Effect of IL2RA and IL2RB gene polymorphisms on lung cancer risk

Zhuoqi Jiaa,1, Zhe Zhangb,1, Qi Yangc, Chunni Dengb, Daxu Lib,*, Le Renb,*

a Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
b Department of Stomatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
c Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China

\textbf{A R T I C L E I N F O}

Keywords:
IL2RA
IL2RB
Susceptibility
Lung cancer
Polymorphisms

\textbf{A B S T R A C T}

\textbf{Background:} Inflammation is crucial for lung cancer development. Variants of multiple genes in inflammation pathways may lead to susceptibility to lung cancer. In the present study, we aimed to assess the influence of polymorphisms in inflammation-related genes (IL2RA and IL2RB) on lung cancer risk.

\textbf{Methods:} A total of 507 patients with lung cancer and 503 healthy controls were genotyped for seven polymorphisms of IL2RA and IL2RB using the Agena MassARRAY platform. We evaluated the relationship of the genotypes with lung cancer susceptibility using odds ratio (OR), 95\% confidence interval (95\% CI) and chi square test.

\textbf{Results:} We found that IL2RA rs12722498 was significantly associated with a decreased risk of lung cancer in dominant (p = 0.040, OR = 0.71, 95\% CI = 0.51–0.98), additive (p = 0.016, OR = 0.68, 95\% CI = 0.50–0.93) and allele (p = 0.019, OR = 0.69, 95\% CI = 0.51–0.94) models. After stratification analysis, the results showed that IL2RA rs12569923 (non-smokers), IL2RA rs791588 (≤60 years old, non-drinkers, BMI < 24 kg/m2), IL2RA rs12722498 (≤60 years old, non-drinkers, BMI < 24 kg/m2, female) and IL2RB rs2281089 (female, stage) significantly decreased the risk of lung cancer. Additionally, the haplotypes of rs12569923 and rs791588 in IL2RA had strong relationships with lung cancer in the subgroups of BMI < 24 kg/m2, age ≤ 60 years old, non-smokers and non-drinkers.

\textbf{Conclusion:} Our results showed that the IL2RA and IL2RB polymorphisms were associated with lung cancer risk in the Chinese Han population, which suggests roles for IL2RA and IL2RB polymorphisms in lung cancer.

1. Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide, with approximately 1.59 million deaths occurring annually [1,2]. Environmental factors greatly affect the development of lung cancer, including smoking status and alcohol consumption. However, an increasing number of studies have shown that single nucleotide polymorphisms (SNPs) are related to lung cancer susceptibility, suggesting an important role for genetic factors in the development of lung cancer [3,4].

Inflammation is a physiologic response to cellular and tissue damage. It is now evident that inflammation alters the bronchial epithelium and the lung microenvironment, inducing pulmonary carcinogenesis [5]. Genetic variants of inflammation-related genes could regulate gene function and cause imbalances, influencing the inflammatory response and the susceptibility to disease [6,7]. Epidemiologic evidence also supports the function of inflammation in lung carcinogenesis [8]. Additionally, interleukin (IL), an inflammatory cytokine, plays a vital role in inflammatory responses by activating and regulating immune cells.

Interleukin 2 (IL-2) and the IL-2 receptor (IL-2R) play critical roles in controlling both immune system homeostasis and tolerance. IL-2 is a T cell growth factor, promoting proliferation and differentiation of activated T cells [9]. The IL-2R is composed of three subunits: IL-2R\(\alpha\) (CD25, encoded by IL2RA), IL-2R\(\beta\) (CD122, encoded by IL2RB) and \(\gamma\)c (CD132, encoded by IL2RG) [10,11]. The human IL2RA is located on the short arm of chromosome 10 (10p15-p14). IL2RA is expressed constitutively on regulatory T cells, which have an important influence on lymphocyte development and the modulation of T cell effector function [12,13]. The high level of expression of IL2RA in activated circulating immune cells and Tregs has been exploited by IL-2 immunotherapies for tumors and autoimmune disease treatments. Moreover, the SNPs of IL2RA are associated with breast cancer and ovarian cancer [13,14], but their association with lung cancer is still unknown.

* Corresponding authors at: #277 West Yanta Road, Xi’an 710061, Shaanxi, China.

E-mail addresses: daxu.li@163.com (D. Li), 154600473@qq.com (L. Ren).

