GhEIN3, a cotton (Gossypium hirsutum) homologue of AtEIN3, is involved in regulation of plant salinity tolerance

Xiao-Qian Wang¹, Li-Hong Han¹, Wei Zhou, Miao Tao, Qian-Qian Hu, Ying-Nan Zhou, Xue-Bao Li, Deng-Di Li*, Geng-Qing Huang*

Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China

ARTICLE INFO

Keywords:
Gossypium hirsutum
GhEIN3
Ethylene
Salt stress
Reactive oxygen species (ROS)
Abscisic acid (ABA)

ABSTRACT

Ethylene insensitive 3 (EIN3), a key transcription factor in ethylene signal transduction, play important roles in plant stress signaling pathways. In this study, we isolated and characterized an EIN3-like gene from cotton (Gossypium hirsutum), designated as GhEIN3. GhEIN3 is highly expressed in vegetative tissues, and its expression is induced by 1-aminocyclopropane-1-carboxylic acid (ACC) and NaCl. Ectopic expression of GhEIN3 in Arabidopsis elevated plants’ response to ethylene, which exhibit smaller leaves, more root hairs, shorter roots and hypocotyls. The germination rate, survival rate and root length of GhEIN3 transgenic plants were significantly improved compared to wild type under salt stress. GhEIN3 transgenic plants accumulated less H$_2$O$_2$ and malondialdehyde (MDA), while higher superoxide dismutase (SOD) and peroxidase (POD) activities were detected under salt stress. In addition, expression of several genes related to reactive oxygen species (ROS) pathway and ABA signaling pathway was increased in the GhEIN3 transgenic plants under salt stress. In contrast, virus-induced gene silencing (VIGS) of GhEIN3 in cotton enhanced the sensitivity of transgenic plants to salt stress, accumulating higher H$_2$O$_2$ and MDA and lower SOD and POD activities compared to control plants. Collectively, our results revealed that GhEIN3 might be involved in the regulation of plant response to salt stress by regulating ABA and ROS pathway during plant growth and development.

1. Introduction

Soil salinity is one of the most common environmental stresses affecting plant growth and crop productivity (Zhang et al., 2016a,b). The detrimental effects of salt on plants are a consequence of both a water deficit resulting in osmotic stress and the effects of excess sodium ions imposed on critical biochemical processes (Munns and Tester, 2008). The sessile nature of plants has favored the evolution of mechanisms to cope with salt stresses. Among these mechanisms, a number of stress-related genes directly protect the plants against salt stress, or either induce or repress the downstream target genes to regulate plant development and defense responses (Deinlein et al., 2014). Phytohormones and transcription factors (such as bZIP, WRKY, AP2/ERF, MYB, bHLH, and NAC families) regulate the expression levels of various stress-related genes, leading to plant tolerance to salt stress (Deinlein et al., 2014). In recent years, studies in Arabidopsis and rice have shown that phytohormone ethylene and its downstream transcription factors, including EIN3, AP2/ERF, play an important role in salt stress (Kazan, 2015; Peng et al., 2014; Yang et al., 2015; Zhang et al., 2011,2016a,b).

Ethylene is a simple gaseous phytohormone that affects a variety of basic plant processes throughout the whole plant growth and development from seed germination to organ senescence (Abeles et al., 1992; Liu et al., 2015; Van de Poel et al., 2015). In addition, ethylene plays a key role in plant responses to biotic and abiotic stresses (Kazan, 2015; Zhang et al., 2016a,b). Ethylene functions via five membrane-associated receptors to activate the downstream signaling pathway mediated by ETHYLENE INSENSITIVE3 (EIN3), and EIN3-like 1 (EIL1) (Chao et al., 1997; Solano et al., 1998; Merchante et al., 2013). The transcription factors EIN3 and EIL1, which act as the primary output of ethylene responses, activate or repress the expression of ethylene-response target genes by binding to their promoters and thereby modulate ethylene-related responses in plants (Boutrot et al., 2010; Chang et al., 2013; Feng et al., 2017; Kazan, 2015; Peng et al., 2014; Qiu et al., 2015; Solano et al., 1998; Zhang et al., 2011). Additionally, EIN3/EIL1 homologs in different plants had been isolated and characterized in recent years. Overexpression of LeEILs restored ripening in the ethylene
insensitive unripening tomato mutant (Li et al., 2012). Banana EIN3-like genes were differentially regulated by ethylene in mature green fruit (Mbéguié-A-Mbéguié et al., 2008). The rice OsEIL1 and OsEIL2 regulate ethylene response, wounding signaling and negatively affect salt tolerance (Hiraga et al., 2009; Yang et al., 2015). And Oncidium EIL1 (OgEIL1) and OgEIL2 mRNA levels in fully opened flowers increased as time progressed after cutting or exogenous application of ethylene (Chen et al., 2011). Campanula EIL2 is a key gene in the ethylene signaling pathway, which is specific for the large flowered species C. formanekiana and C. medium. The naturally occurring 7 bp frameshift discovered in CmEIL2, correlates with ethylene insensitivity in flowers (Jensen et al., 2016).

