GSE33532 NSCLC tissues (80) Normal lung tissues (20) [41]
NMSC GSE53462° NMSC tissues (21) Normal skin tissues (5) [42]
Leukemia ATL GSE1466 ATL samples (41) Normal T cells (3) [43]
AML GSE12662 AML samples (76) Normal PMN (5) [44]
GSE13159 AML samples (542) Healthy BM (74) [45,46]
CML GSE13159 CML samples (76) Healthy BM (74) [45,46]
ALL GSE13159 ALL samples (750) Healthy BM (74) [45,46]
MDS GSE13159 MDS samples (206) Healthy BM (74) [45,46]
CLL GSE13159 CLL samples (448) Healthy BM (74) [45,46]
GSE67642" CLL-CDI19" cells (15) Normal CD19™ cells (9) [47]
GSE50006 CLL cells (188) Normal B cells (32) NA®
Total 15 types 21 data sets 2938 397

“Data sets from Illumina HumanHT-12 v4.0 Expression BeadChip and others from Affymetrix HG-U133 arrays. ®Pairs of normal and tumor tissue samples.
“The reference is not available. BM, bone marrow. CEPI, ovarian cancer epithelia. OSE, ovarian surface epithelia. PDAC, pancreatic ductal adenocarcinoma.

US87TMG cells were cultured in DMEM (Gibco, Carlsbad,
CA, USA) supplemented with 10% fetal bovine serum
(FBS, Moregate Biotech, Bulimba, QLD, Australia).
Leukemic cell lines including Kasumi-1, U937, THP1,
and K562 cells were cultured in RPMI 1640 (Gibco)
supplemented with 10% FBS. All cell lines were cultured
at 37 °C in a humidified atmosphere with 5% CO,
incubator.

qRT-PCR assays for 12 CRNDE transcripts in cancer
cell lines

Total RNA from cancer cell lines was extracted using an
RNeasy Mini Kit (QIAGEN, Hilden, Germany) according
to the manufacturer’s protocol. Genomic DNA removal
and RNA reverse transcription assays were performed with
PrimeScript™ RT Reagent Kit with gDNA Eraser (Takara,
Otsu, Japan). qRT-PCR assays were performed using
SYBR® Premix Ex Taq™ II (Takara, Otsu, Japan) on ABI
ViiA 7 Real-Time PCR System (Applied Biosystems,

Foster City, CA, USA). The relative expression level of
each gene was calculated as 271C{(Cene-CHGAPDIN] Bach assay
was performed in triplicate. The isoform-specific primer
pairs are listed in Table S1.

RT-PCR and agarose gel electrophoresis

RT-PCR assays were performed using KOD-Plus DNA
Polymerase (Toyobo, Osaka, Japan) with 12 isoform-
specific primers for CRNDE spliced transcripts (30 cycles
at 94 °C for 15 s, at 58 °C for 30 s, and at 68 °C for 30 s).
The PCR-amplified products of CRNDE transcripts were
determined visually after performing electrophoresis on a
1% agarose gel containing GelRed™ Nucleic Acid Gel
Stain (Biotium, Hayward, CA, USA).

Statistics

Paired or unpaired f-test was used to validate the
significance of the data.
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Microarray probes at CRNDE locus
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Fig. 1

Alternatively spliced variants derived from the CRNDE locus. The CRNDE genomic locus (on the reverse strand) and its 12 transcript

variants are pictured. The blue boxes and black dotted lines represent exons and introns, respectively. The target regions by Illumina HumanHT-12
V4.0 (ILMN_3250268 and ILMN_3240698) and Affymetrix HG-U133 (238021 s _at and 238022 _at) probes are shown on top of the schematic

diagram. The sequence gap in CRNDE-f is the unknown sequence region.

Results

Genomic view of alternatively spliced variants on the
CRNDE locus

As multiple alternatively spliced variants of CRNDE have
been reported in literature [14,26], we first updated the
possible variants using the latest human NCBI AceView
database. As shown in Fig. 1, the CRNDE genomic locus,
spanning from 54 952 779 to 54 963 101 on human
chromosome 16q based on the Human Genome Assembly
GRCh37/hgl9, produces at least 12 different transcript
variants. These 12 variants include 7 alternatively spliced
variants (CRNDE-a, -b, -c, -g, -h, -i, and -j), 3 partially
spliced variants (CRNDE-e, -f, and -I), and 2 unspliced
isoforms (CRNDE-d and -k).

