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Abstract The biological relevance of cytokines is known for more than 20 years. Evidence suggests that
adipogenesis is one of the biological events involved in the regulation of cytokines, and pro-inflammatory cytokines
(e.g., TNFa and IL-1f) inhibit adipogenesis through various pathways. This inhibitory effect can constrain the
hyperplastic expandability of adipose tissues. Meanwhile, chronic low-grade inflammation is commonly observed
in obese populations. In some individuals, the impaired ability of adipose tissues to recruit new adipocytes to
adipose depots during overnutrition results in adipocyte hypertrophy, ectopic lipid accumulation, and insulin
resistance. Intervention studies showed that pro-inflammatory cytokine antagonists improve metabolism in
patients with metabolic syndrome. This review focuses on the cytokines currently known to regulate adipogenesis
under physiological and pathophysiological circumstances. Recent studies on how inhibited adipogenesis leads to
metabolic disorders were summarized. Although the interplay of cytokines and lipid metabolism is yet
incompletely understood, cytokines represent a class of potential therapeutic targets in the treatment of metabolic

disorders.
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Introduction

The adipose tissue has been recognized as a dynamic
component of the endocrine system and plays an important
role in the maintenance of energy balance and nutritional
homeostasis [1]. Mature adipocytes are the most distinctive
cell type of the adipose tissue and occupy more than 90%
of its volume [2]. Meanwhile, leukocytes, macrophages,
fibroblasts, endothelial cells, and preadipocytes are called
stromal-vascular cells. Each gram of adipose tissue
contains four to six million stromal—vascular cells, more
than half of which are immune cells [3]. Thus, adipose
tissues are known as a large source of macrophages and
other immune cells [4].

Precursor cells become lipid-laden mature adipocytes
via a two-step developmental process called adipogenesis.
A mesenchymal cell differentiates into preadipocyte,
which then undergoes terminal differentiation to become
a lipid-filled adipocyte. The fate of adipogenesis is
determined by cell-cell and cell-extracellular matrix
(ECM) interactions within the adipose tissue. These
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interactions rely on numerous factors including peroxi-
some proliferator-activated receptor v (PPARY), CCAAT/
enhancer-binding proteins (C/EBPs), Wingless and INT-1
proteins (Wnts), and cytokines. PPARy and C/EBPs are
considered essential factors in adipogenesis [1,5]. During
the early stages of adipogenesis, multiple inducers activate
PPARY expression. PPARy then activates C/EBPa
expression, and these two factors act in cooperation to
maintain adipogenesis [1].

Both adipocytes and immune cells participate in the
secretion of cytokines, which play a pivotal role in
adipogenesis. The secreted cytokines then affect appetite
regulation, energy metabolism, and immunological inter-
actions [3]. Table 1 summarizes the cytokines that regulate
adipogenesis. This review focuses on how cytokines
regulate adipogenesis and how dysregulated adipogenesis
leads to complications associated with inflammation-
mediated metabolic diseases, such as type 2 diabetes
mellitus (T2DM), cardiovascular diseases, and nonalco-
holic fatty liver disease (NAFLD).

Tumor necrosis factor a

Tumor necrosis factor o (TNFo) is primarily a pro-
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Table 1 Cytokines that regulate adipogenesis
. . Major sources
F:mz)lli,ir(l):s Symbol Cytokine name Prlrr:a;y Receptor of secretion in Model E;Cgeict)oznesis References
vt property adipose tissue pog
TNFa  Tumor necrosis Pro-inflamma- TNFR-1, Cells of the monocyte/ Human abdominal sub- | [6-9]
factor a tory TNFR-2 macrophage lineage, cutaneous preadipo-
including adipose cytes, 3T3-L1 cells,
tissue macrophages 3T3-F442A cells
1L-1 IL-1B Interleukin-1f Pro-inflamma- IL-IR1, Cells of the monocyte/ Human abdominal sub- | [10]
family tory IL-1R2 macrophage lineage cutaneous preadipo-
cytes
IL-18  Interleukin-18 Pro-inflamma- IL-18R Macrophages, DC, Unknown
tory epithelial cells,
endothelial cells
1L-33 Interleukin-33  Pro-inflamma- ST2 Necrotic cells, cells Wistar rat (pre)adipo- | [11,12]
tory under stress cytes, 3T3-L1 cells,
CS57BL/6 mouse (pre)-
adipocytes, BALB/c
mouse (pre)adipocytes
IL-1F6 Interleukin-1F6 Pro-inflamma- IL-1Rrp2 Stromal Human subcutaneous | [13]
tory vascular abdominal (pre)adipo-
fraction cytes, human SGBS
cells
IL-1Ra Interleukin-1Ra Anti-inflamma- IL-1R1 Stromal C57BL/6J mouse epidi- 1 [14]
tory vascular dymal (pre)adipocytes
fraction
1L-37 Interleukin Anti-inflamma- IL-18Ra Mature adipocytes and Human SGBS cells | [15]
tory vascular stromal cells
Gpl30 IL-6 Interleukin-6  Pro-inflamma- IL-6Ra Adipose tissue macro- Human subcutaneous | [16-18]
cytokines tory phages (pre)adipocytes, 3T3-
L1 cells, 3T3-F442A
cells
IL-11 Interleukin-11  Pro-inflamma- IL-11R Stromal Human long term mar- | [19,20]
tory vascular cells row cultures, 3T3-L1
cells
OSM Oncostatin M Pro-inflamma- Type 1 OSM 3T3-L1 cells, mouse | [21]
tory receptor, type 2 embryonic fibroblasts
OSM receptor
NP Neuropoietin ~ ? CNTFRa 3T3-L1 cells l [22]
1L-4 Interleukin-4  Pro-inflamma- IL-4R Lymphocytes, 3T3-L1 cells ! [23]
tory/ anti- basophils and mast cells
inflammatory
IL-10 Interleukin-10 ~ Anti-inflamma- IL-10R T helper cells, mono- Unknown
tory cytes/macrophages,
dendritic cells,
B cells
1L-15 Interleukin-15 Pro-inflamma- IL-15Ra Adipocytes and 3T3-L1 cells 1 [24]
tory stromal
vascular cells
1L-7 Interleukin-7  Pro-inflamma- IL-7R Stromal Mouse epididymal T [25]
tory vascular cells (pre)adipocytes
IL-17  Interleukin-17 Pro-inflamma- IL-17R T helper cells 3T3-L1 cells | [26-28]
tory
IL-34  Interleukin-34 Pro-inflamma- CSF-1 receptor Adipocytes and Human subcutaneous 1 [29]
tory stromal vascular cells  preadipocytes
Interferons IFN-o  Interferon-a Pro-inflamma- Type I inter-  Fibroblasts and 3T3-L1 cells; human | [30]
tory feron receptors monocytes primary (pre)adipocytes
IFN-y  Interferon-y Pro-inflamma- Type Il inter- T helper cells Mouse mesenchymal |1 [31,32]
tory feron receptors stem cells, 3T3-L1