Cotton, the largest source of fiber for textiles in the world, is considered to be a mild salt-tolerant crop, but salinity stress still has a great negative impact on its growth, yield and fiber quality, especially at germination and the young seedling stage (Ashraf, 2002; Zhou et al., 2015). Therefore, it is important to enhance cotton salt resistance through genetic manipulation. Some stress-responsive genes/proteins had been identified via transcriptome/proteomic profiling and successfully transferred to other plants or up/down-regulated in the cotton (Jensen et al., 2016). Several transcription factors play important roles in response to salt stress in cotton (Guo et al., 2009; He et al., 2016; Li et al., 2010; Ullah et al., 2018; Yan et al., 2014; Zhou et al., 2015). In this study, we characterized a cotton EIN3-like gene, GhEIN3, plays significant roles in salt stress tolerance. Ectopic expression of GhEIN3 in Arabidopsis enhanced the transgenic plants’ tolerance to salt stress. And GhEIN3 protein, as a transcriptional activator, may function in plant response to salt stress through regulating the ROS and ABA pathway.

2. Materials and methods

2.1. Plant materials and growth conditions

Cotton (Gossypium hirsutum cv. Coker312) seeds were surface-sterilized with 70% ethanol for 1 min and 10% H2O2 for 2 h, followed by washing with sterile water for three to five times. The sterilized seeds were germinated on half-strength Murashige and Skoog (MS) medium under a 16 h light/8 h dark cycle at 28 °C for 5 days. Roots, hypocotyls and cotyledons were cut from these sterile seedlings to extract total RNAs. Different cotton tissues including leaves, stems, petals, anthers, ovules and fibers were obtained from cotton plants for isolating total RNAs. For ACC treatment, 5-day-old cotton seedlings were placed in MS liquid medium with 10 μM ACC for 0, 1, 2.5, 5, 10 h. The treated roots were harvested for RNA isolation. For Arabidopsis thaliana (Col-0) ethylene sensitivity assay, plant growth in air and ACC was carried out as described previously (Potuschak et al., 2003).

2.2. Gene cloning, sequence analysis and vector construction

The coding sequences of GhEIN3 (GenBank accession number: AFO04216) and OsEIL1 (Gossypium hirsutum, AAZ78349) and GhEIN3 (Gossypium hirsutum, Gh_A05G0871) were amplified by PCR and cloned into the pBluescript II SK (pSK) vector for sequencing. The GhEIN3 and its deduced proteins were analyzed using DNAstar software (DNAnstar Inc., Madison, WI, USA), and protein sequence homology analysis was performed with Clustal omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). Phylogenetic analysis was employed to investigate the evolutionary relationships among the plant EIN3 homologs by MEGA 7.0 software with the bootstrap analysis conducted with 1000 iterations. Then, the coding sequence of GhEIN3 in pSK vector was digested with different combination of restriction enzymes, and subcloned into pCAMBIA2300/pCAMBIA2300-eGFP to create the vector pGhEIN3 overexpression vector and pGhEIN3-eGFP vector.
2.3. Subcellular location of GhEIN3 protein

The GhEIN3:eGFP vector was transferred into Agrobacterium tumefaciens GV3101 and transiently expressed in tobacco (Nicotiana benthamiana) leaves as described previously (Sparkes et al., 2006). Subsequently, GFP fluorescence and DAPI fluorescent staining tobacco leaf epidermal cells were detected under a SP5 Meta confocal laser microscope (Leica, Wetzlar, Germany).

