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Abstract Desmoid-type fibromatosis (DF) is a rare monoclonal fibroblastic proliferation that is characterized by
locally infiltrative but rarely metastatic lesions. Tyrosine kinase and y-secretase inhibitors are primarily used in the
targeted therapy of DF. The use of these drugs, however, is mainly based on the recommendations of retrospective
studies with small sample sizes. Previous studies that focused on the mechanism, efficacy, and safety of targeted
therapy for DF were reviewed to provide references for clinical applications and research. The efficacy and safety
of targeted therapy were compared with those of other systemic therapy options. Targeted therapy does not
provide considerable advantages in efficacy and safety over other medical treatments and is usually applied after
the failure of antihormonal therapies, nonsteroidal anti-inflammatory drugs, and chemotherapy. Further studies
are required to explore the mechanism, indications, and appropriate drug dosage of the targeted therapy of DF.
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Introduction

Desmoid-type fibromatosis (DF) is a rare monoclonal
fibroblastic proliferation that is characterized by locally
infiltrative but rarely metastatic lesions [1,2]. Trauma,
surgery, pregnancy, and oral contraceptives are high-risk
factors of DF development [3,4]. Gene mutations,
particularly B-catenin and APC gene mutations, play key
roles in DF pathogenesis [4,5]. The Wnt (B-catenin)
pathway has been verified to play an important role in DF
pathogenesis [5-9]. Most cases of sporadic DF involve a
mutation in the pf-catenin gene [5,8,10,11]. Similarly, most
cases associated with familial adenomatous polyposis
(FAP) involve mutations in APC, which regulates f-
catenin degradation [6,12,13].

DF has a variable and unpredictable clinical course.
Some tumors progress, whereas others will not grow and
may even regress spontaneously [14]. The consensus on
the treatment of DF has changed over the past decade, with
most centers moving away from primary radical surgery
toward a frontline “watchful waiting” policy [1,2,15-18].
Medical therapy is an important strategy for the treatment
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of progressive DF, particularly cases with unresectable
lesions that are adjacent to important organs. Drugs used in
targeted therapy mainly include tyrosine kinase inhibitors
(TKIs) and y-secretase inhibitors [1,19-24].

Targeted therapy, however, is mainly applied on the
basis of the results of retrospective studies with small
sample sizes. Moreover, few works have compared the
safety and efficacy of different drugs used for the targeted
therapy of DF. Therefore, we summarize the mechanisms,
current situation, and the future of targeted therapy for DF.
Our review will provide a reference for the research and
clinical application of targeted treatments for DF.

TKils

TKIs block ligand-activated receptor phosphorylation and
mitogen-activated kinase activation and proliferation;
these effects ultimately inhibit cellular growth and
proliferation [25,26]. TKIs that have been reported
effective in DF therapy include imatinib, nilotinib,
pazopanib, sorafenib, and sunitinib [1,4].

Imatinib

Imatinib exerts an inhibitory effect on multiple class 3
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receptor tyrosine kinases, including platelet-derived
growth factor receptor (PDGFR), PDGFRp, and cKIT,
which are associated with the Wnt pathway and may play
important roles in DF development [4,25,27]. In 2002,
Mace et al. characterized 9 DF cases through immunohis-
tochemistry (IHC) and reverse transcriptase-polymerase
chain reaction (RT-PCR) analyses and reported that all
cases were positive for PDGFR and PDGFRJ and 6 cases
(66.7%) were positive for cKIT [26]. Whether the
inhibition of these imatinib targets resulted in imatinib-
mediated clinical responses, however, remains unclear.

Heinrich ef al. detected cKIT, PDGFR, PDGFR, and -
catenin mutations in tumor specimens to determine the
molecular basis for tumor responses to imatinib [28]. They
were unable to identify cKIT, PDGFR, and PDGFRf
mutations and failed to find correlations between [-catenin
and APC mutations and clinical responses to imatinib. In
contrast to Mace et al. [26], they did not detect PDGFR
expression or activation in the analyzed DF tumors, and
they failed to detect phosphorylation despite the compar-
able levels of PDGFRP expression in DF tumors and
normal fibroblasts. The plasma levels of PDGFR and
PDGFRJ in patients with DF were elevated relative to
those in normal patient controls. In addition, they found
that the level of plasma PDGFRp was inversely correlated
with time to treatment failure. All their results provide
evidence that the response of patients with DF to imatinib
may be mediated through the inhibition of PDGFR kinase
activity [28].