Although gene expression microarrays are commonly
designed to detect mRNA expression levels, several
microarray platforms also contain a fraction of IncRNAs.
Certain microarray platforms even have the ability to
assess the expression of alternatively spliced isoforms, at
least to some extent, due to multiple probes designed to
cover the distinct genomic locus. After screening the
widely used microarray platforms, we found that two

microarray platforms, i.e., the Affymetrix HG-U133 array
and Illumina HumanHT-12 v4.0 Expression BeadChip,
contained the probes specific for CRNDE. The Affymetrix
HG-U133 array contains two CRNDE probes, i.e.,
238021 s at and 238022 at. The 238021 s at probe
targets the 3'-terminal exon and thus can detect the
majority of the CRNDE isoforms containing exon 6,
whereas the 238022 _at probe is designed across exons 2,
4, 5, and 6, and thus only detects the exonic isoforms of
CRNDE (Fig. 1). The Illumina HumanHT-12 v4.0
Expression BeadChip also contains two probes, i.e.,
ILMN_ 3240698 and ILMN_3250268, which specifically
target the CRNDE-a and CRNDE-b transcripts, respec-
tively (Fig. 1). These available probes may reflect, at least
to some extent, the expression levels of CRNDE
alternatively spliced isoforms.

Collection of CRNDE probe-containing microarrays in
normal and cancer cells

To assess CRNDE expression in normal tissues/cell types
and various cancer types, we retrieved the expression data
from two large repositories of gene expression data. The
expression data in normal tissues and cell types were
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extracted from Body Atlas. We retrieved the gene
expression data from 109 normal tissues and 67 normal
cell types. The gene expression data of various kinds of
cancer samples and corresponding normal or adjacent
noncancerous controls were retrieved from the GEO
database. We retrieved 21 data sets of the gene expression
data encompassing 15 cancer types, i.e., 9 solid tumors and
6 hematopoietic cancers, in which 2938 patient samples
and 397 corresponding control samples were included.
Among these data sets, 16 were generated from solid
tumors including 4 for CRC, 1 for glioma, 2 for
adrenocortical carcinoma, 3 for pancreatic tumor, 2 for
prostate cancer, and 1 for ovarian adenocarcinoma,
cervical cancer, non-small cell lung cancer (NSCLC),
and non-melanoma skin cancer (NMSC) specimens.
Additional five data sets were generated from hemato-
poietic malignancies including two for chronic lymphocy-
tic leukemia (CLL), one for AML, one for adult T cell
leukemia (ATL), and one for five types of hematopoietic
cancers containing AML, CML, acute lymphocytic
leukemia (ALL), CLL, and myelodysplastic syndrome
(MDS). Detailed information about the data sets of cancer
samples and corresponding normal controls is presented in
Table 1.

CRNDE expression showing a tissue- and cell-specific
pattern in normal tissues/cells

According to the annotation from the Body Atlas at the
NextBio platform, 109 normal tissue types and 67 cell
types were both classified into 10 systems. Additionally,
we further ranked 10 systems and their corresponding
tissues/cell types from relatively higher expression to
lower expression of CRNDE. CRNDE was highly
expressed in the urogenital, exocrine, integumentary, and
musculoskeletal system, in which the expression levels of
CRNDE in almost corresponding tissues were higher than
the median expression level in total tissues, such as testes,
parotid gland, and skin (Fig. 2). Furthermore, we also
found that CRNDE was highly expressed in corresponding
cell types, such as spermatozoa, ovary, and various types of
prostate and breast cells (Fig. S1). Besides, CRNDE was
expressed at highest levels in dental odontoblasts of the
digestive system among all tested cells (Fig. S1). It was
slightly expressed in most tissues of the immune system
and endocrine system, such as spleen, bone marrow, and
omental adipose tissue (Fig. 2). Correspondingly, we found
that the expression level of CRNDE was lowest in
mononuclear cells and B/T lymphocytes of peripheral
blood and also in neutrophils of bone marrow. Moreover,
the expression level of CRNDE in colonic epithelial cells
of the digestive system was also lower than the median
expression level of all cells (Fig. S1). The above results
demonstrated that CRNDE was expressed in a tissue- and
cell-specific pattern.