2.4. Transactivation activity assay

For transcriptional activation assay, the coding sequence of GhEIN3
was cloned into pGBK7 vector (Clontech, Palo Alto, CA, USA) and transferred into yeast strains AH109 and Y187 using the high-efficiency lithium acetate transformation procedure. AH109 transformants were grown on double dropout medium (SD/-Ade/-Trp) and Y187 transformants were further confirmed with color change on a β-galactosidase filter paper using the flash-freezing filter assay (Zhang et al., 2010). The yeast harboring empty pGBK7 and pGBK7-53 vector was used as the negative and positive control, respectively.

2.5. Quantitative RT-PCR (qRT-PCR) analysis

The cotton total RNA was extracted and digested with RNase-free DNase I (TIANGEN, Beijing, China). Then, 2–3 μg of total RNA was used for reverse transcription by M-MLV Reverse Transcriptase (Promega, USA). Expression of GhEIN3 in cotton different tissues was analyzed by qRT-PCR using the fluorescent intercalating dye SYBR Green in a detection system (Opticon2; MJ Research) as described previously (Li et al., 2005). A cotton ubiquitin gene (GhUBI1, GenBank accession number: EU604080) was used as a quantitative control in qRT-PCR reactions. Each qRT-PCR analysis was performed for three replicates. The primers were showed in Table S1.

Arabidopsis total RNA was isolated from the seedlings by Trizol reagent (Invitrogen, Carlsbad, California, USA) according to the manufacturer's instruction. qRT-PCR analysis was performed to check the expression of several salt stress-associated genes, using AtActin2 as a normalization control. Each qRT-PCR analysis was performed for three replicates. The primers were showed in Table S1.

2.6. Arabidopsis transformation and seed germination assay

35S::GhEIN3 vector was transformed into Arabidopsis thaliana (Col-0) by the floral dip method (Zhang et al., 2006). Three independent homozygous lines of the T3 and T4 generations were chosen for phenotypic analysis. The wild type Arabidopsis and GhEIN3 transgenic seeds were sterilized and grown on MS medium with different concentrations of NaCl. The seeds were placed in dark at 4 °C for two days to break seed dormancy, and then transferred in a plant growth incubator (22 °C, 16 h light/8 h dark cycle) to let seeds germinate. A seed was considered as germinated as long as its radicle penetrated the seed coat. The experiments were carried out with three biological replicates and each replicate represents 40 seeds for each line.

2.7. Root growth assay

Seeds of wild type and GhEIN3 overexpressing transgenic Arabidopsis were germinated on MS media for 4 days (22 °C, 16 h light/8 h dark cycle) and then seedlings which had no significant difference in primary root length were transferred to MS media with or without NaCl. The primary root length was measured at fifth day after transferred. The experiments were carried out with three biological replicates and each replicate represents 40 seeds for each line.

2.8. VIGS of GhEIN3 gene in cotton

To investigate the putative function of GhEIN3 in cotton, VIGS experiments were performed according to Gao et al. (2013) with minor modifications. Target gene fragments of GhEIN3 and GhCLA1...
(cloroplastos alterados 1, positive control) were amplified from the *G. hirsutum* leaf cDNA to generate TRV:GhEIN3 and TRV:GhCLA1 vectors (the PCR primers were shown in Table S1). Then, the TRV:GhEIN3 and TRV:GhCLA1 vectors were transformed into *Agrobacterium tumefaciens* (GV3101) by electroporation. Agro-infiltration was performed using a needleless syringe on 8-day-old seedlings for *G. hirsutum* coker 312. The inoculated seedlings were then transferred to a climate chamber and grown at 25 °C in the dark for 2 days and then exposed to light (16 h/8 h light/dark) for 2 week. qRT-PCR was performed to further confirm that *GhEIN3* had been silenced in VIGS experiments. Finally, these *GhEIN3*-silenced plants and control plants were treated by 400 mM NaCl solution regularly after every 4 days until the phenotypes appeared.

![Fig. 5. Overexpression of *GhEIN3* in *Arabidopsis* enhance germination rate under salt stress. (A–D) Wild type and transgenic seedlings grow in MS medium, 100 mM NaCl, 150 mM NaCl and 200 mM NaCl, respectively. (E–H) Measurement and statistical analysis of germination rate of *GhEIN3* transgenic and wild type seedlings correspond to A–D. (F–H) Independent *t*-tests demonstrated that there was significant difference (*P < 0.05) in germination rate in 5–8 days between the *GhEIN3* transgenic lines and controls.](image1)

