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Abstract As a promising candidate seed cell type in regenerative medicine, mesenchymal stem cells (MSCs) have
attracted considerable attention. The unique capacity of MSCs to exert a regulatory effect on immunity in an
autologous/allergenic manner makes them an attractive therapeutic cell type for immune disorders. In this review,
we discussed the current knowledge of and advances in MSCs, including its basic biological properties, i.e.,
multilineage differentiation, secretome, and immunomodulation. Specifically, on the basis of our previous work,
we proposed three new concepts of MSCs, i.e., “subtotipotent stem cell” hypothesis, MSC system, and “Yin and
Yang” balance of MSC regulation, which may bring new insights into our understanding of MSCs. Furthermore,
we analyzed data from the Clinical Trials database (http://clinicaltrials.gov) on registered clinical trials using
MSC:s to treat a variety of immune diseases, such as graft-versus-host disease, systemic lupus erythematosus, and
multiple sclerosis. In addition, we highlighted MSC clinical trials in China and discussed the challenges and future

directions in the field of MSC clinical application.
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Introduction

Over the past 10 years, few cells have attracted consider-
able attention from scientists and physicians as mesench-
ymal stem cells (MSCs), a type of adult stem cells first
discovered in 1968 by Friedenstein and colleagues. They
observed an adherent fibroblast-like population in the bone
marrow that is capable of differentiating into adipocytes,
chondrocytes, and osteocytes [1]. In 1991, Caplan et al.
called these cells “mesenchymal stem cells.” Since then,
the term “MSC” has become popular. Caplan’s work
showed that MSCs were involved in bone and cartilage
turnover and that the surrounding conditions played a
pivotal role in MSC differentiation. They also indicated
that the study of MSCs, whatever its origin, paves the road
for the emergence of a novel therapeutic strategy of self-
cell repair [2]. Subsequently, the multilineage potential of
MSC:s to differentiate into the adipocytic, chondrocytic, or
osteocytic lineages was definitively demonstrated [3].
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Since then, MSCs have been intensively investigated.
However, different laboratories use different methods to
culture MSCs, which makes it difficult to compare
experimental results. Thus, in 2006, the Mesenchymal
and Tissue Stem Cell Committee of the International
Society for Cellular Therapy proposed a set of standards to
define human MSCs for laboratory-based scientific
investigations and preclinical studies [4]: (1) MSCs must
be plastic-adherent when maintained in standard culture
conditions using tissue culture flasks. (2) Of the MSC
population, = 95% must express CD105, CD73, and
CD90, as measured by flow cytometry. In addition, these
cells must lack the expression ( < 2% positive) of CD45,
CD34, CD14 or CD11b, CD79a or CD19, and HLA class
II. (3) The cells must be able to differentiate into
osteoblasts, adipocytes, and chondroblasts under standard
in vitro differentiating conditions [4] (Table 1).

MSCs could be isolated from almost every tissue type,
including bone marrow, adipose tissue, placenta, umbilical
cord (UC) blood, amniotic fluid, and liver. Currently, the
main source of MSCs for most preclinical and clinical
studies is bone marrow. Although only approximately
0.01% to 0.001% of the total nucleated cells within
isolated bone marrow aspirates are MSCs, they can be
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Table 1 Basic characteristics of MSCs

No. Basic characteristics of MSCs

1 Plastic-adherent

2 CD105, CD73, and CD90 positive; CD45, CD34, CD14
CDl11b, CD79a, CD19, and HLA class II negative

3 Osteogenic, chondrogenic, and adipogenic differentiation
capacities

rapidly culture-expanded for up to 40 population doublings
in approximately two to three months [5]. Compared with
normal bone marrow, adipose and birth-associated tissues,
including placenta, are relatively easy to obtain as a tissue
source for MSCs. It is important to realize that MSCs from
different sources may have different proliferative and
differentiation potentials [6].

One of the most intriguing biological characteristics of
MSC:s is their immunomodulatory property, which lays the
therapeutic basis of the use of MSCs for a number of
immune disorders. In this review, we discussed the current
knowledge of MSCs, focusing on its clinical translation in
a variety of immune disorders, as well as the challenges
and future directions.