Weislo et al. [29] reported a case that achieved 3 years of
sustained response with imatinib despite presenting
negative results for PDGFR and c-kit (PDGFR was not
assessed). Chugh et al. [30] analyzed the expression of
cKIT, PDGFR, PDGFRp, AKT, PTEN, FKHR, and pB-
catenin in specimens through IHC and the mutations of
PDGFR exon 18 and APC through allelic discrimination
PCR. They reported that all the tested samples were
positive for PDGFR and PDGFR and that 1 of the 7 tested
cases was positive for cKIT. None of the laboratory
findings showed any statistically significant correlation
with outcome or response. Therefore, further studies are
required to confirm the hypothesis of Heinrich et al. [28]
and to identify biomarkers that can be used to predict
patients who will respond to imatinib.

Mace et al. [26] performed a study based on IHC and
RT-PCR. In their study, 2 cases received imatinib therapy
after the failure of chemotherapy, nonsteroidal anti-
inflammatory drug (NSAID) therapy, and antiestrogen
therapy. The cases received imatinib at the dose of 400 mg
twice daily. Both cases responded to imatinib. The tumor
masses of 1 case showed an overall size reduction of 50%.
The other case showed tumor stability and ongoing
reductions in tumor internal density and enhancement.
Despite its small sample size, this study provided
important information regarding the use of imatinib and

other types of TKIs in DF treatment. Heinrich et al.
reported the results of a phase II clinical study that was
performed to further define the efficacy of imatinib in DF
treatment [28]. In this study, 19 patients received 400 mg
of imatinib twice daily. Among the patients, 3 (15.7%)
exhibited reductions of 50% in tumor volume, and 4
patients (21.1%) had stable disease for more than 1 year
before treatment failure. Wcislo et al. [29] reported a
patient treated with 400 mg of imatinib once daily. The
tumor dimensions of this patient showed sustained
shrinkage from 65 mm x 31 mm to 35 mm X 20 mm
during 3 years of follow-up. In a study by Chugh et al.
[30], imatinib was prescribed to 51 patients at the dosage of
100-300 mg twice daily on the basis of body surface area.
The follow-up results showed progression-free survival
(PFS) rates of 94%, 88%, 66%, and 58% at 2 months, 4
months, 1 year, and 3 years, respectively. Five patients
(9.8%) remained progression-free after 4 years of treat-
ment, and the tumor volumes of 3 patients (5.9%) reduced
by more than 30%. The efficacy of imatinib in the
treatment of progressive and recurrent DF was investigated
in an FNCLCC/French Sarcoma Group phase II trial [20].
All 40 patients received imatinib at the initial dose of 400
mg/day, which was later increased to 600 mg/day in 1 case
(2%) and to 800 mg/day in 8 cases (20%) because of
progression. The PFS of the patients at 3, 6, and 12 months
were 91%, 80%, and 67%, respectively. The 2-year PFS
and overall survival rates of the patients were 55% and
95%, respectively. A phase Il study by the German
Interdisciplinary Sarcoma Group involved 38 patients with
DF who received 800 mg of imatinib per day [19]. The
PFS at 9, 12, 15, 18, 21, and 24 months were 65%, 59%,
53%, 53%, 50%, and 45%, respectively, and the tumor
volumes of 7 patients (19%) reduced by more than 30%. A
review of 151 previously reported patients revealed overall
response rates of 13% and PFS at 6, 12, and 24 months of
78%, 61%, and 51%, respectively. Moreover, the overall
response rate of the high-dose group was better than that of
the low-dose group (P =0.039). Studies on the treatment of
DF with imatinib are summarized in Table 1.

The toxic effects of imatinib in the treatment of
gastrointestinal stromal tumors (GISTs) has been evalu-
ated. Side effects occurred in almost all of cases, and grade
3-4 events occurred in approximately 41% of cases;
however, 2/3 of the patients did not require a dose
reduction [31]. Side effects occurred in almost all GIST
cases in the 800 mg/day group. In addition, more instances
of edema, anemia, rashes, lethargy, nausea, bleeding,
diarrhea, and dyspnea were recorded in the 800 mg/day
group than in the 400 mg/day group [31]. The majority of
patients with DF who received 800 mg/day imatinib
required dose reduction because of grade 3 or 4 toxicity
[28]. Grades 1, 2, 3, and 4 side effects occurred in 86.8%,
34.2%, 10.5%, and 2.6% of patients, respectively [19].
Among DF patients who received 400 mg/day imatinib,