![Fig. 6. Overexpression of *GhEIN3* in *Arabidopsis* enhance root length and survival rate under salt stress. (A, C) Transgenic plants showed better roots growth than wild type in the presence of 100, and 150 mM NaCl. (B, D) Transgenic plants showed higher survival rate than the wild type in the presence of 200 mM NaCl. Error bars represent ± SD of at least three biological replicates (*P < 0.05, **P < 0.01).](image2)
2.9. Determination of MDA, H$_2$O$_2$ content and SOD, POD activity

To check malondialdehyde (MDA), hydrogen peroxide (H$_2$O$_2$) superoxide dismutase (SOD) and peroxidase (POD) activity in Arabidopsis leaves, one group of 4-week-old GhEIN3 transgenic plants and wild type Arabidopsis plants were subjected to salt stress by giving 200 mM NaCl solution for 5 days whereas another group plants were kept untreated as controls. For detecting MDA, H$_2$O$_2$ content and SOD, POD activity in cotton leaves, one group of 5-week-old TRV:GhEIN3 and TRV:00 cotton plants were subjected to salt stress by giving 400 mM NaCl solution whereas another group plants were kept untreated as controls. To detect MDA, H$_2$O$_2$ content, and SOD and POD activity, 0.1 g leaves were collected from the Arabidopsis plants and cotton plants. Leaves were ground in liquid nitrogen was used for the determination of these contents. For quantification of MDA and H$_2$O$_2$ contents, leaves of Arabidopsis or cotton were prepared and followed the procedure as described in plant MDA assay kit (Colorimetric method) and hydrogen peroxide assay kit (Nanjing Jiancheng Bioengineering Institute, China), respectively. The measurement of POD and SOD enzyme activity were followed the procedure as described in Peroxidase assay kit and Superoxide Dismutase (SOD) assay kit (Nanjing Jiancheng Bioengineering Institute, China), respectively.

3. Results

3.1. Identification and sequence analysis of GhEIN3

To study whether ethylene signaling regulators are involved in cotton salt stress, we identified sixteen EIN3-like (EIL) genes in cotton (Gossypium hirsutum) genome (Fig. S1). Among them, GhEIN3 (Gh_A05G0871) displays relatively higher expression activity in vegetative tissues (http://structuralbiology.cau.edu.cn/gossypium/), and was selected as a candidate to investigate its function in salt stress of cotton. Sequence analysis indicated that GhEIN3 has an open reading frame of 1842 bp in length with no introns, and encodes a protein of 613 amino acids. Multi-sequence alignment analysis results showed the DNA-binding domain of GhEIN3 in the N-terminus is highly conserved with AtEIN3 and OsEIL1 (Fig. 1A). Phylogenetic analysis and DNAstar software analysis revealed that GhEIN3 shared a higher identity with AtEIN3 (68.7%), AtEIL1 (69.7%) than Arabidopsis thaliana EIL2 (43.3%), and AtEIL3 (42.1%) (Fig. 1B). Additionally, GhEIN3 also shared 50.5%–89.9% identity with other EIN3 homologs, including Theobroma cacao TcEIN3 (XP_007016682, 89.9%), Oryza sativa OsEIL1 (AAZ78349.1, 51.5%), Zea mays ZnEIL1 (NP_001152035, 50.5%), Rucus communis ReEIN3 (XP_002530192, 80.9%), Glycine max GmEIN3 (XP_003543159, 76.3%), Lycopersicon esculentum LeEIL4 (NP_001233931, 69.8%), Malus domestica MdEIL2 (ADE41154, 64.9%) and MdEIL3 (AGI41325, 63.9%), Medicago truncatula MtEIN3 (ACJ85584, 74%), Nicotiana tabacum NtEIL1 (AAP03997, 73.5%) and NtEIL2 (AAP03998, 73.2%), Actinidia delicosa AdEIL2 (ACJ70675, 72.7%), Cicer arietinum CaEIN3 (XP_004501972, 73.2%), Populus trichocarpa PeEIN3 (XP_006384758, 78.4%), Rosa hybrid cultivar RhEIN3-3 (AKG07288, 78.1%), Sorghum bicolor StEIL (XP_002467935, 51.3%), Cucumis sativus CsEIN3 (AFK80347, 77.3%), Vicia faba VfEIL3 (ACD87815, 73.8%), Vigna radiata VrEIN3 (AP467783_1, 73.1%), and Vitis vinifera VvEIN3 (XP_002275284, 71.8%) (Fig. 1B). Phylogenetic

![Fig. 7. Overexpression of GhEIN3 in Arabidopsis enhance Salt-tolerance in soil. (A) GhEIN3 transgenic lines showed better growth with lower H$_2$O$_2$ and MDA content (B, C), more SOD and POD activities (D, E) in the presence of 200 mM NaCl in soil condition. Error bars represent ± SD of at least three biological replicates (*P < 0.05, **P < 0.01).](image-url)
relationship analysis revealed that GhEIN3 belongs to EIN3/EIL1 subfamily and has the closest relationship with *Theobroma cacao* EIN3.