cells, primary mouse
(pre)adipocytes, human
visceral (pre)adipocytes
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(Continued)
. . Major sources
Famlly' of Symbol Cytokine name Primary Receptor of secretion in Model Ef&?Ct O References
cytokines property . . adipogenesis
adipose tissue
MCP-1 Monocyte Pro-inflamma- CCR2 Adipocytes, macro- 3T3-L1 cells, murine 1 [33,34]

(CCL-2) chemoattrac-
tant protein-1
(chemokine
(C-C motif)
ligand 2)

tory

phages and
endothelial cells

tissue engineering
model

inflammatory cytokine that plays a key role in the
regulation of inflammatory response, cell differentiation,
cell proliferation, and apoptosis [38,39]. TNFa binds to
two distinct receptors, namely, TNFa receptors (TNFR)
type 1 or 2 (Fig.1) [40]. Upon binding to either receptor,
TNFa activates NF-kB and MAPK (JNK, ERK, and p38)
signaling [41]. In adipose tissues, the majority of TNFa is
produced by stromal-vascular cells and adipose tissue
macrophages (ATMs) [4,42]. Furthermore, TNFo contri-
butes to insulin resistance in obesity [43—46], and its
circulating levels are elevated in individuals with obesity
or T2DM [47,48]. TNFoa treatment in 3T3-L1 cells and rats
also induces insulin resistance [49,50]. Moreover, block-
age of TNFo using null mutation of TNFa gene and its two
receptors genes improves insulin sensitivity in ob/ob
rodent model [51].

TNFa is a potent inhibitor of adipogenesis and blocks
adipocyte differentiation mainly by activating TNFR1 [8],

TNFR

which stimulates the NF-kB, ERK1/2 and JNK signaling
pathways [8,9,52]. The differentiation of 3T3-L1 cells is
restored once NF-kB and JNK signaling are blocked by
specific inhibitors [9]. TNFa inhibits adipogenesis through
multiple mechanisms, including the activation of Wnt/B-
catenin/TCF dependent pathway and inhibition of tran-
scription factors, such as PPARy and C/EBPs [53-55].

In 3T3-L1 cells and mouse models, the inhibition of
PPARY by TNFa involves thiazolidinediones, a class of
PPARY agonists that restore adipogenesis [53,54]. The
TNFa-induced blockage of adipogenesis through PPARY
inhibition may act at the transcriptional [56,57] and post-
translational levels. In 3T3-L1 adipocytes, treatment with
TNFo enhances the activities of JNK1/2 and p38 SAP
kinase. Activated JNK1/2 and p38 SAP kinase promotes
the c-Jun and ATF2 activity, thereby increasing Map4k4
expression, which negatively regulates PPARY expression
and adipogenesis in 3T3-L1 cells [7,58]. TNFa may induce

PPARy

) (it bt

l
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C/EBPoc

Adipocyte genes

!

Adipogenesis
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Fig. 1 TNFa signaling regulates adipogenesis. Signaling of TNFa through TNFR leads to activation of multiple pathways including NF-
kB, p38, INK, and ERK1/2. Wnt/B-catenin/TCF dependent pathway and numerous microRNAs are also activated. The activation of these
pathways results in adipogenesis inhibition and suppression of PPARy and C/EBPa expression and activity, which are important

transcriptional regulators of adipogenesis.
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cleavage of PPARY by activating the caspase cascade,
which disrupts the nuclear localization of PPARYy [59].