Table 1 Summary of previous studies on systemic therapy for desmoid-type fibromatosis

Grade 34
Treatment Overall response side effects/
Study Patient number P PFS dose reduction Characteristics
protocols rate .
due to side
effects

Imatinib Mace et al. (2002) [26] 2 100% 100% (FUT: 9 and 11 months) 0% -

Heinrich et al. (2006) [28] 19 16% 6-M 53%; 12-M 37%; Majority -
36-M 12%

Weislo et al. (2007) [29] 1 100% 100% (FUT 24-M) 0% -

Chugh et al. (2010) [30] 51 6% 6-M 84%; 12-M 66%; 36-M 39% -
58%; 60-M 52%

Penel et al. (2011) [20] 40 10% 6-M 80%; 12-M 67%; 24-M 45% -
55%; 36-M 40%

Kasper et al. (2017) [19] 38 19% 12-M 59%; 24-M 45% 13% -

Total” 151 13% - 33%

Nilotinib Kasper et al. (2017) [19] 8 - 3-M 88% 13% Had the potential
to stabilize DF
after the failure
of imatinib
treatment

Pazopanib Martin-Liberal et al. (2013) [39] 2 50% 100% * 50% -

Szucs et al. (2017) [22] 8 38% 6-M 75%; 12-M 75%; 36-M 13% -
12.5%
Total” 10 40% - 20%

Sorafenib Gounder et al. (2011) [40] 26 25% 6-M 95% 15% Clinical
improvement
was noted
within 2 weeks

Sunitinib Skubitz et al. (2009) [24] 1 100% 36-M 100% 0% -

PF-903084014 Messersmith et al. (2015) [53] 7 71% Response time ranged from 43% -

1.74 4+ months to 24 4+ months
Kummar et al. (2017) [21] 17 29% 94% (median FUT>25 months) 47% -
Total” 24 42% - 46%

Antihormone  Hansmann et al. (2003) [70] 27 37% 50%* 0% 30% of the cases
and/or developed
NSAIDS ovarian cysts;

22% CR
Tanaka et al. (2008) [80] 1 100% 100%* 0% -
Bocale et al. (2011) [81] 168 50% 80%* 0% -
Quast et al. (2016) [68] 134 33% 85%* 0% -
Total” 330 2% - 0%

Anthracycline- Gega et al. [74] 7 100% Average PFS was 74 months 43% 43% CR
based regimens (32.5-107.5)

Bertagnolli ef al. [79] 10 90% 90%* - -

Camargo et al. [73] 35 37% 88%* 6% -

Garbay et al. [76] 13 54% 100% (median PFS was 40.8 - -
months)

Total” 65 55% - 12%

Methotrexate Weiss et al. [77] 15 60% 87%* 20% -
and/or Azzarelli et al. [78] 30 40% 6-M 96%; 12-M 92%; 36-M 13% -
vinblastine 80%; 60-M 67%

Bertagnolli et al. [79] 4 25% 75%* - -

Camargo et al. [73] 22 27% 82%* - -

Garbay et al. [76] 27 15% 67% (median PFS 40.8 - -
months)

Li et al. [82] 71 35% 24-M 80%; 36-M 68%; 60-M - -
36%

Total” 169 34% - 16%

Overall response, cases that showed DF shrinkage. PFS, progression-free survival. M, month. CR, complete response. FUT, follow-up time. NSAIDS,
nonsteroidal anti-inflammatory drugs.
*The follow-up time was unavailable. “Only available data were analyzed.
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45% experienced grade 3 side effects but none suffered
grade 4 side effects. The safety and efficacy of imatinib at
the initial dose levels of 400 and 800 mg/day for patients
with GIST were assessed in EORTC 62005 and S0033/
CALGB 150105 studies [31-33]. Both studies showed
equivalent response rates and overall survival for both dose
levels. In both studies, more side effects were associated
with high doses of imatinib than with low doses of
imatinib. The results of the GIST studies provided
important references for DF despite the absence of
evidence indicating that high doses of imatinib cause
severe side effects in patients with DF. Therefore, the
suitable initial dose of imatinib in patients with DF that will
exhibit low toxicity but equivalent efficacy as high doses
of imatinib must be identified. The Italian Sarcoma Group,
Heidelberg University, and Yonsei University are currently
conducting the phase II trials NCT00928525,
NCTO01137916, and NCT02495519, respectively, to assess
the safety and efficacy of imatinib in DF.

