Research article

Phenotypic and proteomic characteristics of sorghum (*Sorghum bicolor*) albino lethal mutant *sbe6-a1*

Li Zhu,1, Daoping Wang,1, Jiusheng Sun,1, Yongying Mu,1, Wei Jun Pu,1, Bo Ma,1, Ful i Ren,1, Wenxiu Yan,1, Zhiguo Zhang,1, Guiying Li,1, Yubin Li,1,∗∗, Yinghong Pan,1,∗∗

Abstract

Leaf color mutants are ideal materials for chloroplast development and photosynthetic mechanism research. Here, we characterized an EMS (ethyl methane sulfonate)-mutagenized sorghum (*Sorghum bicolor*) mutant, *sbe6-a1*, in which the severe disruption in chloroplast structure and a chlorophyll deficiency promote an albino leaf phenotype and lead to premature death. The proteomic analyses of mutant and its progenitor wild-type (WT) were performed using a Q Exactive plus Orbitrap mass spectrometer and 4,233 proteins were accurately quantitated. The function analysis showed that most of up-regulated proteins in mutant *sbe6-a1* had not been well characterized. GO-enrichment analysis of the differentially abundant proteins (DAPs) showed that up-regulated DAPs were significantly enriched in catabolic process and located in mitochondria, while down regulated DAPs were located in chloroplasts and participated in photosynthesis and some other processes. KEGG pathway-enrichment analyses indicated that the degradation and metabolic pathways of fatty acids, as well as some amino acids and secondary metabolites, were significantly enhanced in the mutant *sbe6-a1*, while photosynthesis-related pathways, some secondary metabolites' biosynthesis and ribosomal pathways were significantly inhibited. Analysis also shows that some DAPs, such as FBAs, MDHs, PEPC, ATP synthase, CABS, CHLM, PRPs, pathogenesis-related protein, sHSP, ACP2 and AOX may be closely associated with the albino phenotype. Our analysis will promote the understanding of the molecular phenomena that result in plant albino phenotypes.

1. Introduction

Chloroplast development and chlorophyll (Chl) metabolism are crucial to all photosynthetic plants. Many Chl- and chloroplast-associated mutations affecting leaf coloration and/or seedling viability have been identified in plants (Jiu et al., 2018). Leaf color variations widely exist in nature, mainly originating from spontaneous mutations (Hou et al., 2009), transposon-insertion mutants (Hayashi-Tsugane et al., 2014), T-DNA insertion mutations (Chao et al., 2014), and EMS-induced mutations (Zhu et al., 2016). The leaf color mutants can be used not only as effective markers for hybridization identification (Su et al., 2012) and molecular breeding (Qin et al., 2015), but also as ideal materials for investigating the mechanisms involved in photosynthesis, Chl biosynthesis, and chloroplast development (Li et al., 2018).

Albino mutants are the most common leaf color mutants in plants and characteristically present the inability to produce chloroplasts and defects in chloroplast development. The albinism phenomenon is widespread in a variety of plants, including *Arabidopsis thaliana* (de...
L. Zhu, et al.

Plant Physiology and Biochemistry 139 (2019) 400–410

2.1. Plant materials and growth conditions

The sorghum albino mutant sbe6-a1 was identified from an EMS-mutagenesis library of the M3 population of sorghum cultivar Jiutian 1, which was obtained from the Biotechnology Research Institute, Chinese Academy of Agricultural Sciences. All of the sorghum seeds used in this study were propagated under standard field conditions at Langfang Experimental Base, Hebei, China. For laboratory work, sorghum plants were grown in a greenhouse under a 16 h-light/8 h-dark cycle at 28 °C in Beijing, China. No significant differences were observed between sbe6-a1 mutant grown in the greenhouse and in the field. The growth of sbe6-a1 mutant, owing to their inability to synthesize Chl normally, was severely inhibited, and the plants eventually died.