CRNDE overexpression in the majority of detected
solid cancers

To investigate whether deregulated CRNDE expression
is common in cancer, we first assessed the expression
levels of CRNDE in solid tumors. Among these nine
different solid cancer types, we observed that CRNDE
was obviously overexpressed in six of nine solid tumors,
with three reported, CRC, glioma, and pancreatic tumors,
and three unreported, adrenocortical carcinoma, prostate
cancer, and NMSC (Fig. 3A-3F and Fig. S2A-S2F).
In this study, we integrated multiple gene expression
data sets from various platforms and patient samples and
further verified the overexpression of CRNDE in these
three reported tumors. In addition, we found the expression
level of CRNDE was significantly downregulated in
ovarian cancer (Figs. 3G and S2G) and exerted no
difference in cervical cancer and NSCLC, compared with
the corresponding normal cervical epithelium cells
and normal lung tissues (Fig. 3H and 3I and Fig. S2H
and S2I).

Furthermore, expression levels of CRNDE were
detected by four probes from two microarray platforms,
which partially represented different alternatively spliced
isoforms of CRNDE. As shown in Fig. 3 and Fig. S2, the
corresponding two probes presented similar expression
patterns except in prostate cancer. The expression levels of
CRNDE detected by 238021 _s_at probe revealed higher
expression in prostate cancer tissues than normal control
samples (Fig. 3E); however, the expression levels of fully
spliced CRNDE isoforms detected by 238022 at probe
had no difference between prostate cancer tissues and
normal control samples (Fig. S2E). These results indicated
that CRNDE and its distinct spliced isoforms were
overexpressed in the majority of the detected cancer
types and expressed in a cancer-specific pattern.

Highly expressed CRNDE in many types of hemato-
poietic cancers

To further investigate the expression patterns of CRNDE in
hematologic malignancies, we assessed CRNDE expres-
sion in five gene expression data sets of hematologic
cancers (Table 1). We first compared the expression of
CRNDE between 750 ALL patient samples, 448 CLL
patient samples, 542 AML patient samples, 76 CML
patient samples, 206 MDS patient samples with 74
nonleukemia and healthy bone marrow samples. As
shown in Fig. 4A, we found that CRNDE was significantly
upregulated in ALL, AML, CML and MDS, and down-
regulated in CLL. We further verified the overexpression
pattern of CRNDE in AML by analyzing another data set
(GSE12662) (Fig. S3). We compared CRNDE expression
from 76 AML patient samples, five normal polymorpho-
nuclear neutrophils (PMNs), and five purified normal
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myeloid precursor CD347 cells. Besides highly expressed
in AML, we also found that CRNDE was moderately
expressed in CD34* cells than in PMNs cells (Fig. S3A).
These results indicated that CRNDE expression appeared
higher at the early stages of myeloid development and
downregulated during differentiation, which may empha-
size its temporal expression patterns. In addition, we
analyzed the differential expression pattern of CRNDE
between 41 ATL samples and 3 normal CD4" T cells. As
illustrated in Fig. 4B, the expression of CRNDE was also
higher in ATL samples than in normal cells. Furthermore,
the two CRNDE-specific probes from HG-U133 produced
consistent expression patterns.

Interestingly, the expression levels of CRNDE in two
additional CLL-associated data sets (GSE67642 and
GSE50006) showed differential expression detected by
four probes, which partially represented spliced isoforms

of CRNDE to some extent. As shown in Fig. S3B and S3C,
the total expression of CRNDE represented by the
238021 s_at probe from HG-U133 was lower in CLL
samples. However, the expression of CRNDE isoforms
(fully spliced) detected by the 238022 _at probe showed no
difference between CLL and normal B cells. Likewise, the
CRNDE-a isoform detected by ILMN 3240698 probe
showed lower expression in CLL samples, but the
CRNDE-b isoform detected by ILMN_ 3250268 showed
no difference between CLL and normal B cells. The data
implicated that the expression of 12 CRNDE spliced
isoforms differed in CLL.