Nilotinib, pazopanib, sorafenib, and sunitinib

Nilotinib, an orally bioavailable selective second-genera-
tion TKI, is 30 times more potent than imatinib [34]. It is
used as second-line therapy for imatinib-resistant BCR-
ABL positive CML [35]. In addition to inhibiting BCR-
ABL, nilotinib, similar to imatinib, has a potent effects
against cKIT and PDGFR [34,36,37]. Kasper et al.
investigated the efficacy of nilotinib (800 mg/day) in
patients with progressive disease or intolerance under
imatinib treatment. In this study, 8 patients were treated
with nilotinib for a median duration of 377 days (range:
88751 days). A total of 88% of the patients showed PFS
of 3 months. Nilotinib had mild side effects. Grades 1, 2, 3,
and 4 side effects were observed in 75%, 0%, 13%, and 0%
of the patients, respectively. No case required dose
reduction because of toxicity. The mechanism underlying
the therapeutic effect of nilotinib on DF remains unclear.
Nevertheless, Kasper et al. presented encouraging results.
The treatment mechanism, safety, and efficacy of nilotinib
in the targeted therapy of DF need to be further studied.
Pazopanib is a multitargeted TKI of cKIT, PDGFR, and
PDGFRB. The results of the PALETTE study, a rando-
mized, double-blind, placebo-controlled phase III trial,
demonstrated that pazopanib is a safe and effective
treatment option for patients with metastatic nonadipocytic
soft-tissue sarcoma after previous chemotherapy [38].
Randomized controlled trials on the use of pazopanib in
DF remain unavailable. Martin-Liberal et al. [39] reported
2 cases that underwent therapy with pazopanib after the
failure of surgery, chemotherapy, NSAIDS therapy, and
antiestrogen therapy. The cases received an initial
pazopanib dose of 800 mg/day. Both cases responded to
pazopanib, and 1 of the cases maintained stable disease and
had a sustained drop in T2 signal intensity for more than 1

year. The dose of pazopanib, however, was reduced from
800 mg/day to 200 mg/day because of side effects. The
other case showed marked tumor shrinkage and reduced
T2 signal intensity and suffered no toxicity. Szucs et al.
[22] reported that the tumors of 37.5% of 8 patients
reduced by more than 30%, and the remaining patients
maintained stable disease. Meanwhile, 75% of the patients
derived clinical benefit from treatment in terms of
improved function and/or pain reduction. Only 1 patient
experienced grade 3 toxicity that resulted in early treatment
discontinuation. In the PALETTE study, the most common
adverse side effects were fatigue, diarrhea, nausea, weight
loss, and hypertension; these side effects were mostly
controllable through dose adjustments [38]. The results of
these studies are encouraging. Nevertheless, the efficacy
and tolerability of pazopanib needs to be further confirmed
because of the retrospective nature and the small sample
size of these studies. The French Sarcoma Group is
currently conducting a phase II trial (NCT01876082) that
assesses the safety and efficacy of pazopanib in the
treatment of DF [39].

Sorafenib is another orally multitargeted TKI that has
been reported useful in DF therapy. Gounder et al. [40]
studied 26 patients with DF who received sorafenib at the
initial dose of 400 mg/day. The initial dose was adjusted in
accordance with the severity of side effects. The tumors of
25% and 29% of the cases shrank by more than 30% and
by 10%—29%, respectively. Meanwhile, 42% of the cases
showed disease stability, whereas 4% showed progression.
Notably, this study reported the rapid derivation of clinical
benefit in 73% of the symptomatic cases. Clinical
improvement was typically noted within 2 weeks of
initiating sorafenib therapy. This period was shorter than
that observed for imatinib. Side effects were controlled
through dose adjustments and the inclusion of antidiarrheal
and antihypertensive drugs. The National Cancer Institute
is conducting a phase II trial (NCT02066181) to assess the
safety and efficacy of sorafenib in DF [4].