TNFa also inhibits adipogenesis by stimulating other
negative physiological regulators, such as Wnt/B-catenin
signaling. Wnt/B-catenin pathway downregulates PPARYy
and C/EBPa expression and inhibits adipocyte differentia-
tion [55]. In animal models, TNFa activates Wnt/B-
catenin/T-cell factor 4 pathways by stimulating TNFR1-
mediated death domain signals [6]. Meanwhile, TNFa
deficiency downregulates Wnt10b and B-catenin, upregu-
lates adipocyte-specific genes in epididymal white adipose
tissues, and promotes significant body weight gain in chow
diet mice [60].

Numerous microRNAs regulate biological processes in
adipose tissues, especially adipogenesis [61] (Table 2).
Recent studies have shown that microRNAs regulate
adipogenesis in different stages and may act as down-
stream factors of TNFa. Price ef al. found that the levels of
microRNAs are altered in adipose tissues during the
development of obesity and insulin resistance [62]. Certain
microRNAs, including miR-221, miR-155, miR-103, miR-
143, miR-335, miR-27, has-miR-26b and miR-378, in
adipose tissues are regulated by TNFa [35-37,63—67]. In
cultured human preadipocytes, miR-221 expression is
suppressed by TNFa [35]. By contrast, human adipocytes
transfected with miR-221 express increased level of
proteins involved in lipid metabolism, including PPARYy
[35]. Despite these facts, how TNFa, adipogenesis, and
related microRNAs interact with one another remains
unknown, although several mechanisms have been pro-
posed in vitro. In 3T3-L1 cells, Liu et al. demonstrated that
TNFa upregulates miR-155 and miR-27 by activating the
NF-kB pathway [36]. miR-155 and miR-27 expression
both inhibit early adipogenic transcription factors, such as
C/EBPB and cAMP-response element binding protein
(CREB), by directly targeting their 3' untranslated regions
(UTRs) [36,64]. TNFo downregulates miR-103 and miR-
143, which accelerate adipogenesis [37]. These findings
show that miRNAs act as mediators in the regulation of
adipogenesis and insulin sensitivity via TNFa and give rise
to the idea of using microRNA targeting as a novel
therapeutic strategy for obesity and T2DM treatment.

In general, current studies show that TNFa inhibits

Table 2 Regulatory effect of microRNAs on adipogenesis

adipogenesis through multiple mechanisms, but the
importance of each mechanism is not fully understood.
Integration of these mechanisms should be considered
when investigating the regulation of adipogenesis by
TNFao.

IL-1 family

The IL-1 family contains 11 members playing important
roles in the regulation of immunity and inflammatory
responses. Among these members, some are pro-inflam-
matory cytokines, such as IL-1p, IL-18, IL-1F6 (IL-36a),
whereas others are anti-inflammatory cytokines, such as
IL1Ra and IL-37 [68]. IL-1P is a well-known inhibitor of
adipogenesis [69]. It is mainly produced by THP-1
macrophages in adipose tissues and, to a lesser extent, in
adipocytes [70]. IL-1p binds to type 1 IL-1 receptor to
activate intracellular signaling including NF-kB pathway,
which inhibits adipogenesis (Fig.2) [71,72]. In obese mice
models, IL-1p is upregulated in adipose tissue [70] and is
found to inhibit adipocyte differentiation and fat accumu-
lation [10] at the physiological concentration of 500 pg/mL
[10]. Additionally, immunodepleting IL-1p does not affect
the anti-adipogenic potential of macrophages [10], indicat-
ing that this cells synthesize other factors that also possess
anti-adipogenic activity. Interestingly, previous studies
showed that the knockout of IL-1Ra, the natural inhibitor
of IL-1P, results in increased food intake, reduced body
weight, and reduced adipogenesis in mice [14]. Addition-
ally, IL-1Ra™" mice showed decreased levels of leptin, IL-
1B, IL-6, and TNFa. These results suggest that IL-1Ra and
IL-1pB, along with other unknown factors, form a network
that regulates energy expenditure and adipogenesis.

IL-18 is member of the IL-1 family and is a pro-
inflammatory cytokine. In human adipose tissues, stromal—
vascular cells are the main sources of IL-18 [73], with
higher levels of IL-18 in visceral adipose tissue compared
with subcutaneous adipose tissue [75]. The circulating
levels of IL-18 are elevated in obese subjects [73],
although these levels are restored to normal after bariatric
surgery [74]. Paradoxically, IL-18 knockout mice show
increased body weight and insulin resistance, whereas

The impact of TNFa

Name Effect on adipogenesis Targets on microRNAS References
miR-221 1 PPARY ! [35]
miR-155 ! C/EBPB, CREB 1 [36]
miR-27 ! C/EBPB, CREB 1 [36]
miR-103 1 - ! [37]
miR-143 1 - ! [37]
has-miR-26b 1 PTEN ! [37]
miR-378 i - 1 [37]
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Fig. 2 IL-1p signaling affects adipogenesis. IL-1P is mainly produced by macrophages in adipose tissue, with small amounts being
synthesized by adipocytes. It binds to type 1 IL-1 receptor to activate intracellular signaling including NF-kB pathway, which inhibits

adipogenesis.

administration of recombinant IL-18 reduces food intake
and body weight gain in wild type mice [76,77]. IL-18 also
increases insulin sensitivity in mice and 3T3 cells [76,78]
(reviewed in [79]). Nirpl knockout mice, which are IL-18
deficient, shows increased adipose tissue mass, adipocyte
size, and lipid deposition in their livers [80]. IL-18 signals
through STAT3 and activates AMPK in muscles [81],
which elicit positive metabolic effects by enhancing fatty
acid oxidation and reducing obesity [81]. The effect of IL-
18 on adipogenesis and lipid metabolism must be further
investigated.