* Common joint authors.

https://doi.org/10.1016/j.intimp.2019.105716

Received 15 May 2019; Received in revised form 20 June 2019; Accepted 21 June 2019
Available online 03 July 2019
1567-5769/ © 2019 Elsevier B.V. All rights reserved.
The interleukin-2 receptor subunit beta (IL2RB) gene, a cytokine signaling gene, is involved in T cell-mediated immune responses. This protein is primarily expressed in the hematopoietic system. Genetic associations between different polymorphisms located within the IL2RB loci and several diseases, including lung cancer, have been reported, but there are no data on the relationship between IL2RB polymorphisms (rs2281089, rs3218264, rs9607418, and rs1573673) and lung cancer risk [7]. Therefore, we hypothesized that polymorphisms in inflammation-related genes (IL2RA and IL2RB) may be associated with lung cancer risk.

The aim of this study was to explore whether genetic variations of IL2RA and IL2RB influence the susceptibility to lung cancer development. We conducted this case-controlled study and focused on seven polymorphisms (rs12569923, rs791588, and rs12722498 of IL2RA and rs2281089, rs3218264, rs9607418, and rs1573673 of IL2RB) to assess the associations of genotypes with lung cancer risk.

2. Materials and methods

2.1. Study population

For this study, 507 lung cancer patients (352 males, 155 females) and 503 healthy controls (354 males, 149 females) were enrolled from Shaanxi Provincial Cancer Hospital. All cases were newly diagnosed and previously untreated primary lung cancer, as judged by clinical examinations. The exclusion criteria included people who suffered from previous malignancies, inflammation or other autoimmune diseases. The healthy controls were randomly recruited from cancer-free individuals living in the same region during the same time as the lung cancer patients. Prior to initiating this study, we collected written informed consents from all individuals in compliance with the World Medical Association ethics regulations. The study protocol was approved by the Ethics Committee of Shaanxi Provincial Cancer Hospital.

2.2. SNPs selection and genotyping

According to the data of the Han Chinese population in Beijing (CHB) from the 1000 Genomes Project and previously published studies, we selected three SNPs (rs12569923, rs791588, and rs12722498) of the IL2RA gene and four SNPs (rs2281089, rs3218264, rs9607418, and rs1573673) of the IL2RB gene, with minor allele frequency (MAF) > 5%. Genomic DNA from all participants was isolated from peripheral blood via a blood DNA kit (GoldMag Co. Ltd., Xi’an, China) and stored at −80 °C until use. The genotyping of IL2RA and IL2RB was conducted with an Agena MassARRAY system (Agena, San Diego, CA, USA). We used the Agena MassARRAY Assay Design 3.0 Software (San Diego, CA, USA) to design PCR and extension primers for each SNP (Supplemental Table 1). In addition, we used the Agena Typer 4.0 Software (San Diego, CA, USA) for data management and analysis [15,16]. We used HaploReg v4.1 (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) to predict the potential functions of the candidate polymorphisms.

2.3. Statistical analysis

All statistical analyses were conducted with SPSS version 21.0 software (SPSS, Chicago, IL, USA). We used the chi square test and Student’s t-test to determine the differences in demographic variables and distributions of genotype in the lung cancer patients and the healthy controls. The Hardy-Weinberg equilibrium (HWE) for each SNP in the control group was analyzed using Fisher’s exact test. The associations of all SNPs with lung cancer risk were estimated by odds ratios (ORs) and 95% confidential intervals (95% CI) using logistic regression adjusted for sex and age. Subsequently, an allelic model and genetic models (codominant, dominant, recessive, and additive) were evaluated by the chi square test and PLINK software. We then used the haplotype and linkage disequilibrium (LD) analysis. All of the tests in our study were two-sided, and a p < 0.05 was regarded as statistical significance [16].

3. Results

3.1. Subject characteristics

A total of 507 patients with lung cancer and 503 healthy controls were recruited in our study. The demographic and clinical characteristics of all individuals are presented in Table 1. There were no significant differences in the distribution of age, sex, and smoking status between the lung cancer cases and the healthy controls (p > 0.05). However, body mass index (BMI) and drinking status were significantly different between the two groups (p < 0.001). Additionally, we collected the clinical characteristics of the patients, including histology, lymph node metastasis, and stage of lung cancer.