Skubitz et al. [24] reported a case of aggressive
multicentric extra-abdominal DF that was responsive to
sunitinib but resistant to imatinib. The spectrum of tyrosine
kinases that is inhibited by sunitinib is broader than that is
inhibited by imatinib and includes vascular endothelial
growth factor receptors (VEGFRs). Direct evidence
verifying the hypothesis that VEGFR inhibition accounts
for the different responses to sunitinib and imatinib
remains unavailable. Therefore, further studies are required
to confirm this hypothesis and to identify biomarkers that
can be used to identify patients who will respond to certain
TKIs.

v-secretase inhibitor

The Notch signaling pathway plays a key role in the
differentiation of bone marrow cells, peripheral immune
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cells, and gastrointestinal cells [41-43]. Abnormalities in
the Notch pathway are associated with the poor prognosis
of solid tumors and hematologic malignancies [44—47].
Remarkably, the Notch pathway cross-talks with the Wnt
pathway, which plays a key role in DF development
[48,49]. These observations provide evidence for the
relationship between the Notch pathway and DF develop-
ment. Kummar et al. reported that the response of DF to
GSI is not associated with the status of B-catenin and the
APC gene [21]. This finding suggests that DF can respond
to GSI simply by inhibiting the Notch pathway instead of
inhibiting the Wnt pathway synchronously. Given the
limitation of the small sample sizes of previous studies on
the relationship between Notch pathway and DF develop-
ment, further studies are required to confirm this hypoth-
esis.

y-secretase cleaves the Notch intracellular domain,
which then translocates to the nucleus where it modulates
gene transcription [50]. Therefore, y-secretase inhibitors
(GSIs) may inhibit DF by inhibiting the Notch pathway.
The results of a study based on a preclinical cancer model
showed that the combination of GSI with an inhibitor of
the ERK pathway enhances gastric cancer cell death
through the downregulation of Wnt/B-catenin pathways
[51]. Arcaroli et al. reported that GSI may be beneficial for
patients with elevated levels of components of the Wnt and
Notch pathways [52]. These results provide theoretical
support for the effectiveness of GSI as a DF therapy.

A phase I study on the use of the GSI PF-903084014 in
DF treatment showed that among 7 patients, 5 (71.4%)
experienced partial response and 2 (28.6%) experienced
stable disease [53]. Treatment-related grades 3 and 4 side
effects occurred in 35.9% and 1.6% of the patients,
respectively. Meanwhile, the expression of the Notch
pathway-related HES4 gene was inhibited in the peripheral
blood samples of all evaluable patients. The results of a
phase II study on the use of PF-903084014 in the treatment
of adult DF showed that 5 patients (29%) achieved more
than 30% tumor shrinkage after a median of 2 years of
treatment [21]. Remarkably, 4 of these 5 patients had no
response to imatinib and/or sorafenib before therapy with
PF-903084014. During the follow-up time (median 25 (3—
30) months), 65% of patients showed sustained stable
disease. All patients suffered grades 1 and 2 side effects,
and 2 needed dose reduction. Grade 3 treatment-related
side effects occurred in 47% of the patients. These results
suggested that GSI is an option for the medical treatment of
DF, especially when other treatments are ineffective.
Meanwhile, the safety and efficacy of GSI must be
confirmed in further studies.

Role of targeted therapy

The options for DF treatment include watchful waiting,
surgery, radiation, and medical therapy. The results of

previous studies have shown that targeted therapy is a
completely novel option for DF treatment. Few researchers
have discussed the role of targeted therapy in DF treatment.
The role of targeted therapy in neoadjuvant and adjuvant
therapy in combination with surgery must be assessed by
further research. The role of targeted therapy in systemic
therapy must be evaluated by comparing the therapeutic
effects and adverse reactions of targeted therapy and
commonly used chemotherapy protocols.

The rate of the spontaneous regression of DF is 20%—
30% and can be observed at all sites of body, including
extremities, abdominal wall, abdomen, etc. [14,54]. Given
the variable and unpredictable clinical course of DF, the
consensus on treatment has changed from primary radical
surgery to a front-line “watchful waiting” policy [1,2,15—
18]. A series of retrospective studies involving asympto-
matic patients managed with a “watchful waiting” policy
has shown PFS rates of 50% at 5 years [16-18,55].
Therefore, similar to immediate surgery, targeted therapy
should not be considered as the initial therapy for
asymptomatic patients. Furthermore, the efficacy of
targeted therapy should be assessed under the full
consideration of the clinical course of DF because tumor
shrinkage and disease stability in some cases are the
clinical course rather than the effects of therapy.