Meanwhile, IL-33 provides protection against obesity-
induced inflammation and insulin resistance in mouse
models and humans [70,82]. IL-33 is abundant in human
adipose tissues, including adipocytes, endothelial cells,
and fibroblast-like reticular cells [83—-85]. It potently
induces type 2 immunity and inflammation, which are
mediated by IL-4, IL-5, IL-9, and IL-13. Hence, 1L.-33
inhibits the infiltration of pro-inflammatory immune cells
into the adipose tissue by maintaining the number and
functions of ST2* cells and M2 macrophages [12,86]. ST2
is the receptor for IL-33 and is highly expressed in group 2
innate lymphoid cells (ILC2s) and T helper 2 (Th2) cells
[11]. In rodent models, IL-33 or ST2 deficiency causes
aggravated obesity and insulin resistance and decreased
ILC2s, eosinophils, Tregs, and M2 polarized macrophages
in white adipose tissue [87]. In contrast, administration of
recombinant IL-33 into diabetic (ob/ob) mice ameliorates
obesity and diabetes mellitus [12]. Moreover, IL-33 may
influence adipogenesis by targeting adipocyte precursors.

An in vitro study shows that IL-33 treatment reduces
expression of adipogenic genes and inhibits aldosterone-
induced adipose differentiation and inflammation [11].
Further studies are needed to elucidate the pathway by
which IL-33 influences differentiation of adipocyte
precursors.

IL-37 acts as an anti-inflammatory cytokine. In humans,
elevated IL-37 mRNA levels in adipose tissues are
positively correlated with increased insulin sensitivity
and decreased inflammatory levels [15]. Moreover, IL-37
directly activates AMPK signaling that reduces adipocyte
differentiation in SGBS cells [15]. These results indicate
that IL-37 affects adipogenesis and insulin sensitivity by
regulating the inflammatory response and by directly
targeting preadipocytes.

Gp130 cytokines

The IL-6 family or gp130 cytokines, contains multiple
members, including IL-6, IL-11, IL-27, ciliary neuro-
trophic factor (CNTF), cardiotrophin-1 (CT-1), cardiotro-
phin-like cytokine (CLC), leukemia inhibitory factor
(LIF), oncostatin M (OSM), and neuropoietin (NP) [88].
All members of gpl130 cytokines form homodimers or
heterodimers with gp130 receptors to facilitate signaling
transduction. Most gp130 cytokines bind to their specific
a-receptors (IL-6Ra); this induces dimerization of f-
receptors before intracellular signaling [88].

Binding of IL-6 to IL-6Ra leads to the generation of a
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receptor complex and signal transmission into cells. The
intracellular signaling process is initiated by the recruit-
ment and activation of Janus-activated kinase/signal
transducer and activator of transcription factor (JAK/
STAT) molecules, which then activate the transcription
factors of various genes [89]. Meanwhile, soluble IL-6Ra
(sIL-6Ra) exists apart from membrane-bound IL-6Ra [90].
IL-6 can bind to sIL-6Ra to form a ligand/receptor
complex [90]. The complex transduces signals in cells
with membrane-bound gpl130Rp without the need of a
transmembrane IL-6Ra [90]. This process is known as
“trans-signaling.” IL-6 is pro-inflammatory when it trans-
signals but has beneficial effects on energy metabolism
when it signals via the transmembrane IL-6Ra [90]. IL-6 is
recognized as an important cytokine in the chronic
inflammatory state of obesity. During obesity, IL-6
production in adipose tissues is consistently elevated,
especially in insulin resistance populations [16,91]. This
condition is associated with reduced subcutaneous adipo-
genesis capacity, decreased PPARy and C/EBPa expres-
sion, and increased GATA3 transcription [16].
Accordingly, treatment with 20 ng/mL IL-6 causes
diminished rate of adipogenesis in preadipocytes from
insulin-sensitive and insulin-resistant subjects [16]. Drugs,
such as chito-oligosaccharide and D-dopachrome tauto-
merase inhibit adipogenesis by inducing IL-6 expression in
preadipocytes [18,92].

The effect of IL-6 on insulin sensitivity is still debatable.
In 3T3-F442A and 3T3-L1 cells, long-term (8 days)
treatment with IL-6 reduces insulin-induced lipogenesis
and glucose transportation [17]. Moreover, Carey et al.
reported that IL-6 reduces obesity-induced insulin resis-
tance in muscle cells by activating AMPK [93]. In insulin
resistant, obese IL-6" mice [94,95], intracerebroventricu-
lar, but not intraperitoneal IL-6 treatment increases energy
expenditure [94]. These results suggest that IL-6 has
different effects on energy metabolism in different body
compartments, with centrally acting IL-6 exerting anti-
obesity effects in rodents [94]. Different IL-6 dosage, cell
types or animal models may have contributed to the
inconsistent results [90].