Basic research on the biological
characteristics of MSC

Basic research has made significant progress in under-
standing the biological characteristics of MSCs. Generally,
MSCs have the capability to produce a number of cell
types, home to sites of injury/inflammation, secrete
bioactive molecules, and modulate immune or inflamma-
tion responses, thus contributing to tissue repair and
homeostasis maintenance.

Multilineage differentiation

Although MSCs tend to generate mesenchymal lineages,
they also have the capability to differentiate into cells of
three germ layers, i.e., mesoderm, ectoderm, and endo-
derm. Recently, studies have reported different methods to
induce cardiomyocyte differentiation of MSCs [7,8].
Evidence indicates that MSCs have the potential to
regenerate hepatic-like cells [9-11]. MSCs maintained on
decellularized cell-deposited extracellular matrix can
differentiate into mature hepatocyte more efficiently [12].
MSC-derived hepatocyte-like cells have the capability to
take up low-density lipoprotein [13]. In a partially
hepatectomized model rat, human MSCs can survive and
differentiate into hepatocyte-like cells in vivo [14]. MSC-
derived hepatocytes are capable of expressing albumin
when transplanted into a CCl4-injured SCID mouse model
[15]. MSCs also have the capacity to produce pancreas cell
lineages. MSCs can differentiate into islet-like cells after

stepwise addition of activin A, EGF bFGF, and ITS, which
can function as normal pancreatic cells in vitro and in vivo
[16]. Tonsil-derived MSCs can generate islet-like cells
similar to ADSCs [17]. Pancreatic extract or coculture with
pancreatic adult stem cells can efficiently induce MSC
differentiation into functional islet-like cells without any
gene manipulation [18-20]. Insulin-producing cells
derived from MSCs can ameliorate STZ-induced diabetic
hyperglycemia [21]. MSCs can also generate lung
epithelial-like cells and repair bleomycin-induced lung
injury [22,23]. When seeded on a chitosan-coated surface
or cultured in the serum-free medium, MSCs can form
spheres containing 19.5% + 2.6% or 51% =+ 13.22%
nestin-positive cells, respectively [24,25]. However, no
functional detections were achieved, particularly during
electrophysiology analysis. Recently, a three-step NSC-
inducing protocol was established, in which MSC-derived
neural stem cells can further differentiate into astrocytes,
oligodendrocytes, and functional neurons [26]. Although
MSCs possess multilineage differentiation capacity, grow-
ing evidence indicates that specific differentiation of MSCs
in damaged tissues is only a small part of the mechanism
responsible for the efficacy of MSCs in disease treatment.

MSC secretome

MSCs can secrete multiple bioactive factors, including
cytokines, chemokines, inflammatory factors, and extra-
cellular vesicles (EVs; e.g., exosomes and microvesicles),
which are commonly referred to as MSC secretome. MSC
secretome has diverse cellular functions, such as promot-
ing angiogenesis, anti-apoptosis, anti-fibrosis, anti-oxida-
tion, immunomodulation, and hematopoietic support [27].
The soluble factors of MSC secretome isolated from
different tissues may be different but most often have a
core of cytokines, such as CCL2, CCLS5, bFGF, insulin-
like growth factor-1 (IGF-1), IL-6, TGF-B, vascular
endothelial growth factor (VEGF), and TNFR1, which
are involved in tissue development, differentiation,
apoptosis, tumor growth, and metastasis [28-31]. Adi-
pose-tissue-derived MSCs secrete higher levels of IGF-1,
VEGF-D, and IL-8 than BM-MSCs, whereas other factors,
such as nerve growth factor (NGF), VEGF-A, bFGF, and
angiogenin, were expressed at comparable levels between
them [32]. Soluble factors that account for MSC
immunomodulatory functions are IL-6, IL-10, PGE2,
HGF, DO, NO, TGF-B, and human HLA-G. MSCs can
also be an attractive cellular source for brain disorders
because of the production of multiple neurotrophic factors,
such as brain-derived neurotrophic factor, NGF, or glial-
derived neurotrophic factor [33]. MSCs also secrete EVs,
which have the immunomodulatory traits of MSCs, and
deliver a variety of small molecules to the surrounding
cells [34], which are conducive to intercellular commu-
nication activities and lead to functional changes in the
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recipient cells [35]. MSC-derived EVs enhanced angio-
neurogenesis and contributed to the improvement of
impaired neurological functions [36]. We observed that
exosomes secreted by hADSCs could transfer miR-125a to
endothelial cells and promote angiogenesis [37]. In the
animal model of allogeneic hematopoietic stem cell
transplantation (HSCT), EVs released from human-
umbilical-cord-derived MSC prevent life-threatening
acute graft-versus-host disease (GVHD) [38].