Taken together, CRNDE was also upregulated in the
majority of leukemia. The differential expression pattern of
CRNDE and its isoforms in leukemia might be the
characteristic of distinct subtypes of leukemia/subtype-
specific expression pattern in leukemia.
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Repression of overexpressed CRNDE by anti-cancer
drugs in cancer cell lines and patient samples

The overexpression of CRNDE in multiple cancers
suggested its potential oncogenic activity in tumorigenesis.
We wondered whether anti-cancer drugs could correct the
abnormally high expression of CRNDE in cancers.
Therefore, we downloaded four gene expression data sets
with drug treatment, encompassing three data sets on
cancer cell lines and one data set on CML patient samples.
We first investigated the drug effects on CRNDE
expression in solid cancer cell lines, i.e., the colon cancer
cell line HCT116 and the prostate cancer cell line DU145.
The examined drug is R547, a novel cyclin-dependent
kinase selective inhibitor in phase I clinical trials, which
has shown a potent anti-growth effect on proliferating
cancer cells [48]. We compared the intensity of CRNDE-
specific probes in HCT116 and DU145 cell lines with
human peripheral blood mononuclear (PBMC) cells [23].
The PBMC cells were considered as the nonproliferating
cells for the control. As illustrated in Fig. 5A, the intensity
of CRNDE in HCTI116 and DU145 was significantly
higher compared with the intensity of CRNDE in PBMC
cells, which was consistent with our previous results in

CRC and prostate cancer and further emphasized its role in
promoting proliferation of cancers. Subsequently, we
compared the intensity of CRNDE-specific probes in
HCT116 cells and found different extents of reduction
between two CRNDE-specific probes after R547 treat-
ment. Especially, the intensity of 238021 s at showed
greater reduction than that of 238022 at (Fig. 5B). These
results indicated that CRNDE isoforms presented different
responses to drug treatment. Though CRNDE was higher
in DU145 cells, we found that the intensities of two
CRNDE-specific probes exhibited no difference after R547
treatment (Fig. 5C). These results in solid tumors indicated
that CRNDE might display cancer-specific drug response,
which may be due to the distinct genetic characteristics of
different cancers.

Subsequently, we examined the influences of anti-cancer
drugs on CRNDE expression in leukemia cells. We
detected the drug response of CRNDE in M5 subtype of
AML cell line THP1 cells, which is arrested at monocyte
stage of macrophage differentiation. PMA is a common
drug to induce the terminal monocyte—macrophage
differentiation and can promote differentiation of THP1
leukemic cells into macrophage-like cells. We first
compared the intensities of CRNDE between THP1 and
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Fig. 5 Repression of overexpressed CRNDE by anti-cancer drugs in cancer cell lines and patient samples. (A) The signal intensities of CRNDE
expression levels were detected by two Affymetrix HG-U133 probes, 238021 s at and 238022 _at, in HCT116 cells (GSE15395), DU145 cells
(GSE15392), and PBMC cells (GSE15389). (B and C) The relative intensities of CRNDE expression were detected by 238021 s_at and 238022 _at
probes in HCT116 (B) and DU154 (C) before and after R547 treatment, respectively [23]. (D) CRNDE expression was detected by ILMN 3250268
probe in macrophages and AML-MS5 cell line THP1 with PMA treatment (GSE46599) [24]. (E) The signal intensities of CRNDE were detected by
238021 s at and 238022 at probes in normal bone marrow samples and CML patient samples before and after imatinib therapy, respectively
(GSE33075) [25]. Paired or unpaired #-test was performed to analyze significant differences (* P < 0.05, ** P < 0.01).

macrophage cells. The expression of CRNDE was
obviously higher in THP1 than in macrophage cells (Fig.
5D). These results also further verified our previous results
that the expression of CRNDE was higher in abnormal
proliferating leukemic cells than normal cells. Subse-
quently, we compared the intensities of CRNDE in THP1
cells before and after PMA treatment and discovered that
PMA could significantly downregulate the expression of
CRNDE (Fig. 5D). Besides AML, we further found that
the expression of CRNDE was significantly downregulated
in CML patient samples after imatinib therapy (Fig. SE).
CML is also a clonal myeloproliferative disorder char-
acterized by the aberrant expression of the BCR/ABL
fusion oncogene in accumulated myeloid precursor cells.
As the standard therapy for newly diagnosed CML
patients, imatinib can specifically target and degrade
BCR/ABL fusion protein to cure patients. We compared
the expression between CML patient samples and normal
cells from healthy donors. Likewise, the expression of
CRNDE was indeed significantly higher in CML patient
samples (Fig. SE), which emphasized its aberrant over-
expression in hematopoietic cancer and its potential roles
in leukemogenesis and differentiation therapy.