The effects of other Gp130 cytokines on adipogenesis
and insulin resistance are not fully elucidated. In earlier
studies, IL-11 was found to inhibit preadipocyte differ-
entiation and lipid accumulation in human long-term bone
marrow cultures [19]. Though CNTF shows positive
effects on adipocyte metabolism [96], there is no direct
evidence for the influence of CNTF on adipogenesis. NP
and CNTF have nearly similar structures and functions
[97]. In cultured 3T3-L1 pre-adipocytes, NP inhibits
adipogenesis by reducing the expression of PPARYy and
adiponectin [22]. Moreover, NP increases insulin resis-
tance by inhibiting insulin signaling proteins such as IRS-1

and Akt [22]. In general, the effects of IL-11, CNTF, and
NP on adipogenesis only draw minimal attention. Future
studies will be needed to assess the effects of gpl30
cytokines on adipogenesis and metabolic disorders.

IL-15, IL-4, and IL-10

IL-15 is a member of a widely expressed immunoregula-
tory cytokine family [98] and mainly acts as a pro-
inflammatory cytokine [98]. IL-15 can activate multiple
immune cells, including NK cells, and promote the release
of pro-inflammatory cytokines [98]. IL-15 KO mice show
decreased expression of pro-inflammatory mediators, such
as TNFa, IL-6, and Ccl-5 in their adipose tissues [99]. The
administration of IL-15 in animal models reduces body
weight and amount of white adipose tissues [100-102].
These reductions are partially due to decreased lipogenesis
and VLDL triacylglycerol uptake [100]. In 3T3-L1 cells,
IL-15 inhibits adipogenesis by upregulating a-calcineurin
expression, a calcium-dependent serine/threonine phos-
phatase, and mediates the calcium-dependent inhibition of
adipocyte differentiation [24,103]. IL-15 KO mice show
decreased accumulation of fat in the white adipose tissues
and increased lipid utilization via adaptive thermogenesis
[99]. In humans, subcutaneous adipose tissue of obese
individuals contains more IL-15 than that of lean
individuals. There is also a significant positive correlation
between IL-15 and resting lipolysis in subcutaneous
adipose tissue [104]. This result indicates that IL-15
partially enhances lipolysis of subcutaneous fat. More
studies are needed to fully illustrate the effect of IL-15 on
adipose tissue metabolism.

IL-4 can be secreted by lymphocytes, basophils, and
mast cells [105]. As a Th2 cytokine, IL-4 plays an
important role in the pathogenesis of asthma [106].
However, in mice and human psoriasis, IL-4 attenuates
TH17 cell-mediated inflammation by selectively suppres-
sing IL-23 production in antigen-presenting cells [107]. It
also acts as an anti-inflammatory cytokine in systemic
sclerosis [108]. Therefore IL-4 can act as either a pro-
inflammatory or an anti-inflammatory cytokine in various
diseases. IL-4 inhibits adipogenesis by downregulating
PPARY and C/EBPa expression in 3T3-L1 cells [23]. It
also inhibits adipogenesis at the early phase of 3T3-L1 cell
differentiation. This effect is not observed in STAT6
knockouts, indicating that the anti-adipogenesis effect of
IL-4 is achieved through the STAT6 pathway [23].

IL-10 is secreted by multiple cell types including T-
helper cells (THs), monocytes/macrophages, dendritic
cells, and B cells. IL-10 suppresses inflammation through
various mechanisms. The effect of IL-10 on lipid and
glucose metabolism is not well studied. In adipose tissue
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environments, stable overexpression of IL-10 in the
macrophage cell line promotes a macrophage phenotypic
switch from M1 to M2 phenotype [109]. This result
indicates that IL-10 may improve insulin resistance and
metabolic syndrome by suppressing inflammation.

IL-7, IL-17, and IL-34t

IL-17 is a pro-inflammatory cytokine that plays a key role
in anti-microbial host defense response and autoimmune
diseases [110]. IL-17 signals through a multimeric receptor
complex composed of IL-17RA and IL-17RC [26]. In
adipose tissue, IL-17 is predominantly produced by yo T
cells [28]. Obesity induces the proliferation of IL-17 that
produces adipogenesis-inhibiting Th17 cells [26]. 1L-17
and IL-17RA-deficient mice exhibit increased body
weight, and young IL-17 knockout mice show enhanced
glucose tolerance and insulin sensitivity [28]. 3T3-L1
preadipocytes show inhibited adipogenesis after IL-17A or
IL-17F treatment [111]. A mechanistic study revealed that
IL-17 alters adipogenesis by regulating the expression of
Kriippel-like family (KLF) members, such as KLFIS5,
KLF2, and KLF3, and blocking PPARy and C/EBPa [27].
Furthermore, IL-17A induces COX-2 production, which
then activates prostaglandin E2 (PGE2) expression in
mesenchymal stem cells derived from human bone marrow
(hBM-MSCs) [112]. This process inhibits adipocyte
differentiation [112].