3.2. Expression of GhEIN3 induced by ACC and NaCl

To investigate the spatial expression of *GhEIN3* in cotton, qRT-PCR was performed. The results showed that *GhEIN3* is expressed in all tissues of cotton. The transcripts of *GhEIN3* accumulated higher in roots, hypocotyls, stems, leaves, petals and 3dpa ovules than in other tissues (Fig. 2A).

Since *GhEIN3* is a homologue of *AtEIN3*, which participates in ethylene signaling, we presume its expression may be induced by ACC, an ethylene biosynthesis precursor. Five-day-old cotton seedlings were treated with ACC and then total RNAs were isolated from the roots of these treated cotton seedlings for quantitative RT-PCR analysis (Fig. 2B). The results showed that the expression of *GhEIN3* was significantly up-regulated in cotton seedlings by ACC.

To investigate the relationship between *GhEIN3* and salt stress, we analyzed *GhEIN3* promoter’s activity using transgenic *Arabidopsis* carrying a fusion of *GhEIN3* promoter and GUS gene. GUS activity was detectable mainly in roots of 5 days after germination (DAG) seedlings by quantitative RT-PCR (Fig. 2D). The results showed that the expression of *GhEIN3* was significantly up-regulated in cotton seedlings by ACC.

To investigate the relationship between *GhEIN3* and salt stress, we analyzed *GhEIN3* promoter’s activity using transgenic *Arabidopsis* carrying a fusion of *GhEIN3* promoter and GUS gene. GUS activity was detectable mainly in roots of 5 days after germination (DAG) seedlings by quantitative RT-PCR (Fig. 2D). The results showed that the expression of *GhEIN3* was significantly up-regulated in cotton seedlings by ACC.

3.3. *GhEIN3* is a transcriptional activator

To determine whether *GhEIN3* is a transcriptional activator, we transferred the pGBKT7-*GhEIN3* construct into yeast strain AH109 and Y187, using pGBKT7 vector as a negative control. The transformed yeast cells with *GhEIN3* grew well on the selective SD-/Trp-/Ade medium, indicating that the reporter gene ADE2 was activated (Fig. 3A). Additionally, the transformed yeast cells harboring *GhEIN3* turned blue in the presence of X-Gal, indicating that the reporter gene LacZ was activated. By contrast, yeast cells harboring empty pGBKT7 vector did not grow on the selective medium, and did not turn blue (Fig. 3B).

Additionally, we generated the transformed tobacco leaf cells transient expressing *GhEIN3*::GFP. GFP signals in cells were detected only in the cell nucleus (Fig. 3C–E). These results suggest that *GhEIN3* protein functions as an active transcriptional activator.

3.4. Ectopic expression of GhEIN3 in Arabidopsis enhances plants response to ethylene

To further investigate the functions of *GhEIN3*, we cloned and transformed it into *Arabidopsis* via a floral dip method. After the RNA extraction, qRT-PCR confirmed that *GhEIN3* had been successfully transformed into *Arabidopsis*, and line L1, L2, L18 were selected for further analysis. Growing in the normal culture, the transgenic *GhEIN3* seedlings showed slightly smaller leaves, shorter roots and hypocotyls, compared with wild type plants (Fig. S2, Fig. 4A, C, F, H). After the treatment of 10 mM ACC, the root length and hypocotyl length of wild type plants decreased obviously. Meanwhile, the *GhEIN3* overexpressing transgenic plants showed much shorter roots and hypocotyls than that of the wild type under ACC treatment (Fig. 4B, C, G, H). In addition, *GhEIN3* overexpressing transgenic plants showed longer root hair and higher root hair density in normal condition compared to wild type (Fig. 4D). Interestingly, the root hair density and length of *GhEIN3* transgenic plants increased more significantly than wild type under ACC treatment (Fig. 4E). These results indicated that *GhEIN3*, acts as a positive regulator, participates in ethylene signaling.