Experimental evidence illustrating the detailed expres-
sion patterns of 12 alternatively spliced isoforms of
CRNDE in eight types of cancer cell lines

Although microarray-based profiles provide gene expres-
sion data on a large number of patients across a rich
resource of cancer types, detailed gene expression
information on alternatively spliced isoforms, especially
for CRNDE with at least 12 isoforms, is limited. To
investigate the exact expression pattern on each isoform of
CRNDE in different types of cancer, we performed qRT-
PCR to detect the expression of each isoform in several cell
lines, which were shown to have overexpressed CRNDE.
We first designed isoform-specific primers to distinguish
the 12 isoforms. The principles of primer design were
mainly according to their different splicing sites or
distinguished sequence in retained introns or exons
(Fig. 6A), which were further confirmed by sequencing
each fragment amplified by corresponding primer pairs
(Fig. 6B).

We detected the expression of CRNDE isoforms on
eight types of cancer cell lines, encompassing two CRC
cell lines (HT29 and HCTI116), two glioma cell lines
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and U87MG cells (F), AML cell lines Kasumi-1 (G), U937 (H) and THP1 cells (I), and CML cell line K562 cells (J). The x-axis represents 12 isoforms

of CRNDE by letters. The y-axis shows the mean 2"

(U251 and US7MG), three AML cell lines (U937, Kasumi-
1, and THP1), and one CML cell line (K562). As shown in
Fig. 6C—-6J, we found that the CRNDE-g isoform was the
most overexpressed isoform in examined cancer cell lines.
Our results underscored the potential roles of CRNDE-g in
the tumorigenesis. We also found that CRNDE-a, -b, -d, -f,
-h, -k, and -1 were differentially expressed in these cell
lines. Especially, CRNDE-b was also obviously over-
expressed in cancer cells, only modestly lower than

values from three independent experiments, and error bars represent the standard deviation.

CRNDE-g. These differentially expressed CRNDE iso-
forms may account for the characteristics of cancer-
specific expression patterns.

Discussion

IncRNAs are emerging as key regulators of diverse
biological functions in cell development and tumorigenesis.
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Alternative splicing mechanisms generate various IncRNA
isoforms, which increases the diversity of function and
transcriptional regulation mechanisms of IncRNA. In this
study, we demonstrated that the IncRNA CRNDE was
expressed in a tissue- and cancer-specific pattern and
commonly upregulated in multiple cancers by analyzing
thousands of cancer patients. Additionally, anti-cancer
drugs could efficiently repress the aberrant high expression
of CRNDE. Furthermore, we found that CRNDE-g was the
most abundant isoform in cancer cell lines, which implied
that CRNDE with its distinct spliced isoforms could be the
characteristic of various cancer types and the potential
targets for cancer therapy.

As IncRNA CRNDE has been initially identified and
investigated widely in CRC, more attention has been paid
to CRNDE. Thus, its aberrant expression and potential
oncogenic role in tumorigenesis prompt us to determine
whether CRNDE expression is commonly altered in
different cancer types. Our studies retrieved 21 gene
expression data encompassing thousands of patient
samples in 15 cancer types. Through our reanalysis of
these data sets, we newly identified that CRNDE was
significantly highly expressed in prostate cancer, ACC,
NMSC, AML, ATL, CML, ALL, and MDS, besides
previously reported CRC, glioma, and pancreatic cancer.
Recent studies have suggested that the overexpression of
CRNDE may be related to its upstream deregulation by
several aspects. For the same promoter shared with IRXS,
CRNDE is positively associated with IRX5 expression in
CRC [21]. Additionally, IRXS5 is also reported to be
overexpressed in multiple cancers and exert its oncogenic
effects by regulating target genes and cell apoptosis [49].
Our analysis also demonstrated the partially concordant
expression pattern between CRNDE and IRXS5 (data not
shown). However, the real mechanism of the correlation
between CRNDE and IRXS5 remains poorly understood.
Furthermore, we also demonstrated that CRNDE was
highly upregulated in hematopoietic cancers. In addition to
the upregulation of CRNDE in cancers, we also found that
it can be downregulated in ovarian cancer and CLL. The
evidence is showing that the decreased expression of
CRNDE is associated with the accumulation of TP53 [50].
Moreover, the downregulated CRNDE is considered to be
a potential biomarker for poor prognostic evaluation in
women with ovarian cancers. Furthermore, anti-cancer
drugs, especially anti-proliferating and differentiation
therapy, can efficiently correct the aberrant expression of
CRNDE. The above results suggest that CRNDE may be a
potential target for cancer therapy.