IL-7 is a pro-inflammatory cytokine associated with the
survival, proliferation, and maturation of B lymphocytes
and T lymphocytes [113]. Elevated IL-7 expression is
observed in obese populations [114]. IL-7-receptor-
deficient (IL-7r KO) mice exhibit decreased body weight,
reduced visceral fat, and decreased levels of PPARY2 and
C/EBPa [25], and IL-7r KO mice show reduced pro-
inflammatory cytokine production and macrophage infil-
tration in white adipose tissue and has improved glucose
tolerance and insulin sensitivity [25].

IL-34 acts as an alternative ligand for colony-stimulating
factor-1 (CSF-1) receptor [115]. IL-34 and CSF-1 are
important regulatory factors of monocyte differentiation,
proliferation, and survival [115-117]. IL-34 levels in
adipose tissues are significantly elevated in obese people
with expression levels being markedly elevated during
adipogenesis [29]. Recombinant human (rh) IL-34 pro-
motes lipid accumulation and improves insulin sensitivity
at 100 ng/mg in human isolated adipocytes [29].

Interferons

Interferons (IFNs) represent a family of multifunctional
immunoregulatory cytokines which is widely used in the
treatment of cancer and virus infection [118,119]. Its mode

of action usually involves binding receptors and activating
STAT signaling complexes [120]. IFNs influence insulin
sensitivity, glucose tolerance, and lipid metabolism [121].

IFN-y knockout mice exhibit systemic inflammation,
decreased size of VAT adipocytes, and enhanced insulin
sensitivity, despite the fact that IFN-vy is a pro-inflamma-
tory cytokine [122]. Previous studies on MSCs and 3T3-L1
cells demonstrated that IFN-y treatment considerably
reduces the rates of adipocyte differentiation and lipid
deposition [31,123]. The adipogenic marker, PPARY, is
downregulated in MSCs subjected to IFN-y treatment [31].
JAK/STAT signaling pathways mediate the inhibitory
effect of interferons [30,124]. In another study, it was
found that IFN-y reduces adipogenesis in 3T3-L1 cells by
directly inhibiting the activation of hedgehog signaling
[32]. In adipocytes, IFN-a inhibits PPARy, C/EBPp, and
C/EBPa [30] and induces apoptosis in adipose tissue cells
[125]. Nevertheless, the importance of JAK/STAT signal-
ing and hedgehog signaling pathways that mediate IFN
must be further studied.

Monocyte chemotactic protein-1

Monocyte chemotactic protein-1 (MCP-1) is a member of
the CC chemokine family and a potent chemotactic factor
for monocytes. It is expressed by various cell types,
including adipocytes, macrophages, and endothelial cells
[126]. CC chemokine receptors 2 (CCR2) is the receptor
for MCP-1. In severely obese subjects, MCP-1 protein
levels are higher in abdominal fat than in subcutaneous fat
and the rate of macrophage infiltration into abdominal
adipose tissue increases [127]. In human primary adipo-
cytes, chronic treatment of hypoxic adipocytes with TNFa.
resulted in a higher secretion of the chemokines, MCP-1
and IL-8, while attenuated TNFa-induced signaling caused
by reduced expression of TNFR1 or Tacrolimus (FK506,
an immunosuppressor) results in reduced MCP1 secretion
[128,129].

MCP-1 has multiple effects on adipose tissue inflamma-
tion, energy metabolism, and obesity. In mice modela,
treatment with MCP-1 results in insulin resistance [130]. In
mice fed with a high-fat diet, Ccr2 deficiency or treatment
with CCR2 antagonist reduces macrophage accumulation
and inflammation in adipose tissues and improves insulin
sensitivity [131]. In 3T3-L1 cells, the administration of
MCP-1 promotes the expression of the C/EBP family and
PPARYy. The adipogenic potential of MCP-1 is not
associated with PPARYy expression [33]. MCP-1 treatment
also increases adipose tissue mass iz vivo in a murine tissue
engineering model [34]. The effect of MCP-1 occur via the
induction of MCP-1 induced protein (MCPIP), which
promotes adipogenesis via oxidative stress, endoplasmic
reticulum (ER) stress, and autophagy [132].
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Different adipogenesis processes
in humans and mice

Owing to the limitations of human clinical trials, mouse
models are frequently used in the investigation of
adipogenesis. Previous studies have shown that PPARY
and C/EBPa are key transcriptional regulators of both
human and mouse adipogenesis [133]. Genome wide study
of the binding sites of these two regulators shows that the
overall regulatory regime of PPARy and C/EBPa between
human and mouse adipocytes is highly conserved,
including their potential direct cooperativity by binding
to adjacent sites [133]. Although the functional targets of
the transcription factors important in adipogenesis are
conserved, most binding sites and regulators are species-
specific [133—135]. LIM domain only 3 (LMO3) is a
human visceral-fat-specific and glucocorticoids-dependent
positive regulator of adipogenesis [135]. These findings
may partially explain the difference between the results
from mouse models and human trials. The mechanisms by
which cytokines influence the species-specific regulators
of adipogenesis remain unknown and whether this
influence occur requires further investigation.