Immunomodulation

One important feature of MSC is their capability to
regulate the adaptive and innate immune systems by
interacting with a wide spectrum of immune cells, such as
T and B lymphocytes, NK cells, and dendritic cells (DCs).
We have discussed such interactions in a review article that
we published previously [39]. Here, taking DCs as an
example, our group determined that MSCs could modify
the expression of several important surface markers in the
process of DC differentiation and maturation [40]. More-
over, we reported that, when cocultured with MSCs, the
proportion of cells with ¢cDC phenotype is obviously
decreased, whereas the proportion of cells with pDC
phenotype is upregulated [41]. Notably, MSCs could
induce maDCs into a novel type of regulatory DC,
bringing new insights into the possible application of
MSCs in organ transplantation and/or immune disease
treatment [42]. Although the immunoregulation of MSCs
is context dependent, most of the time, they mediate
immunoregulation through the direct actions on immune
cells or the recruitment of other immunoregulatory
populations.

New concepts of MSCs

Our laboratory has been focusing on the basic biological
properties of MSCs for more than 10 years and has
conceived some new concepts that might bring more
insights into our understanding of the therapeutic effects of
MSCs.

“Subtotipotent stem cell” hypothesis

We hypothesized that an undefined subfraction of
embryonic-like stem cells are left over in a number of
tissues even after a fetus is formed. We called them
subtotipotent stem cells. They have the capacity to produce
cells with three germ layers. We proved this hypothesis by
isolating MSC from human fetal bone marrow, called
Flk1*CD31°CD34 stem cells, which could produce cells
with three germ layers, e.g., endothelial cells, hepatocyte-
like cells, and neurons at the single-cell level. Recent
studies indicate that adult cells could be converted by small
molecules or chemicals to cells of other lineages [43—50].

We postulate that the “subtotipotent stem cell” hypothesis
might explain some of the observed lineage reprogram-
ming phenomenon.

MSC system

We propose the concept of the MSC system (Fig. 1). The
MSC system is composed of all MSCs derived from
different stages of embryonic development, from postem-
bryonic subtotipotent stem cells to progenitors [51]. The
postembryonic subtotipotent stem cells are leftover cells
during embryonic development, which are on top of the
system. The progenitors include all of the subsets of
MSC:s, such as CAR cells and pericytes, that are included
as long as they share a similar set of phenotypic markers.
The MSC system has three important biological character-
istics, i.e., stem cell properties including multipotency and
self-renewal, low immunogenicity and immunomodula-
tory functions, and microenvironment and tissue balance.
The establishment of the MSC system is of considerable
significance because (1) it entirely explains the three
important biological characteristics of MSCs; (2) it is a
more comprehensive view of MSCs and could better
explain the heterogeneity of MSCs in differentiation
potential and immunomodulatory functions; and (3) it
could provide tissue-specific stem cells for clinical
application with high efficiency and safety.

“Yin and Yang” balance of MSC regulation

MSCs can be attracted to injury or inflammation sites,
where they modulate local inflammatory processes and
promote repair or regeneration. MSCs can be polarized
toward a pro-inflammatory MSC1 or an immunosuppres-
sive MSC2 according to stimulation factors [52]. We
postulate that MSCs maintain the “Yin and Yang” balance
of immunoregulation by modulating the proportion of
MSCI1 and MSC2, which could subsequently influence the
balance of other immune cell types, such as macrophage, T
cells, DCs, and B cells (Fig. 2).