2.2. Chl content determination

The Chl contents were determined according to the method described by Arnon (1949). Fresh leaf discs (approximately 0.1 g fresh weight) were cut and homogenized in 80% (w/v) cold acetone, followed by centrifugation at 5,000 × g for 10 min. The contents of Chl a, Chl b, total Chl and carotenoids were calculated from the absorbance levels of the supernatant at 665 nm, 649 nm, and 470 nm as measured with a DU 800 UV/Vis spectrophotometer (Beckman Coulter, USA). (Lichtenhaler and Wellburn, 1987). The calculation formula is presented, and the relevant values were calculated as follows:

\[
\text{Chl a} = 13.95 \times A_{665} - 6.8 \times A_{649} \\
\text{Chl b} = 24.96 \times A_{649} - 7.32 \times A_{665} \\
\text{Total Chl} = \text{Chl a} + \text{Chl b} = 18.16 \times A_{649} + 6.63 \times A_{665} \\
\text{Carotenoid} = (1,000 \times A_{470} - 2.05 \times \text{Chl a} - 114.8 \times \text{Chl b})/248
\]

2.3. Transmission electron microscopy (TEM) of chloroplasts

The ultrastructure of chloroplasts from the seedling-stage leaves in the albino mutant and the WT were investigated using TEM. Fresh samples were collected from the third-leaf positions, cut into 2 mm-wide pieces, and fixed with 2.5% glutaraldehyde for 4 h at 4 °C. They were then rinsed and incubated overnight in 1% OsO4 at 4 °C, dehydrated through a series of gradient ethanol solutions (30%, 50%, 70%, 80%, 90%, and 95%), infiltrated with a graded series of epoxy resin, and finally embedded in a pure epoxy resin at 70 °C overnight. The thick sections (90 nm) were cut into thin sections and stained with 10 mM lead citrate and 2% uranyl acetate in 50% ethanol for 10 min and then viewed using a HT7700 Transmission Electron Microscope (Hitachi, Tokyo, Japan).

2.4. Protein extraction and digestion

From each sample (two independent biological replicates and three technical repetitions), 200 mg of sorghum leaf was used for the protein extraction. Leaves were powdered in liquid nitrogen using a Cell Disruption System (Retsch, Germany) and then incubated in extraction buffer (8 M Urea, 2 M Thiourea, 2 mM EDTA, 20 mM CaCl2, 500 mM NaCl, and 100 mM Tris-HCl, pH 8.1). Following sonication with an ultrasonic device (Skymen, China) at 30 KHz for 2 min at 4 °C, all of the urea-containing samples were centrifuged at 13,000 × g for 15 min at 4 °C, and then, the supernatants were loaded onto the filtration device (Amicon Ultra-0.5 mL Centrifugal Filters, 10K, Millipore). The 100-mM dithiothreitol buffer was used to reduce the disulfide bonds of protein extracts after the supernatants were centrifuged at 13,000×g for 25 min. After being washed with 0.3 M of 8 M urea and 100 mM Tris-HCl (pH 8.1) buffer three times (centrifuged at 13,000 × g for 20 min for each wash), the protein samples were alkylated with 50 mM iodoacetamide. Following an additional three washes with 0.2 M of 8 M urea buffer (centrifuged at 13,000 × g for 20 min for each wash), a 50-mM NH4CO3 solution was added to dilute the urea agent. Then, the extracted proteins were digested with 0.5 μg trypsin (Promega, USA) for 10 h at 37 °C.