3.5. Overexpressing GhEIN3 plants enhanced salt tolerance

Arabidopsis EIN3 positively regulates salt stress tolerance, while rice...
EIL1/EIL2 negatively affects salt stress tolerance (Peng et al., 2014; Yang et al., 2015). To gain insight into the effects of *GhEIN3* on salt stress tolerance, the transgenic seed germination capacity on MS agar medium containing different concentrations of NaCl was analyzed. As shown in Fig. 5A, E, less difference in seed germination was observed between the *GhEIN3* overexpressing transgenic lines and wild type without NaCl treatment. When the concentration of NaCl was increased to 100 mM, the germination rates of *GhEIN3* overexpressing seeds was slightly higher (about 5–10% higher) than the wild type seeds at 8 d after sowing (Fig. 5B, F). *GhEIN3* overexpressing transgenic lines showed dramatically higher germination rates than wild type on the MS medium containing 150 and 200 mM NaCl (Fig. 5C, D, G, H). As the NaCl concentration was further increased to 150 mM, germination rates of three *GhEIN3* transgenic lines were 75% (L1), 83% (L2) and 80% (L18), respectively, while wild type was only 54% at the eighth day after sowing (Fig. 5G). And on MS medium with 200 mM NaCl, seed germination rates of three *GhEIN3* transgenic lines were 72% (L1), 80% (L2) and 79% (L18), respectively, while wild type was only 49% at the eighth day after sowing (Fig. 5H). Statistical analysis showed significant differences in seed germination between the transgenic plants and wild type.

Meanwhile, we also examined the primary root length of overexpressing *GhEIN3* plants and wild type under salt stress (Fig. 6). On MS medium, we found the primary root lengths of *GhEIN3* transgenic
plants are shorter than wild type slightly. Under 100 and 150 mM NaCl treatments, however, primary root length of GheIN3 transgenic plants was longer than that of wild type, especially on MS with 100 mM NaCl (Fig. 6A, C). Additionally, a 200 mM concentration of NaCl inhibited the growth of both transgenic plants and wild type, but the transgenic plants showed higher green leaf rate (Fig. 6A). Then, we conducted survival rate assay to further evaluate the role of GheIN3 under salt stress. Plants were grown on MS medium for 5 d and then transferred onto MS medium supplemented with 200 mM NaCl for 3 d. The overexpressing GheIN3 plants showed a higher survival rate compared to wild type (Fig. 6B, D). In addition, we further evaluate the role of GheIN3 under salt stress in soil and checked the antioxidant enzyme GheEIN3 expressing onto MS medium supplemented with 200 mM NaCl for 3 d. The results showed GheIN3 transgenic plants enhanced salt-tolerance compared to wild type (Fig. 7A). Salt stress can increase the accumulation of reactive oxygen species (ROS), which results in cell damage. To evaluate the role of GheIN3 in the oxidative stress pathway, MDA and H2O2 contents were checked in GheIN3 transgenic plants and wild type. The results showed MDA and H2O2 accumulated less in transgenic plants than wild type under NaCl stress (Fig. 7B and C). For evaluating the ROS scavenging capability in GheIN3 transgenic plants and wild type, SOD and POD activities were also checked. The SOD and POD activities were higher in transgenic plants compared to wild type under NaCl stress (Fig. 7D and E). These results reveal that GheIN3 can enhance plant tolerance to salt by decreasing the accumulation of reactive oxygen species (ROS).

ABA is a plant hormone that mediates the adaptation of plants to abiotic stresses, including salt stress. To determine the signaling pathways in which overexpressing plants obtained tolerance against salt stress, relative expression of the ABA signaling pathway (AtABF4, AtAB5, CNI1, AtCBL1 and ADR29B), and reactive oxygen species (ROS) pathway (SIED1, SIE2, ZAT12, PER64 and phi-1) were checked in transgenic Arabidopsis and wild type under salt stress (Kang et al., 2002; Msanne et al., 2011; Tetzuka et al., 2013; Peng et al., 2014; Zhang et al., 2016a,b). Our results showed that the relative expression of these genes was significantly higher in transgenic lines compared to wild type under salt stress (Fig. 8). These results indicated that overexpression of GheIN3 in Arabidopsis increased salt stress tolerance during seedling development by regulating the ABA and ROS pathway.