The rate of local recurrence after operation falls in the
range of 25%—60% at 5 years of follow-up [4,16,56—65].
Crago et al. [66] reported that extremity location, young
age, and large tumor size but not tumor margin are
associated with recurrence. Surgery can cause postopera-
tive complications and loss of function. Thus, the
observation of Crago et al. [66] led to the comprehensive
reassessment of DF management and the prioritization of
the preservation of function [1]. Neoadjuvant therapy with
targeted medicine may facilitate the regression of DF. This
finding may be helpful in efforts to preserve function,
reduce postoperative complications, and improve clinical
outcomes. Multiple studies have shown that recurrent DF
after surgery responds to targeted therapy [26,29]. These
results provide further support for the use of targeted
therapy for recurrent tumors after surgery. Nevertheless,
the role of targeted therapy as a supplement to surgery in
neoadjuvant and adjuvant therapy requires further study.

Medical therapy strategies for DF includes antihormonal
therapy, NSAID therapy, chemotherapy, and targeted
therapy. Previous studies on medical therapies for DF are
summarized in Table 1, Fig. 1, and Fig. 2. Tamoxifen is the
most commonly used antihormonal chemotherapeutic drug
and may be used alone or in combination with NSAIDs
[67,68]. The response rate of patients to hormone-based
therapy varies from 33% to 50% (Table 1 and Fig. 1)
[69,70]. The overall response rate of patients who received
antihormone and/or NSAIDS therapy was significantly
higher than that of patients who received imatinib
(P < 0.001) (Table 2, Fig. 3). Antiestrogens can increase
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Table 2 Comparison of the overall response rates and grade 3—4 side effect rates of antithormone and/or NSAIDS therapy and various targeted

therapies
Treatment Overall response Grade 3—4 side effects
protocols N Yes No P N Yes No P
Antihormone 330 139 (42%) 191 (58%) 330 0 (0%) 330 (100%)
and/or NSAIDS

Imatinib 151 20 (13%) 131 (87%) <0.001 132 43 (33%) 89 (67%) <0.001
Nilotinib 8 - - - 8 1 (13%) 7 (87%) 0.024
Pazopanib 10 4 (40%) 6 (60%) 0.893 10 2 (20%) 8 (80%) 0.001
Sorafenib 26 7 (25%) 19 (75%) 0.129 26 4 (15%) 22 (85%) <0.001
PF-903084014 24 10 (42%) 14 (58%) 0.965 24 11 (46%) 13 (54%) <0.001
Overall response, cases that showed DF shrinkage. NSAIDS, nonsteroidal anti-inflammatory drugs.
the occurrence of thromboembolic events and can also
increase the incidence of endometrial cancer and ovarian 1.0
cysts [71,72]. The rate of side effects of antiestrogens, g
however, is considerably lower than that of surgery, 2 0.8
chemotherapy, and targeted therapy (Table 2, Fig. 3). 2
Therefore, because of its low cost and limited toxicity, § 064
hormone-based therapy is used as the first-line medical 3 04- = &
treatment for DF. (qq')
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This regimen can achieve long-term PFS and even
complete responses and is often used as second-line
therapy after the failure of hormone-based regimens
(Table 1) [73,74]. In our study, the overall response rate
of anthracycline-based regimens is higher than that of
imatinib and sorafenib regimens (Table 3, Fig. 3).
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Fig. 1 Overall response rates of systemic therapies for DF (case
number > 5). The median overall response rates and ranges are
shown in the figure. Overall response rate, the rate of the cases
that showed DF shrinkage. NSAIDS, nonsteroidal anti-inflam-
matory drugs. DF, desmoid-type fibromatosis.
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Fig. 2 Rates of grade 3—4 side effects of systemic therapies for
DF (case number > 5). The median overall response rates and
ranges are shown in the figure. NSAIDS, nonsteroidal anti-
inflammatory drugs. DF, desmoid-type fibromatosis.

Conventional dose chemotherapy is associated with high
toxicity and can cause cardiac and hematological toxicities.
Grade 3—4 toxicities occurred in approximately 31%—43%
of patients [73,74]. However, we found that the rates of
grade 3—4 side effects of imatinib and PF-903084014 were
higher than those of anthracycline-based chemotherapy
(Table 3, Fig. 3). Furthermore, pegylated liposomal
doxorubicin is a better choice than conventional doxor-
ubicin because of its low cardiac toxicity, which is an
important consideration when treating young patients [75].
Therefore, anthracycline-based chemotherapy should be
selected before targeted therapy.