2.5. Mass spectrometry (MS) analysis

The isolation and analysis of peptide fragments were performed using the liquid chromatography system Easy nLC and the MS system Q-Exactive Plus (Thermo Fisher Scientific). For each running process, 1 μL peptide sample was loaded onto a pre-separation column (P/N 164564, C18, 5-μm diameter, 100 Å pore size, 100 μm × 2 cm; Thermo Fisher Scientific) that was connected to an analytical column (P/N 164568, C18, 3-μm diameter, 100 Å pore size, 75 μm × 15 cm; Thermo Fisher Scientific). The peptide mixture was isolated by setting a gradient of
acetonitrile as follows using two solutions (solution A: 0.1% formic acid, ddH2O; and solution B: 0.1% FA, acetonitrile): solution B, 3%–7% for 8 min, 7%–20% for 62 min; 20%–30% for 13 min; 30%–90% for 1 min, and 90% for 6 min, at a flow rate of 400 nL min⁻¹. The parameter settings of the Data-dependent Acquisition MS were set as follows: MS spectra were acquired at resolution ratio of 70,000, scan parameter settings of the Data-dependent Acquisition MS were set as 10 ppm; 0.02 Da fragment ion tolerance; up to two missed cleavages; carbamidomethyl cysteine as a fixed modification; oxidized methionine on the amino (N)-terminal; and deamination of glutamine as variable modifications. Peptide-spectral matches were filtered to a 1% false discovery rate. Three spectral results (from three technical repetitions) were combined and searched using Proteome Discoverer software. The quantitative results were acquired using MaxQuant 1.5.3.30 software (http://www.coxdocs.org) and the phytozome database (Sobicolor_313_v3.1.protein.fa.gz, https://phytozome.jgi.doe.gov/pz/portal.html). The settings for the quantitative analysis were set as follows: the mass tolerance of the precursor was set as 45 ms, with a 27 normalized collision energy. The standard of acquisition for MS/MS was performed by collecting 20 of the most intense precursor ions and then implementing a MS/MS mass analysis. At least three replicates were performed for each experiment. The raw MS files were used for protein identification and abundance quantitation.

2.6. Protein identification and label-free quantitation

The qualitative analysis of proteins was performed using Proteome Discoverer software (version 2.1, Thermo Fisher Scientific) with Uniprot Data (Sorghum bicolor, 11:10 a.m., August 3, 2018). The following conditions were used: the mass tolerance of the precursor was set as 10 ppm; 0.02 Da fragment ion tolerance; up to two missed cleavages; carbamidomethyl cysteine as a fixed modification; oxidized methionine on the amino (N)-terminal; and deamination of glutamine and asparagine as variable modifications. Peptide-spectral matches were filtered to a 1% false discovery rate. Three spectral results (from three technical repetitions) were combined and searched using Proteome Discoverer software. The quantitative results were acquired using MaxQuant 1.5.3.30 software (http://www.coxdocs.org) and the phytozome database (Sobicolor_313_v3.1.protein.fa.gz, https://phytozome.jgi.doe.gov/pz/portal.html). The settings for the quantitative analysis were set as follows: the confidence of peptide fragmentation was set as high; the mass tolerance of the precursor was set as 20 ppm; 0.02 Da fragment ion tolerance; up to two missed cleavages; carbamidomethyl cysteine as a fixed modification; oxidized methionine on the amino (N)-terminal; and deamination of glutamine and asparagine as variable modifications. The qualitative and label-free quantitative (LFQ) original results obtained from the raw files were used for the subsequent bioinformatics analysis.

2.7. Bioinformatics analysis

The qualitative and label-free quantitative (LFQ) data of proteomes were pre-processed using a standardized protocol and then used for screening related proteins. The p-value threshold was set to 0.05. When the ratio of LFQ intensity of a protein in mutant sbe6-a1 was greater than two-fold or less than half of the LFQ intensity of the same protein in the WT, then the protein was considered to be up-regulated or down-regulated, respectively. PCA (Pearson’s correlation analysis) of the LFQ quantitative data was used to control the quality of the original data using the statistics software of SPSS 22.0 (https://www.ibm.com/analytics/spss-statistics-software). A Venn analysis (http://bioinfogp.cnb.csic.es/tools/venny/) was used to characterize the qualitative identification results of the mutant sbe6-a1 and WT. Finally, the differentially abundant proteins (DAPs) between the WT and mutant were used for GO enrichment and KEGG pathway-enrichment analyses using OmicsBean (http://www.omicsbean.com).