3.6. Enhanced salt sensitivity in GheEIN3-VIGS plants

To further investigate the functions of GheEIN3 in cotton, a VIGS assay of GheEIN3 was applied to cotton Coker 312, with GhCCLA1 as a reporter gene to evaluate the efficiency of VIGS. After inoculation with Agrobacterium tumefaciens (GV3101) contained the TRV:GheIN3 or TRV:00 or TRV:GhCCLA1, respectively, we obtained twelve GheEIN3-silenced plants, six TRV:00 control plants, and six positive (TRV:GhCCLA1) plants. After 14 days of inoculation, the albino phenotype of TRV:GhCCLA1 plants was found (Fig. 9A). And the expression of GheEIN3 in TRV:00 and TRV:GheEIN3 plants was checked to confirm whether the corresponding gene expression had been reduced or not. The results showed that GheIN3 had been effectively silenced in the TRV:GheIN3 plants compared to TRV:00 plants (Fig. 9B). Then, TRV:00 and TRV:GheIN3 plants were subjected to salt stress. After 21 days of salt treatment, the shorter shoots and roots were found in TRV:GheIN3 plants compared to control plants (Fig. 9C and D, red arrow). TRV:GheIN3 plants also appeared relativley wilt leaves compared to control plants (Fig. 9C, red arrow). These results revealed that silencing of GheIN3 can enhance plant sensitivity to salt.

To evaluate the role of GheIN3 in the oxidative stress pathway, we measured MDA and H2O2 contents under salt stress in TRV:GheIN3 and TRV:00 plants. Under salt stress, a greater accumulation of MDA and H2O2 was observed in TRV:GheIN3 plants compared to TRV:00 plants (Fig. 9E and F). This result revealed that TRV:GheIN3 plants were more severely damaged by ROS compared to the control plants under salt stress. To check the ROS-scavenging capability in TRV:GheIN3 and TRV:00 plants, SOD and POD activities were also checked. A lower SOD and POD activities were observed in TRV:GheIN3 plants compared to control plants (Fig. 9G and H). The results suggested that TRV:GheIN3 plants have a weaker ability to scavenge peroxides and therefore they are more sensitive to salt stress.

4. Discussion

EIN3/EIN3-like 1 (EIL1) homologs are positive regulators of ethylene signal transduction pathway and had been widely characterized in different species of plants. However, there is no report about EIN3 or EIN3-like genes (EILs) in cotton so far. In this study, an EIN3 homologous gene (GheEIN3) from cotton was isolated and characterized. Sequence alignment showed that GheEIN3 is homologous with the reported EILs in different plant species (Fig. 1), indicating a high conservation of the EIL family among different plant species. GheIN3 was expressed in different cotton tissues, with a relatively high expression level in vegetative tissues. The transcript of GheEIN3 was also induced by ACC treatment. It has been demonstrated that overexpression of AtEIN3 and OsEIL1 genes activate ethylene response (Chao et al., 1997; Mao et al., 2006). In our experiments, overexpression of GheEIN3 in Arabidopsis also activated the ethylene signaling, resulting in longer root hair and higher root hair density which suggested that the basic function of the EIN3/EILs is conserved (Potschak et al., 2003). Sequence alignment analysis showed that high sequence identity was emerged among the EIN3 domain of the GheEIN3, AtEIN3 and OsEIL1 (Fig. 1).

