Which one is more important in traumatic brain injury: Hypotension or hypoxia?

I have greatly enjoyed reading the recently published article by Seo et al. [1]. In this study, the authors examined the association between hypoxia level and outcomes according to shock status in traumatic brain injury (TBI) patients. They found that the mortality rates were 49.4% in severe hypoxia, 30.7% in mild hypoxia, 18.5% in normoxia. Mortality rates were 47.1% in TBI patients with shock status and 20.5% in non-shock TBI patients. There was a trend toward worsened outcomes with mild and severe hypoxia in patients with and without shock, however, the only met statistical significance for patients with both severe hypoxia and non-shock status. These results suggested that, in patients already suffering hypotension, hypoxia did not add any significant effect.

Previous studies have revealed that hypotension (systolic blood pressure < 90 mmHg) and hypoxemia (PaO₂ < 60 mmHg) are important prognostic factors and should be avoided in patients with TBI [2]. However, there are no data in the literature which one is the more important factor (hypoxia or hypotension) influencing the prognosis. The study by Seo et al. [1] studies the effect of shock status on mortality rates, further studies are needed to reveal whether hypotension or hypoxia is more important in patients with TBI.

References


Diagnostic considerations in detecting apical hypertrophic cardiomyopathy while utilizing point-of-care ultrasound

The emergency department (ED) clinical approach to patients with unexplained syncope has ushered in an era of advances in the point-of-care ultrasound (POCUS) practice. Cardiac ultrasound (US) is a key application that is often utilized in young patients with syncope when screening for structural abnormalities such as hypertrophic cardiomyopathy (HCM). The application of the cardiac US for this screening, however, can be hindered by phenotypic variability of hereditary HCM. The apical variant of HCM constitutes a minority of all cases (<3%) and is generally associated with a benign prognosis. We describe a 28-year-old woman and former collegiate middle-distance/endurance runner who presented to the emergency department (ED) with syncope. Earlier in the day, she was one mile into a planned ten-mile run, when she reached an intersection requiring her to stop. Upon stopping abruptly, she experienced a feeling of warmth, followed by shortness of breath, blurred vision and subsequent loss of consciousness. The patient had syncopely several times before in her life—all in the setting of abruptly stopping after a warm-up exercise. She denied any other complaints and had no other relevant past medical history. Family history was notable for myocardial infarction (MI) in the patient’s father while he was in his 50s, as well as sudden cardiac death of her paternal grandfather while he was also in his 50s. Upon arrival to the ED, blood pressure was 93/59 mm Hg; heart rate, 59 beats per minute; oxygen saturation, 99%/on room air, and temperature 98.4 F. On examination, the patient was well appearing, alert, oriented and in no acute distress. Orthostasis was not present. Breath sounds were clear and equal bilaterally. Cardiac examination demonstrated regular rhythm without murmur, rub or gallop. Distal pulses were intact and jugular venous distension was absent.

Electrocardiogram (ECG) was notable for sinus bradycardia with deep and symmetric T-wave inversions in leads I, II, III, aVF, V3-6, as well as ST depressions in leads V3-6. The R waves were also very prominent in leads II, III, aVF, V3-6. These findings were consistent with left ventricular hypertrophy (LVH) with strain pattern. Point-of-care cardiac ultrasound (US) demonstrated no pericardial effusion and grossly normal ejection fraction without obvious evidence of segmental subaortic septal hypertrophy or LV outflow obstruction.

Inpatient workup included a comprehensive echocardiogram, which demonstrated near-obliteration of the left ventricular apical cavity at end systole and prominent LVH in the apex measuring 11–13 mm, with a “spade” shaped left ventricle, without evidence of outflow obstruction (Fig. 1). The patient underwent stress testing with an exercise capacity of 17 metabolic equivalents of task, with an ECG that was non-diagnostic for ischemia secondary to a baseline LVH, but showing no arrhythmias or ectopic beats during exercise or recovery. The patient also underwent cardiac magnetic resonance imaging at rest, including conventional structural and functional imaging, which showed concentric thickening of the apical segments of the left ventricle (LV) with maximal wall thickness of 17 mm and associated mid-myocardial late gadolinium enhancement involving 6% of the left ventricular myocardium—establishing the diagnosis of apical HCM (ACHM) (Fig. 2).

Patients with HCM exhibit a variable phenotype with LV hypertrophy being the main manifestation, and diastolic dysfunction and dynamic LV outflow tract obstruction as important pathophysiologic features. The diagnosis is confirmed when thickening ≥15 mm is noted anywhere on the LV wall during end diastole [1]. Wall thickening is frequently asymmetric, and most commonly involves the basal septum, just below the aortic valve, leading to LVOT obstruction. It is important to note, however, that our patient exhibits AHCM, a rare variant of HCM (<3%) involving solely the apex of the LV [2,3]. In AHCM, transthoracic echocardiography (TTE) will demonstrate hypertrophy of the LV apex and a spade-like left ventricular cavity during systole when aided by intravenous echo-contrast material [2,4]. Cardiac US that focuses solely on LV outflow and basal septal thickening conveys a possibility of false negative diagnosis. Careful assessment of the entire LV including the apex may preclude this pitfall.

Studies have generally indicated a benign prognosis for individuals with AHCM. Nevertheless, there have been case reports of patients with AHCM developing potentially serious arrhythmias including atrial fibrillation, supraventricular tachycardia and ventricular tachycardia [1-5]. Notably, all of these reports have been made in individuals over the age of 50. In the case of our relatively young and exceptionally healthy patient, it is unlikely syncope was secondary to outflow obstruction,