3.2. Association of IL2RA and IL2RB polymorphisms with lung cancer susceptibility

The basic information and potential function predicted by the HaploReg database of the selected SNPs are listed in Table 2. Genotype frequency distributions in the controls of all selected SNPs were in HWE (p > 0.05). The allele and genotype distributions of IL2RA and IL2RB in lung cancer patients and healthy controls are presented in Table 3 and Supplemental Table 2. The polymorphism of IL2RA rs12722498 showed a significant association with lung cancer in dominant (p = 0.040, OR = 0.71, 95% CI = 0.51–0.98) and additive (p = 0.016, OR = 0.68, 95% CI = 0.50–0.93) models. Moreover, individuals carrying the G allele of rs12722498 had a lower risk of developing lung cancer.
cancer ($p = 0.019$, OR = 0.69, 95% CI = 0.51–0.94).

3.3. Stratification analysis

To further investigate the relationships of the seven SNPs with lung cancer, we conducted a subgroup analysis stratified by age, sex, BMI, smoking and drinking statuses (Table 4). For participants ≤60 years old, rs791588 and rs12722498 of *IL2RA* significantly decreased the susceptibility to lung cancer in multiple models (rs791588: homozygote, $p = 0.033$, OR = 0.54; dominant, $p = 0.037$, OR = 0.67; additive, $p = 0.021$, OR = 0.73; allele, $p = 0.019$, OR = 0.73; rs12722498: heterozygote, $p = 0.028$, OR = 0.55; dominant, $p = 0.010$, OR = 0.50; additive, $p = 0.005$, OR = 0.49; allele, $p = 0.003$, OR = 0.48). When stratified by sex, we found that rs12722498 of *IL2RA* and rs2281089 of *IL2RB* had positively significant associations with a decreased lung cancer risk in females. For *IL2RA* rs12722498, the individuals with the G allele had a lower risk of lung cancer ($p = 0.007$, OR = 0.50, 95% CI = 0.30–0.93), but it had an association with susceptibility to lung cancer in heterozygote ($p = 0.026$, OR = 0.53, 95% CI = 0.30–0.93), dominant ($p = 0.012$, OR = 0.49, 95% CI = 0.28–0.86), and additive ($p = 0.007$, OR = 0.48, 95% CI = 0.28–0.82) models among females. In addition, the heterozygote rs2281089 variant (AG) was associated with a significantly increased risk of lung cancer ($p = 0.038$, OR = 0.60, 95% CI = 0.37–0.97) compared to subjects with homozygous wild-type genotype (AA) after adjusting for risk factors in the female subgroup. In the individuals who had a BMI < 24 kg/m² and were non-drinkers, the rs791588 and rs12722498 of *IL2RA* was also associated with a decreased risk of lung cancer in allelic and genomic models ($p < 0.05$). The *IL2RA* rs12569923 polymorphism was related to lung cancer in non-smoking patients in homozygote ($p = 0.021$, OR = 0.32, 95% CI = 0.12–0.84), recessive ($p = 0.025$, OR = 0.34, 95% CI = 0.13–0.87) and allele ($p = 0.048$, OR = 0.69, 95% CI = 0.48–1.00) models.

Moreover, we conducted stratification analysis by clinical parameters, including histology (adenocarcinoma and squamous), LN metastasis and stage of lung cancer. As shown in Table 5, we observed that *IL2RB* rs2281089 was significantly associated with lung cancer risk in the stage subgroup (heterozygote, $p = 0.011$, OR = 0.29, 95% CI = 0.11–0.75; recessive: $p = 0.008$, OR = 0.29, 95% CI = 0.11–0.72). Nevertheless, we did not find that the *IL2RA* and *IL2RB* polymorphisms had a strong relationship with lung cancer risk stratified by histology and LN metastasis.