MSC therapy for immune disorders
Database from clinical trials

Several clinical trials were reviewed for studying the safety
and efficacy of MSCs. Immune-mediated diseases, includ-
ing autoimmune diseases and other diseases with immune
dysfunction and imbalanced immune regulation, are
difficult to treat. Based on their capability to regulate
immune responses and promote tissue repair, clinical
applications of MSCs indicate a new prospective approach
of treatment for immune-related diseases. The Clinical
Trials database (http://clinicaltrials.gov) indicated that the
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Fig. 2 “Yin and Yang” balance of MSC regulation.

trials using MSCs for immune-mediated diseases have
increased annually since 2004, especially in 2010. Notably,
the growth of clinical trials slowed down in 2011, which
might be influenced by the new federal financial aid
policies implemented in August 2010 in the United States
(Fig. 3A). By October 18, 2016, 125 clinical trials have

focused on immune-mediated diseases of MSCs, making
up approximately one fifth of the entire number of clinical
trials of MSCs. These trials overlay immune-mediated
diseases targeting different organs and transplant rejection,
as well some typical autoimmune diseases and HIV
(Fig. 3B). According to the Clinical Trials database, the
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Fig. 3 Analysis of clinical trials of MSC on immune-related diseases (in October 17, 2016, n=125). (A) clinical trials classified by disease types and
different systems; (B) numbers of newly created clinical trials of MSC on immune-related disorders over these years; (C) clinical trials of MSCs
classified by donors; (D) clinical trials of MSCs classified by tissue sources; and (E) clinical trials of MSCs classified by phases.

MSC donors and the tissue sources are analyzed in the
clinical trials of immune-mediated diseases. Besides the
14% of the trials not mentioned, we conclude that
approximately 62% of MSCs were derived from allo-
donors, whereas 24% were from the patients themselves
who received the cell treatment (Fig. 3C), making a
roughly 2.6:1 rate between the two origins. Indeed, MSCs

derived from allo-donors have been widely used in clinical
trials of certain diseases, such as GVHD, transplant
rejection, and most autoimmune diseases. However, in
trials of multiple sclerosis (MS), an autoimmune disease
making lesions in the central nervous system (CNS), auto-
MSCs are usually obtained from the blood—brain barrier.
Fig. 3D shows that the tissue sources of 30% of MSCs used
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in the trials are not shown. Moreover, most MSCs are
derived from the bone marrow, accounting for 49% of all
trials. Of the trials, 15% used MSCs from adipose tissue,
which is approximately similar to MSCs from UC (18%).
MSCs from UC blood and menstrual blood accounted for
3% and 1%, respectively (Fig. 3D). Furthermore, allo-
geneic MSCs from BM are used more preferentially than
those autologously derived [53—55]. Meanwhile, adipose-
tissue-derived MSCs are acquired more easily autolo-
gously and are shown to be effective in treating GVHD,
Crohn’s disease, and systemic lupus erythematosus (SLE)
[56—58]. The results from clinical trials showed that MSCs
from different sources exhibited parallel therapeutic effects
on immune-mediated diseases [59]. The majority of these
trials are in Phase I/Il (52%). Meanwhile, 16% of these
trials are in Phase I (for safety studies) and 21% in Phase II
studies (for efficacy in patients). Only a few are in Phase I1I
or Phase II/II (Fig. 3E), accounting for 4% and 5%,
respectively. Meanwhile, among these trials, only two
trials for GVHD are in Phase III, indicating significant
progress in the trials of these disease.

GVHD

GVHD, including acute GVHD (aGVHD) and chronic
GVHD (cGVHD), is a refractory and even lethal disease
usually occurring after allogeneic HSCT because of
immune attacks against hosts by grafts. MSCs have been
a promising treatment of GVHD for quite a few years. The
first case of allogenic MSC injection into a patient with
severe GVHD grade IV resulted in prominent response to
the disease [60]. Thus, a growing number of GVHD trials
have been conducted on MSCs over these years.