Crosstalk between cytokines and other
pathways important for metabolism

Cytokines are associated with other essential molecules for
metabolism, particularly leptin, resistin, and adiponectin.
On the one hand, cytokines influence the secretion of these
molecules, thereby influencing metabolism. On the other
hand, these molecules can either promote or inhibit the
secretion of other cytokines, therefore regulating the
inflammatory states of the human body.

Leptin is the product of the obese (ob) gene. Several
leptin receptor (LEPR) isoforms are present in humans
[136]. Leptin binds to the long form of LEPR and activates
the JAK/STAT signaling pathway [136]. Ob/ob mice that
lack leptin exhibit hyperphagia, obesity, and insulin
resistance [137]. In patients with lipodystrophy, leptin
improves glycemic control and decreases triglyceride
levels [138]. Previous studies regarding the expression of
leptin within the inflammatory models of human-cultured
adipocytes produced different results. In 3T3-L1 cells,
human bone marrow adipocytes, adipocytes from sub-
cutaneous white adipose tissue, and omental adipocytes
from morbidly obese people, TNFa significantly decreases
leptin expression [139—143]. However, a study shows that
TNFa stimulates leptin expression in adipocytes from
human omental adipose tissue. An in vivo study showed
that TNFa also induces leptin expression in Syrian
hamsters and C57BL/6 mice [144,145]. These different

results may be explained by the use of different cell
models, locality of adipose tissue, and duration and dose of
exposure to the cytokines [139]. The different results from
in vitro and in vivo studies also indicate that pro-
inflammatory cytokines may regulate leptin secretion
through other means apart from directly binding to the
receptors of target cells.

In discrete mouse colon cells, leptin upregulates pro-
inflammatory cytokines, such as IL-6 and IL-1B [146] and
promotes the activation and proliferation of circulating
monocytes, thereby inducing IL-1, TNFa, and IL-6
production [136]. Furthermore, leptin enhances IL-18
secretion in cultured human THP-1 monocytes through
caspase-1 activation [147]. It also polarizes T helper cell
subsets towards the TH1 phenotype that secretes IFN-y
[136].

Adiponectin is an adipocyte-specific secretory protein
[148]. Adiponectin signals through adiponectin receptors
(AdipoRs). Adiponectin stimulates adipogenesis, attenu-
ates inflammation, and regulates rates of lipolysis and fatty
acid oxidation [148]. There are opposing effects of
adiponectin with TNFo on lipid metabolism and inflam-
mation (reviewed in [149,150]). Adiponectin is negatively
regulated by TNFo and IL-6 [149]. In turn, TNFa
production is negatively regulated by adiponectin [151].
Adiponectin also induces the production of anti-inflam-
matory cytokines like IL-10 and IL-Ra [149].

Resistin is also an adipokine and has been associated
with inflammatory response. Resistin gets its name from its
resistance to insulin function. In adipose tissues, resistin is
predominantly expressed in the macrophages [152]. In rat
pancreatic acinar AR42J cells, it stimulates TNFa and IL-6
production through NF-kB activation [152].

Adipogenesis, inflammation, and metabolic
disorder

Adipose tissue expansion can be accomplished by
increasing the volume of each adipocyte (hypertrophy) or
recruiting new adipocytes from precursors (hyperplasia)
[2]. In adults, adipose tissue expands mainly by hyper-
trophy in spite of only ~10% adipocyte turnover annually
[153]. Although obesity is closely related to T2DM,
approximately 30% of the obese population do not show
insulin resistance and are considered as metabolic healthy
obese [154]. The metabolic consequences of obesity are
influenced by the depots of fat and mode of adipose tissue
expansion (reviewed in [2]). The storage of excess energy
through lipid accumulation in subcutaneous adipose
tissues is beneficial to metabolic health [155]. Preadipo-
cytes from subcutaneous adipose depots exhibit greater
potential for proliferation and adipogenesis than those
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from visceral depots [156—158]. Moreover, TNFa and IL-6
levels in subcutaneous fat are much lower than those in
visceral fat [155].

Low grade chronic inflammatory state commonly exists
in obese populations. Compared with normal adipocytes,
hypertrophic adipocytes secrete more free fatty acids
(FFAs) and adipokines (for example, MCP-1, TNFa, IL-
1B, and IL-6), and recruit more pro-inflammatory M1-like
macrophages and other immune cells [157,159]. This
effect is caused by multiple factors, including hypoxia, ER
stress in adipocytes, activation of Toll-like receptors
(TLRs) by FFAs, and cell apoptosis [160-163].