CRNDE is a multi-functional IncRNA that exerts
various oncogenic functions in tumorigenesis. The upre-
gulation of CRNDE can activate mTOR signaling, insulin/
IGF signaling, and Wnt/B-catenin signaling pathways and
inhibit cell apoptosis, thus promoting abnormal cell
proliferation, metastasis, and invasion in many cancers

[19,26,51]. Several studies have revealed the preliminary
transcriptional mechanism of CRNDE in the regulation of
its tumor-promoting roles. First, CRNDE can act as
competing endogenous RNA and microRNA sponges to
regulate downstream signaling pathways. For example,
CRNDE can competitively bind to miR-384 and nega-
tively regulate its expression and tumor-suppressive
function, primarily regulating its repressed gene, piwi-
like RNA-mediated gene silencing 4 [52]. Besides,
CRNDE can bind to and negatively regulate miR-186
expression and consequently repress its downstream
signaling pathways [20]. CRNDE also can sponge miR-
181a-5p to mediate Wnt/B-catenin signaling pathway and
miR-136 to promote metastasis and oxaliplatin resistance
in CRC [18,53]. Furthermore, CRNDE can bind polycomb
repressive complex 2 and CoREST chromatin-modifying
complexes in the nucleus, through epigenetic mechanism
to modulate target genes [54]. Although these preliminary
results have explained the mechanism of CRNDE regula-
tion and functions, many issues need to be investigated in
the future.

Alternative pre-mRNA splicing can generate function-
ally distinct mRNAs by splicing exons of pre-mRNA in
different arrangements [2]. As a multiexonic IncRNA,
CRNDE undergoes extensive alternative splicing to
produce at least 12 isoforms according to the latest
human NCBI AceView database. According to various
amounts of unspliced introns and exons, these isoforms are
classified into three main patterns, fully spliced introns
(CRNDE-a, -b, -c, -g, -h, -i, and -j), retained intronic
sequence (CRNDE-e, -f, and -1) and unspliced isoforms
(CRNDE-d and -k). These isoforms predict that CRNDE
may exert diverse roles in cell development and tumor-
igenesis. The transcript abundance profile illustrates that
CRNDE-d is the dominant transcript in normal colorectal
tissue, whereas, in colorectal adenomas and cancers, the
expression of CRNDE-d decreases, and other CRNDE
spliced variants may be upregulated [14]. These findings
suggest that CRNDE-d may participate in normal color-
ectal development. Thus, to elucidate the distinct function
of CRNDE involving multiple cancer types, the exact
expression pattern of various isoforms in different cancers
needs to be identified. Our results revealed that CRNDE-g
was the most abundant transcript in all detected cancer cell
lines. Recently, it has been gaining attention due to its
oncogenic effects and clinical implementation in CRC.
Overexpression and knockdown assays demonstrate that
CRNDE-g is involved in the regulation of aberrant cell
proliferation [21,51]. Moreover, it has been used to
efficiently distinguish adenoma with normal mucosa and
is significantly correlated with metastasis and prognosis in
CRC [21]. Exosomal CRNDE-g is easily detected from the
serum of patient samples. Thus, CRNDE-g can be
considered as a biomarker for diagnosis and prognosis
for CRC [22]. In addition, CRNDE-b can produce 84 aa
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nuclear peptide named CRNDEP, which has been reported
to contribute to the regulation of cell proliferation and
promote stress granules’ formation in HeLa cells [55]. Our
studies further manifest the clinical significance of
CRNDE and its specific isoform in multiple cancers, not
only solid but also hematopoietic cancers.

Therefore, our results put forward CRNDE and its
specific isoforms as sensitive and specific molecular
markers for distinct cancer types for their characteristics
of cancer-specific expression pattern. Furthermore, their
potential oncogenic functions in tumorigenesis are also
implied to be promising targets for cancer therapy, which
may be further investigated in the future.
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