In the aGVHD setting, allogeneic BM-MSCs were
usually infused to the patients, particularly with steroid-
refractory GVHD [59,61,62]. The results showed that five
of seven patients with steroid-refractory aGVHD improved
completely, with rapid reductions in inflammatory cyto-
kines, significantly long survival rate, and high baseline
absolute lymphocyte [63]. Another study resulted in 17 of
24 patients (71%) responding to allogeneic BM-MSCs
infusion [64]. Meanwhile, the occurrence rate of grades II
to IV GVHD decreased significantly [65]. Furthermore, no
differences were observed between MSC and non-MSC
groups during aGVHD treatment and follow-up, including
infection incidence (cytomegalovirus and Epstein—Barr
virus), as well as tumor relapse [66]. Prophylaxis of
aGVHD was also conducted by MSCs, resulting in a
reduction of the incidence of aGVHD and an increase in
the overall survival of those patients [67]. Notably, an
increase in the number of immature myeloid DCs related to
the reduction in mortality was observed in addition to
improved overall survival [68].

GVHD occurring over 100 days after HSCT is called
cGVHD. MSCs derived from either HLA-identical sibling

donors or HLA-disparate donors were considered as a
salvage and effective therapy for refractory cGVHD [69].
MSCs were infused as second-line or third-line treatment.
In a study including seven patients, one patient improved
completely and three patients responded partially, whereas
three patients did not respond [70]. Yi et al. reported that
three patients with ¢cGVHD maintained stable disease
during the observation period [71]. Pretreatment of MSCs
resulted in a low incidence and severity of cGVHD, a high
number of total T cells and CD47CD25Foxp3™* regulatory
T (Treg) cells, as well as increased levels of signal joint T
cell receptor excision DNA circles [66]. However, Erbey et
al. observed the limited treatment response on cGVHD by
MSCs in aGVHD patients who had been treated with
MSCs [72].

In addition, the majority of allogenic MSCs were used in
GVHD treatment, although Copland et al. proposed that
MSCs from recipient patients and healthy donors repre-
sented feasible options for GVHD treatment [63].

SLE treatment

SLE is a multisystem autoimmune disease, which remains
potentially fatal, particularly in treatment-refractory
patients. BM-MSCs derived from SLE patients showed
osteogenic impairment [73], increased frequencies of
apoptosis and aging, and decreased levels of Bcl-2
expression, which may be related to the SLE pathogenesis.
Data from the Clinical Trials database indicate that six of
six trials on SLE by MSC are all using allo-MSCs of
healthy donors, indicating that allo-MSC are likely to be
superior to auto-MSC in treating SLE. MSC derived from
UC increased Treg cells and decreased Th17 cells by
regulating the levels of TGF-f§ and PGE2 in lupus patients
[74]. Allogenic MSCs kept the CTX/glucocorticoid
treatment-refractory SLE patients in a stable 12-18
months disease remission and an upregulation of Treg
cells [73]. No obvious differences were observed between
single and double allo-MSC treatment in disease remission
or relapse, as well as serum indices in a SLE trial beyond
one year follow-up [75]. All of these studies show that UC-
MSCs are a promising treatment option for SLE patients
[76].

Crohn’s disease

MSCs are also used to treat Crohn’s disease in recent
studies. Crohn’s disease is a chronic inflammatory disease
mediated by autoimmune disorders causing gastrointest-
inal tract damage. Refractory patients with Crohn’s disease
do not respond to steroids or immunosuppressive agents.
Locally injected adipose-tissue-derived MSCs (AT-MSCs)
exhibited a safe and effective therapy response, particu-
larly for perianal fistula in these patients [77-80]. In a
safety study, five pregnant women with fistula received AT-
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MSC therapy. Notably, AT-MSCs did not affect the
pregnancy or the development of newborns [81]. Injection
of 3 x 107 MSCs promoted the healing of perianal fistulas
[80]. In a five-year follow-up study, the Crohn’s disease
activity index score initially increased significantly during
first two years after BM-MSC infusion and subsequently
decreased gradually; finally, the patients achieved remis-
sion [82]. MSCs for Crohn’s disease treatment are often
obtained from adipose tissue. Bone marrow is another
source of MSCs [54,83]. Intralesional injection is usually
used rather than other routes.

Organ transplantation

MSCs are also applied for organ transplantation, particu-
larly kidney transplantation. BM-MSCs combined with a
reduced tacrolimus dose treatment are administered to
patients who survived with stable renal function lasting for
one year, as well as no graft failure, donor-specific
lymphocyte proliferation, and Treg priming responses.
Meanwhile, the IL-10 level exhibited a high increase in the
patients [84—86]. A pilot study also proposed the use of
autologous MSCs for Treg cell expansion with decreasing
T cell proliferation in patients with kidney transplantation
[87].