3.4. Haplotype analysis

We further performed the LD and haplotype analyses on the polymorphisms of *IL2RA* and *IL2RB*. These analyses revealed one block in *IL2RA*, including rs12569923 and rs791588 (Fig. 1). The frequency distribution of haplotype in the two groups is presented in Supplemental Table 3. Then, we analyzed the associations between gene haplotypes and lung cancer risk in the subgroups. As shown in Table 6, haplotypes “CC” and “CT” increased lung cancer risk (respectively: $p = 0.014$, OR = 1.45, 95% CI = 1.08–1.96; $p = 0.014$, OR = 1.46, 95% CI = 1.08–1.97) in the BMI < 24 kg/m² subgroup. For the individuals 60 years of age or younger, the *IL2RA* haplotype was protective against lung cancer ($p = 0.021$, OR = 0.73, 95% CI = 0.56–0.95). In contrast, the haplotype “CT” in this block was associated with an increased susceptibility to lung cancer ($p = 0.003$, OR = 1.65, 95% CI = 1.18–2.29) in non-smokers. Additionally, in the non-drinker subgroup, the *IL2RA* haplotypes also showed a relationship with lung cancer risk (CC: $p = 0.038$, OR = 0.73, 95% CI = 0.55–0.98; CT: $p = 0.006$, OR = 1.55, 95% CI = 1.14–2.12).

4. Discussion

In this study, we examined the influence of seven SNPs in two inflammation-related genes on the susceptibility to lung cancer, including three in *IL2RA* (rs12569923, rs791588 and rs12722498) and four in

Table 2

Primary information of *IL2RA* and *IL2RB* polymorphisms.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Polymorphism</th>
<th>Location: Position</th>
<th>Alleles</th>
<th>MAF-case</th>
<th>MAF-control</th>
<th>HWE p</th>
<th>HaploReg</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL2RA</td>
<td>rs12569923</td>
<td>Chr10: 6042690</td>
<td>C/G</td>
<td>0.188</td>
<td>0.194</td>
<td>0.568</td>
<td>Enhancer histone marks, motifs changed</td>
</tr>
<tr>
<td>IL2RA</td>
<td>rs791588</td>
<td>Chr10: 6047379</td>
<td>G/T</td>
<td>0.368</td>
<td>0.392</td>
<td>0.709</td>
<td>Enhancer histone marks, motifs changed</td>
</tr>
<tr>
<td>IL2RA</td>
<td>rs12722498</td>
<td>Chr10: 6053873</td>
<td>C/T</td>
<td>0.077</td>
<td>0.108</td>
<td>0.817</td>
<td>Promoter and enhancer histone marks, motifs changed, DNAse, proteins bound</td>
</tr>
<tr>
<td>IL2RB</td>
<td>rs2281089</td>
<td>Chr22: 3713612</td>
<td>A/G</td>
<td>0.23</td>
<td>0.243</td>
<td>0.904</td>
<td>Enhancer histone marks, motifs changed</td>
</tr>
<tr>
<td>IL2RB</td>
<td>rs3218264</td>
<td>Chr22: 37145958</td>
<td>C/T</td>
<td>0.472</td>
<td>0.484</td>
<td>0.372</td>
<td>Promoter and enhancer histone marks, motifs changed, DNAse, proteins bound, selected eQTL hits</td>
</tr>
<tr>
<td>IL2RB</td>
<td>rs9607418</td>
<td>Chr22: 3715685</td>
<td>A/C</td>
<td>0.111</td>
<td>0.105</td>
<td>0.636</td>
<td>Enhancer histone marks, motifs changed</td>
</tr>
<tr>
<td>IL2RB</td>
<td>rs1575673</td>
<td>Chr22: 37172630</td>
<td>C/T</td>
<td>0.343</td>
<td>0.358</td>
<td>0.439</td>
<td>Enhancer histone marks, motifs changed, GRASP QTL hits</td>
</tr>
</tbody>
</table>

SNP: single nucleotide polymorphism, MAF: minor allele frequency, HWE: Hardy—Weinberg equilibrium.

Table 3

Frequencies of gene alleles and genotypes of lung cancer patients and controls.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Polymorphism</th>
<th>Genotype</th>
<th>Control (503)</th>
<th>Case (507)</th>
<th>OR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL2RA</td>
<td>rs12722498</td>
<td>GG</td>
<td>6</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GA</td>
<td>95</td>
<td>77</td>
<td>0.75 (0.54–1.05)</td>
<td>0.094</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AA</td>
<td>396</td>
<td>422</td>
<td>1.00</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GG-GA</td>
<td>422</td>
<td>77</td>
<td>0.71 (0.51–0.98)</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AA</td>
<td>396</td>
<td>422</td>
<td>1.00</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GG</td>
<td>6</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GA-AA</td>
<td>491</td>
<td>499</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AA</td>
<td>107</td>
<td>77</td>
<td>0.68 (0.50–0.93)</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>887</td>
<td>921</td>
<td>0.69 (0.51–0.94)</td>
<td>0.019</td>
</tr>
</tbody>
</table>

OR: odds ratio, CI: confidence interval.