Low-dose chemotherapy is typically administered using
methotrexate and vinblastine and has response rates of
15% to 60% (Table 1 and Fig. 1) [73,76]. The overall
response rates of patients receiving chemotherapy is
significantly higher than those of patients receiving
imatinib (P < 0.001) (Table 4, Fig. 3). Grade 34 side
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Methotraxate and/or vinblastine
Anthracycline-based regimens
Anti-hormone therapy and/or NSAIDS
PF-903084014

Sorafenib

Pazopanib

Nilotinib

Imatinib

Il Overall response rate
B Grade 34 side effect rate

0.0 0.2

0.4

0.6 0.8 1.0

Fig. 3 Overall response and grade 3—4 side effects of various systemic therapies. NSAIDS, nonsteroidal anti-inflammatory drugs.
Overall response rate, the rate of the cases that showed DF shrinkage. *Grade 3—4 side effects occurred in none of the patients that
underwent antihormone and/or NSAIDS therapy. **The overall response rate of nilotinib is unavailable. NSAIDS, nonsteroidal anti-

inflammatory drugs. DF, desmoid-type fibromatosis.

Table 3 Comparison of the overall response rates and grade 3—4 side effect rates of anthracycline-based regimens and various targeted therapies

Treatment Overall response Grade 34 side effects

protocols N Yes No P N Yes No P
Anthracycline- 65 36 (55%) 29 (45%) 42 5 (12%) 37 (88%)

based regimens
Imatinib 151 20 (13%) 131 (87%) 0.001 132 43 (33%) 89 (67%) 0.009
Nilotinib 8 - - - 8 1 (13%) 7 (87%) 0.962
Pazopanib 10 4 (40%) 6 (60%) 0.570 10 2 (20%) 8 (80%) 0.874
Sorafenib 26 7 (25%) 19 (75%) 0.014 26 4 (15%) 22 (85%) 0.965
PF-903084014 24 10 (42%) 14 (58%) 0.250 24 11 (46%) 13 (54%) 0.002

Overall response, cases that showed DF shrinkage.

Table 4 Comparison of the overall response rates and grade 3—4 side effect rates of methotrexate and/or vinblastine regimens and various targeted

therapies
Treatment Overall response Grade 34 side effects

protocols N Yes No P N Yes No P
Methotrexate 169 57 (34%) 112 (66%) 45 7 (16%) 38 (84%)

and/or

vinblastine
Imatinib 151 20 (13%) 131 (87%) <0.001 132 43 (33%) 89 (67%) 0.029
Nilotinib 8 - - 8 1 (13%) 7 (87%) 1.000
Pazopanib 10 4 (40%) 6 (60%) 0.950 10 2 (20%) 8 (80%) 1.000
Sorafenib 26 7 (25%) 19 (75%) 0.492 26 4 (15%) 22 (85%) 1.000
PF-903084014 24 10 (42%) 14 (58%) 0.445 24 11 (46%) 13 (54%) 0.006

Overall response, cases that showed DF shrinkage.

effects occurred in 13% to 20% cases undergoing
methotrexate and vinblastine treatment [77,78]. The
grade 3—4 side effect rates of methotrexate and vinblastine
are significantly lower than those of imatinib and PF-
903084014 (Table 4, Fig. 3). The most common side effect
of vinblastine is neurotoxicity, which may be reduced by
alternating vinblastine with vinorelbine [77,79]. Targeted
therapy is mostly given after chemotherapy failure.

Targeted therapy combined with chemotherapy has not
been studied before, and studies should fully consider drug
tolerability by patients.

Conclusions

Previous studies have shown the encouraging safety and
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efficacy of targeted therapy for DF. To the best of our
knowledge, however, targeted therapy has not shown
considerable advantages in efficacy and safety over other
medical treatments. Furthermore, the application of
targeted therapy, particularly in developing countries, is
limited by its high costs. Therefore, targeted therapy is
mainly used in cases after the failure of antihormonal
therapies, NSAIDs, and chemotherapy. Future research on
targeted therapy for DF should focus on the following
aspects. First, the mechanisms and targets of targeted
therapy should be further clarified through gene detection
to help provide individualized treatment to patients.
Second, the application of targeted therapy in preoperative
neoadjuvant therapy and postoperative adjuvant therapy
and in combination with other types of systemic therapies
should be explored. Third, the appropriate dosage of
various targeted drugs must be identified to improve the
patient’s tolerance without reducing the therapeutic effect.
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