MS

MS, an inflammatory disease in the CNS, is characterized
by demyelinating and neurodegenerative disorder. No
definite treatment is available for patients with MS thus far,
and MSCs are becoming one of the most prospective
therapy methods without obvious side effects [88,89].
Most of these clinic trials were conducted with MSCs
derived from autologous bone marrow and administrated
through intrathecal infusion. MSC therapy was able to
improve or delay the progress of this disease in refractory
MS one year after MSC injection [90]. MSCs promoted
immunomodulation and neurological restoration and
remyelination of the impaired axons. Evaluation after
three to six months showed Expanded Disability Status

Score improvement and an increase in the number of Treg
cells [91,92].

Other immune-related disorders

Rheumatoid arthritis (RA) is a kind of autoimmune disease
with chronic inflammation resulting in disorder of the
cartilage and bone joints. Failures in clinical treatment
including antirheumatic drugs, cortical hormones, and
biological agents still remain in a proportion of patients
with arthritis. A preliminary report showed an essentially
negative response in four patients who received allogeneic
or bone-marrow-derived MSCs [93]. A nonrandomized
comparative trial was reported, in which 136 patients were
infused allogeneic UC-MSC, whereas 36 patients were
infused only the cell solvent as control. This treatment
induced a significant remission of the disease, which was
sustained for more than three months, with an increase in
Treg cells in peripheral blood without side effects [94].
Similar results were obtained from a study of 10 patients
with juvenile idiopathic arthritis, also known as juvenile
RA [95]. MSCs are also applied in other immune-related
disorders, such as systemic sclerosis [96-98], primary
Sjogrens syndrome [99,100], ankylosing spondylitis [101],
and dermatomyositis [102,103]; all exhibited a positive
response in these pilot studies with no significant toxicity.
However, injection of allo-MSCs in aplastic anemia
patients was safe but resulted in no obvious clinical
hematologic response or engraftment in the recipients in a
recent report [104] (Table 2).

Generally, MSC treatment is a feasible and promising
strategy in the treatment of many immune-related diseases
based on inspiring data from clinics. However, many
questions remain to be discussed. Recently, a meta-
analysis involving 13 nonrandomized studies at moderate
risk of bias indicated that survival neither differed with
respect to MSC culture medium nor MSC infusion dose on
aGVHD treatment [105], although more analyses of other
diseases are needed. Further studies should consider the
potential transformations of MSCs during culture and after
infusion, the source of MSCs, the assessment of function

Table 2 Clinical trials/pilot studies of MSCs for other immune-related diseases within five years

Disease Number Dose Source Route Result References
RA 4 1 x 10%kg Allo-BM v Negative [92]
RA 136 4 % 107 total Allo-UC iv Remission [93]
Juvenile RA 10 4 x 107 total Allo-UC iv Effective [94]
Aplastic anemia 4 2.7 x 10%kg Allo-BM iv, 25 times Unimproved [104]
Dermatomyositis 10 1 x 10%kg Allo-BM/UC iv Effective [102]
Ankylosing 31 1 x 10%kg Allo-BM iv, 4 times Improved [101]
spondylitis
Systemic sclerosis 12 3.76 x 10° Allo-AT Subcutaneous Improved [96]

each finger injection

RA, rheumatoid arthritis; iv, intravenous infusion; UC, umbilical cord; BM, bone marrow; AT, adipose tissue; allo, allogeneic.
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persistence, and the underlying mechanisms of immunor-
egulation in vivo to optimize patient benefits.