$p < 0.05$ indicates statistical significance.

"-" indicates no data.

Significant values are marked in bold.
Table 4

Stratification analyses of the association of IL2RA and polymorphisms with susceptibility to lung cancer.

<table>
<thead>
<tr>
<th>Polymorphisms</th>
<th>Subgroups</th>
<th>Homozygote</th>
<th>Heterozygote</th>
<th>Dominant</th>
<th>Recessive</th>
<th>Additive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td>rs12569923</td>
<td>Non-smoker</td>
<td>0.32 (0.12–0.84)</td>
<td>0.86 (0.53–1.38)</td>
<td>0.74 (0.48–1.16)</td>
<td>0.34 (0.13–0.87)</td>
<td></td>
</tr>
<tr>
<td>rs791588</td>
<td>Age (≤60)</td>
<td>0.54 (0.31–0.95)</td>
<td>0.72 (0.48–1.07)</td>
<td>0.67 (0.46–0.98)</td>
<td>0.65 (0.39–1.09)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMI (<24)</td>
<td>0.48 (0.26–0.88)</td>
<td>0.69 (0.43–1.11)</td>
<td>0.77 (0.43–1.39)</td>
<td>0.57 (0.35–0.93)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-drinker</td>
<td>0.51 (0.28–0.90)</td>
<td>0.63 (0.40–1.00)</td>
<td>0.60 (0.36–1.00)</td>
<td>0.58 (0.36–0.92)</td>
<td></td>
</tr>
<tr>
<td>rs12722498</td>
<td>Age (≤60)</td>
<td>-</td>
<td>0.55 (0.32–0.94)</td>
<td>0.49 (0.28–0.85)</td>
<td>0.48 (0.28–0.86)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMI (<24)</td>
<td>-</td>
<td>0.59 (0.34–1.01)</td>
<td>0.54 (0.31–0.96)</td>
<td>0.56 (0.35–0.95)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-drinker</td>
<td>-</td>
<td>0.57 (0.34–1.03)</td>
<td>0.53 (0.31–0.98)</td>
<td>0.58 (0.36–0.92)</td>
<td></td>
</tr>
<tr>
<td>rs17722998</td>
<td>Females</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>rs2281089</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Table 5

The association of the IL2RB polymorphism with susceptibility to lung cancer stratified by stage.

<table>
<thead>
<tr>
<th>Polymorphism</th>
<th>Genotype</th>
<th>Control</th>
<th>Case</th>
<th>OR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2281089</td>
<td>Homozygote</td>
<td>GG</td>
<td>10</td>
<td>10</td>
<td>0.29 (0.11–0.75)</td>
</tr>
<tr>
<td></td>
<td>Heterozygote</td>
<td>GA</td>
<td>28</td>
<td>97</td>
<td>1.07 (0.62–1.83)</td>
</tr>
<tr>
<td></td>
<td>Dominant</td>
<td>GA-GA</td>
<td>38</td>
<td>107</td>
<td>0.86 (0.52–1.41)</td>
</tr>
<tr>
<td></td>
<td>Recessive</td>
<td>GG</td>
<td>10</td>
<td>10</td>
<td>0.29 (0.11–0.72)</td>
</tr>
</tbody>
</table>

p < 0.05 indicates statistical significance. Significant values are marked in bold.

Fig. 1. Haplotype block map for the SNPs of IL2RA. Block includes rs12569923 and rs791588. The LD between two SNPs is standardized by D'.

IL2RB (rs2281089, rs3218264, rs9607418 and rs1573673). Our results showed that rs12722498 of IL2RA was significantly associated with a decreased lung cancer risk.