Although acute inflammatory response promotes ECM-
remodeling and angiogenesis, which benefits adipogenesis
[164], the chronic inflammation of adipose tissue has been
considered closely associated with insulin resistance and
inhibition of adipogenesis [165]. During the development
of obesity, the adipogenesis of subcutaneous adipose
tissues can be inhibited by pro-inflammatory cytokines,
such as TNFa, IL-1B, and IL-6. These pro-inflammatory
cytokines are produced by stromal vascular cells, including
adipose tissue macrophages and adipocytes [4,70]. As a
result, adipocyte turnover and adipose tissue expansion are
blocked by these pro-inflammatory cytokines [165]. The
abdominal subcutaneous tissue of obese individuals is
characterized by decreased number of pre-adipocytes,
enlarged mature adipocytes, and elevated MAP4K4 levels
[7,166]. MAP4K4, which inhibits adipogenesis, can be
induced by TNFa [7,166]. When the hyperplastic expand-
ability of subcutaneous adipose tissues is constrained by
chronic inflammation, excess energy is stored by the
hypertrophy of adipocytes and accumulation of triglycer-
ide, which occur in the liver, muscles, myocardium, and
perivisceral depots and will induce insulin resistance and
cardiovascular diseases [158,167]. Excess visceral/intra-
abdominal fat is considered as an important marker of
ectopic storage of fat [168,169]. Moreover, increased
abdominal fat is positively associated with increased risk
of T2DM and cardiovascular disease [170]. Inflammation,
constrain of subcutaneous fat hyperplastic expandability,
hypertrophy of adipocytes, accumulation of visceral fat,
and ectopic fat storage are closely associated, and their
combined effects exacerbate the comorbidities of obesity
[171,172].

Convergent evidence supports that pro-inflammatory
cytokine antagonists improve glucose and lipid metabo-
lism in T2DM patients. The inhibitory effect of TNFa on
lipid accumulation in adipocytes is blocked by the
inhibitors of NF-kB and IkBa [173]. In clinical studies
focused on rheumatoid arthritis (RA) and psoriasis
patients, treatment with TNFa antagonists, such as
etanercept, infliximab, and adalimumab, improves
response to insulin [174-176]. A retrospective cohort
study published in 2011 showed that TNF inhibitor or
hydroxychloroquine treatment significantly reduces the

risk of DM in patients with RA and psoriasis compared
with using other non-biological disease modifying anti-
rheumatic drugs (DMARDSs) [177]. In Crohn’s disease
(CD) patients, infliximab maintenance therapy has no
adverse effect on lipid metabolism and is accompanied by
a decrease in blood glucose and HbAlc concentrations
[178]. Nevertheless, the effects of anti-TNFa therapy on
patients with inflammatory diseases and patients with
metabolic syndrome but without overt inflammatory
disease must be determined. A mechanism study reveals
that processing of IL-1p requires cleavage of pro IL-1 by
caspase-1, which is regulated by nucleotide-binding
oligomerization domain-like receptor, pyrin domain-con-
taining (NLRP3) inflammasome [179]. Caspase-1 defi-
ciency results in increased insulin sensitivity in mice and
increases the production of metabolically active adipo-
cytes; furthermore, treatment with caspase-1 inhibitors
significantly improves the insulin sensitivity of obese mice
[180]. According to a review by Donath, several IL-1
inhibitors, such as IL-1 receptor antagonists (anakinra) and
IL-1B-specific antibodies (canakinumab), improve T2DM
status with good tolerance and no severe adverse effect
[181]. Canakinumab, an IL-1B-specific monoclonal anti-
body, is the first and only drug that selectively targets
inflammation and significantly reduces cardiovascular risk
in patients with CVA history. Canakinumab, in combina-
tion with standard of care therapy, reduces cardiovascular
risk in people with CVA history and inflammatory
atherosclerosis (hsCRP level = 2 mg/L) during the 3.8
years of median follow-up time (Phase III Canakinumab
Anti-inflammatory Thrombosis Outcomes Study-
NCTO01327846. https://www.novartis.com/news/media-
releases/Novartis-phase-iii-study-shows-acz885-canakinu-
mab-reduces-cardiovascular-risk). Although lipid and
lipid-associated cardiovascular risk markers improve
after treatment with TNFa antagonists (adalimumab) and
IL-6 antagonists (tocilizumab), the clinical significance is
still unclear and needs further study [182].

For T2DM patients, hyperlipidemia is the highest risk
factor for atherosclerosis [183,184]. Moreover, given that
more than 60% of T2DM patients die of cardiovascular
complications [185] and 70% suffer from NAFLD
[186,187], the management of lipid metabolism can be a
prior consideration. As complications of T2DM such as
atherosclerosis and NASH progress with time, reducing
blood glucose per se may not reverse these diseases, and
drugs targeting lipid metabolism may be more effective in
managing T2DM complications. T2DM patients can
benefit from statins, which can significantly reduce the
risk of ASCVD [188]. However, statins increases insulin
resistance and diabetes risks by inhibiting the secretion of
insulin and interfering with the insulin signaling pathway
(reviewed in [188]). Therefore, risk—benefit assessment
and patient preference should be considered prior to the
administration of statin for ASCVD therapy [189].
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Conclusions

We summarized the cytokines that influence adipogenesis.
Low grade chronic inflammation commonly exists in
obese populations. In T2DM, obesity and insulin resis-
tance result in the persistent production of pro-inflamma-
tory cytokines, such as TNFa, IL-1B, and IL-6, which
typically inhibit adipogenesis. During overnutrition, the
restricted recruitment of new adipocytes may result in
adipocyte hypertrophy, ectopic fat accumulation, and
insulin resistance, which in turn may lead to atherosclero-
sis and NAFLD. Moreover, pro-inflammatory cytokine
antagonists, such as infliximab and etanercept, improve
glucose and lipid metabolism in T2DM patients [174—
176]. Future investigations on the relationship between
cytokines and adipogenesis are expected to lead to the
improvement of management strategies for T2DM and
other comorbidities of obesity.
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