Salinity is undoubtedly a major abiotic stress factor that restricts plant productivity by causing ionic, oxidative, and osmotic stress (Kazan, 2015). When plants encounter salt stress, one important cause of high salinity-imposed damage is ROS generated by salt stress. On one hand, ROS plays a dual role in plants as modulators of cellular signaling pathways. On the other hand, it acts as oxidative agents or toxic products elicited by cellular stresses (Apel et al., 2004; Shabala et al., 2015). ROS is tightly regulated by the equilibrium between production and scavenging (Perez and Brown, 2014). In Arabidopsis, the expression of several genes (ZAT12, SIE2, SIED1, PER64 and phi-1) related to ROS pathway was notably elevated in AtEIN3ox plants under salt condition compared with that in wild type or ein3 eil1 (Peng et al., 2014). Besides, Peng et al. (2014) found lower levels of H2O2, a kind of ROS accumulation in wild type plants but higher levels in ein3 eil1 upon salt treatment (Peng et al., 2014). Similarly, Zhang et al. (2016a,b) reported that tobacco ethylene response factor 1 (TERF1), which regulated by EIN3-like proteins, functions in ROS scavenging (Zhang et al., 2016a,b). In our studies, we found that ectopic expression of GheEIN3 in Arabidopsis up-regulated the expressions of ZAT12, SIE2, SIED1, PER64 and phi-1, and accumulated lowerer levels of H2O2 and MDA, exhibited higherer activities of POD and SOD under salt treatment. The result was in accordance with AtEIN3’s role in salt stress. Furthermore, in our study, GheEIN3-VIGS plants accumulated higher levels of H2O2 and MDA, but exhibited lowerer activities of POD and SOD under salt treatment (Fig. 9). The MDA level under stress conditions is an indicator of ROS destructive effects, while SOD and POD are antioxidant enzymes which can scavenge the toxic ROS and lead to enhanced tolerance against different abiotic stresses (Gill and Tuteja, 2010). Lower SOD and POD activities were detected in GheEIN3-VIGS plants, which reveal that GheEIN3-VIGS plants were less protected from oxidative and osmotic damages. Higher accumulation of MDA and H2O2 content in GheIN3-VIGS plants suggested that these GheEIN3 knockdown plants have a less efficient system of scavenging ROS. Our results are consistent with those recent advances, which showed that the ethylene signaling modulates salinity responses largely via regulation of ROS-scavenging mechanisms (Jiang et al., 2013; Peng et al., 2014; Zhang et al., 2016a,b). So GheEIN3, likely to the Arabidopsis EIN3, plays positive roles in plant salt tolerance by ROS pathway. In rice, however, OsEIL1 and OsEIL2 negatively regulate salt tolerance (Yang et al., 2015). And this negative regulation by OsEIL1 and OsEIL2 in salt tolerance is likely...
attributable to the direct regulation of HIGH-AFFINITY K− TRANSPORTER2; 1 expression and Na+ uptake in roots (Yang et al., 2015). Se-
posing that responsive genes of ROS pathway and ABA pathway. Hereby, we hy-
thesis of salt tolerance by up-regulating transcripts of downstream stress-
ABD–VIGS cotton plants show shorter roots under salt stress (Cheng et al., 2013; Solano et al., 1998), which are also downstream genes of ABA signaling pathway (Aubert et al., 2011 Nakashima et al., 2006; Wilhelm and Thomashow. 1993). In recent years, several studies showed that ERFs can positively regulate salt tolerance via regulating ABA signaling (Yao et al., 2016; Li et al., 2018, 2019). This prompted us to come up with the idea that EIN3 regulates plant tolerance to salt stress partly via regulation of ABA signaling pathway. In our studies, GhEIN3 overexpressing Arabidopsis plants had a better germination rate and longer roots under salt stress, while the GhEIN3-VIGS cotton plants show shorter roots under salt condition (Fig. 6; Fig. 8). Furthermore, the expression of several genes (AtABF4, AtABIS, CN1, AtCBL1 and AtRD29B) related to ABA pathway was notably elevated in GHEIN3 overexpressing plants under salt condition compared with wild type. Therefore, it is likely that EIN3 regu-
lates seed germination rate and root length under salt stress through ABA signaling pathway.

In summary, GHEIN3 was involved in ROS and ABA-mediated process of salt tolerance by up-regulating transcripts of downstream stress-responsive genes of ROS pathway and ABA pathway. Hereby, we hy-
thesized that GHEIN3 participates in the stress signaling pathway, and therefore, according to our understanding, the overexpression of GHEIN3 will increase salt tolerance in cotton as well as in other crops.

Author's contributions

GQH, QXQ and LHH conceived and designed the experiment, and performed most of the experiments. QQH, WZ, MT, WYW and YNZ performed some of the experiments and assisted in data analysis. XBL, DDL and GQH analyzed the data and wrote the manuscript.

Acknowledgements

This work was supported by the National Science Foundation of China (Grant No. 31271317) and Fundamental Research Funds for the Central Universities (Grant No. CCNU16A02047, No. CCNU19TS064).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.plaphy.2019.08.022.

Competing financial interests

The author(s) declare no competing financial interests.

References

Boutrot, F., Segonzac, C., Chang, K.N., Qiao, H., Ecker, J.R., Zipfel, C., Ratjen, J.P., 2010. Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethy-
Chen, S.Y., Tsai, H.C., Raghu, R., Do, Y.Y., Huang, P.L., 2011. cDNA cloning and func-
Li, J., Li, Z., Tang, L., Yang, Y., Zouine, M., Bouzayed, M., 2012. A conserved phos-
phorylation site regulates the transcriptional function of ETHYLENE-INSENSITIVE3-
Plant Physiology and Biochemistry 141 (2019) 83–93 92