Inflammation is involved in all stages of tumorogenesis, from tumor initiation to the establishment of tumor metastases. The inflammation-associated mechanisms that promote lung cancer are through two main pathways: one pathway is due to genetic alterations that lead to neoplasia and inflammation, while the other pathway is the result of inflammatory conditions that increase the risk of lung cancer [17]. IL-2/IL-2R signaling promotes T and B cell growth and survival, which are involved in primary and memory immune responses in vivo [18,19]. IL-2 binds to the heterodimeric IL-2Rβγ receptor, resulting in the desired expansion of tumor-killing CD8+ memory effector T (CD8 T) cells at high doses. IL-2 also binds to its heterotrimeric receptor IL-2Rαβγ with a greater affinity, which expands Tregs expressing high constitutive levels of IL-2Rα and, hence, represents an undesirable effect of IL-2 for...
lungs cancer immunotherapy [20]. Moreover, mice deficient in either IL-2 or the α- or β-chain of the IL-2R develop a hyper-proliferative disorder [21,22]. These results suggest that IL-2 is involved in lung cancer development. In addition, there are a few published studies on the polymorphisms of inflammation-related genes that have shown linkages with lung cancer risk [23,24]. Hence, IL-2 polymorphisms may affect inflammation and, subsequently, influence lung cancer development.

Many reports have emphasized that some polymorphisms of IL2RA are linked to a risk of cancer, such as rectal cancer and renal cell carcinoma [25,26]. The dysregulation of IL2RA has been observed in many pulmonary diseases and has also been verified as an increased risk factor for lung cancer in patients who had lung infections and in immunosuppressed individuals [27], suggesting that IL2RA affects the development of lung cancer. In this study, we are the first to reveal the association between IL2RA polymorphisms and the risk of lung cancer. Additionally, in vivo, IL-2RB signaling controls immunosuppressive CD4⁺ T cells in the draining lymph nodes and the lungs during allergic airway inflammation [28]. Specially, IL2RB SNPs could be used for risk prediction for lung cancer in smokers [7]. However, we did not observe strong associations between the four SNPs in IL2RB and lung cancer risk. Hence, further studies are needed to verify this conclusion in a larger and well-designed study.

Since many studies have demonstrated the contribution of age and sex in the development of cancer, we further stratified our results by age and sex, and our study showed that rs791588 and rs12722498 of IL2RA had strong protective effects against lung cancer among the individuals aged 60 years or younger. Furthermore, Gauderman et al. demonstrated an age-specific genetic incidence rate for lung cancer [29]. All of them have revealed that lung cancer is an age-dependent disease. Additionally, for females, IL2RA rs12722498 and IL2RB rs2281089 significantly decreased the risk for lung cancer, suggesting a sex-dependent effect of IL2RA and IL2RB on lung cancer. In addition, an elevated BMI has been explored as a risk factor for lung cancer in the world [27]. Inflammation or oxidative stress induced by high BMI may explain this effect. We also studied the relationship between the polymorphisms in these inflammation-related genes and lung cancer risk in the BMI subgroup. The results showed that rs791588 and rs12722498 of IL2RA had notable associations with a decreased risk of lung cancer.

Smoking is a major environmental risk factor, which has been demonstrated to have a significant association with lung cancer risk [30–32]. Therefore, we estimated the relationship of IL2RA and IL2RB polymorphisms with susceptibility to lung cancer stratified by smoking status. We found that a protective effect of IL2RA rs12569923 on the risk of lung cancer among non-smokers. It is possible that the protective effect of the IL2RA variant allele will be evident in non-smokers due to the lower levels of inflammation from the lack of cigarette smoking.

In addition, it has been shown that alcohol consumption plays a role in lung carcinogenesis [33]. In our study, rs791588 and rs12722498 of IL2RA did significantly decrease the lung cancer risk for non-drinkers.

Furthermore, the clinical characteristics of the patients showed a strong relationship between gene polymorphisms and lung cancer risk. In our study, IL2RB rs2281089 was associated with the decreased susceptibility to lung cancer for patients in stage III/IV, which suggests that the IL2RB polymorphism is involved in the progression of lung cancer. However, the exact mechanism of the genetic polymorphisms in lung cancer development needs to be studied further.

5. Conclusion

In summary, this present study provides evidence that polymorphisms of IL2RA and IL2RB may be associated with lung cancer susceptibility, implying a vital role for IL2RA and IL2RB in the development of lung cancer.

Funding

No funding sources supported this study.

Declaration of Competing Interest

We confirm that there are no conflicts of interest in this study.

Acknowledgements

We sincerely thank all of the people involved in our study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.intimp.2019.105716.

References