Clinical translation of MSCs in China

The number of studies in the field of stem cells in China
over the past few years has increased significantly because
of the rapid increase in government funds and researchers’
enthusiasm in the potential application of stem-cell-based
therapy. Although some clinics in China offer patients
unproven stem cell treatment only for a large sum of
money, well-regulated clinical trials are undergoing
nationwide and have obtained encouraging results. In
2004, our group in the Chinese Academy of Medical
Science received the first approval from the Chinese State
Food and Drug Administration (SFDA) to use MSCs to
prevent GVHD. We performed two clinical trials and
obtained exciting results. The first study determined that a
new transplantation strategy combining haploidentical
peripheral blood stem cells and MSCs could improve
donor engraftment and prevent GVHD [106]. The second
study was an open-label, randomized phase II clinical trial
to assess the outcome of MSC coinfusion (3x10°-5x107
cells/kg) during haploidentical HSCT. Within 100 days,
the time to a platelet concentration of > 50 x 10° cells/L
was markedly faster in the treatment group than that in the
control group (22 vs. 28 days; P = 0.036) [107]. In
cooperation with us, Chen et al. from Nanjing University
initiated the first clinical trial in China to treat acute
myocardial infarction (MI) with MSCs. A total of 69
patients who underwent primary percutaneous coronary
intervention after onset of acute MI were randomized to
receive intracoronary injection of autologous MSCs or
saline, and significant improvement of left ventricular
function was observed in the MSC group [108].
Following these studies, many groups began to conduct
clinical trials using MSCs to treat various diseases,
including limb ischemia, liver disease, neurodegenerative
disorders, and pulmonary arterial hypertension. A brief
summary of some of these studies is shown in Table 3.

Perspectives and suggestions for future
development of MSC clinical trials

Despite that significant progress has been made in
preclinical and clinical studies utilizing MSCs, consider-
able challenges remain to be overcome before MSC
therapy can finally move to clinical practice [109].

MSC production according to Good Manufacturing
Practice (GMP)

MSCs used for clinical trial should be manufactured in
compliance with GMP to ensure that the “MSC drug” is

safe, reproducible, and efficient when administered to
patients. All aspects of the manufacturing process should
be defined, e.g., approved written procedures and instruc-
tions; qualified and trained production and quality control
personnel; and full traceability of MSC preparation,
storage, and transportation.

It is very important to have a consensus standard for
MSC production, so that the results obtained from different
clinical trials may be easier to compare.

Optimization of parameters related to MSCs

Several parameters should be optimized before the clinical
application to guarantee the quality of produced MSCs.
(1) Optimal passage: Studies have proposed that transfor-
mation and senescence may occur in late-passage MSCs.
Therefore, in vitro passage time should be carefully
controlled to reduce the chance of MSC malignant
transformation. We conducted the first stem cell clinical
trial approved from SFDA in China, and we used MSCs
within six passages. (2) Optimal route of administration:
To date, systemic administration is the main route used for
MSC delivery in animal disease models and clinical
studies. A previous report suggested that, during systemic
administration, most MSCs become trapped in the liver
and lungs [110], which could reduce the number of MSCs
homing to target sites for repair. Therefore, compared with
systemic infusion, site-specific administration of MSCs
may lead to better efficacy. Comparing different routes of
MSC administration and standardizing MSC delivery
according to disease types are important to achieve
maximum therapeutic effects. (3) Optimal cell dose: The
optimal dose of MSCs administered should differ accord-
ing to disease type and severity. Generally, the widely used
MSCs dosage is approximately 1 x 10%kg of body
weight. We propose conducting clinical trials with dose-
escalating MSCs to define optimal cell dose in a context-
dependent manner [109].

Strategies to enhance MSC-based immunomodulation

MSCs are responsive to environmental factors, and
exogenous or endogenous modifications of MSCs may
enhance MSC-based immunomodulation. Long-term
expression of certain genes through gene modification
could significantly increase the MSC capacity.

For example, Payne and colleagues transplanted gene-
modified MSCs overexpressing 1L-4 into a mouse model
of experimental autoimmune encephalomyelitis and
observed protective effects, which were associated with a
reduction in peripheral T cell responses and a shift from a
pro- to an anti-inflammatory cytokine response [111].
However, genetically modified MSC may cause serious
safety issues for clinical use. Therefore, transient strength-
ening of MSC-based immune modulation through pre-
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conditioning with cytokines may be more clinically
relevant. MSC, when pretreated with IFN-y, was rapidly
activated and could reduce GVHD more efficiently than a
fivefold number of inactive MSC [112].

MSC therapy is rapidly developing, leading to exciting
and promising as well as confusing and sometimes
contradictory results. Thus, further results from large
clinical trials are needed to confirm preclinical findings and
human noncontrolled studies.
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