2.8. Parallel reaction monitoring (PRM) verification

Some DAPs were verified by using PRM-MS analysis method (Peterson et al., 2012). The PRM analyses were performed on a Q-Exactive Plus mass spectrometer equipped with an Easy nLC-1000 system (Thermo Fisher Scientific, Bremen, Germany). The full MS scan was acquired with a resolution of 70,000 (at 200 m/z). Full MS scans were followed by 20 PRM scans at 17,500 resolution (at 200 m/z). The PRM analysis was employed with an isolation window of 2 Th (Thomson) for target precursor ions, and precursor ions were fragmented through higher energy collisional dissociation with normalized collision energies of 27 eV. The ACG target value was set to 3.0 × 10⁵, and the MS and scan maximum ion injection times were set at 200 ms. The raw data obtained were then analyzed by Proteome Discoverer 2.1 (Thermo Electron, Germany) and Skyline 4.1 (https://skyline.ms).

2.9. qRT-PCR analysis

Total RNA was extracted from albino mutant and WT sorghum leaves using TRizol reagent (TaKaRa), and cDNA was reverse transcribed from 1 μg of total RNA using a First-Strand cDNA Synthesis Kit (Invitrogen). The gene-specific primers used for qRT-PCR were designed using Primer 5 software according to cDNA sequences obtained from the Sorghum Genomics Database (v3.1.1). The sorghum actin gene was used as an endogenous control for normalization. The PCR reaction was carried out in a 20μL volume containing 10μL 2 × SYBR Green Master Mix reagent (TaKaRa), 1 μL cDNA template and 0.5 μL of each primer, with the following reaction conditions: 95 °C for 30 s; followed by 40 cycles of 95 °C for 10 s; 60 °C for 10 s and 72 °C for 15 s. The relative gene expression was calculated using the 2⁻ΔΔCt method (Livak and Schmittgen, 2001).

A flowchart of the proteomics analysis of sorghum albino mutant and WT is illustrated in Fig. 1.
3. Results

3.1. Phenotypic analysis of the sorghum albino mutant

The leaf color mutant sbe6-a1 were isolated from the segregation population of sorghum Jiutain1 EMS M3 generation. In contrast to WT, the seedlings of sbe6-a1 showed a distinct albinism phenomenon since seeds germination and were smaller than WT (Fig. 2A). The albino mutant grew slowly, presented albino leaf and dwarf phenotypes during plant development, and finally died. The Chl content determination data showed that the contents of Chl a, Chl b, Total Chl and carotenoids in sbe6-a1 mutant were all drastically lower than those in the WT plants (Fig. 2B). To identify the morphological changes in the photosynthetic organelles of sbe6-a1 leaves, the chloroplast ultrastructure was examined by TEM. The WT leaves had large and well-developed chloroplasts with grana, stromal lamellae, and thylakoid and chloroplast envelope membranes (Fig. 2C), while the chloroplasts of sbe6-a1 exhibited abnormal morphology and distribution compared with WT (Fig. 2D).

3.2. Qualitative and quantitative identification of proteins in leaves of the albino mutant sbe6-a1 and WT

To gain a global view of the molecular responses to albino lethal mutations, total proteins in leaves were extracted from the albino mutant sbe6-a1 and WT plants (two independent biological replicates and three technical repetitions), and the protein expression profiles were explored by using the label-free MS-based qualitative proteomics technique. A total of 5,367 proteins were identified using the qualitative method from two biological replicates, with 4,047 proteins from the WT and 4,663 proteins from the albino mutant (Table S1). They shared 2,573 proteins in each of the biological replicates, while 1,320 proteins were identified only from the albino mutant sbe6-a1 and 704 proteins were identified only from the WT (Fig. 3A). According to the PCA results of LFQ quantitative protein group determinations data, the correlations between the two independent biological replicates of the albino mutant sbe6-a1 or WT were over 0.995, yet the correlations between the albino mutant sbe6-a1 and WT in the same biological replicates were less than 0.810 (Fig. 3B). In addition, the distribution of the mass spectral intensities of the quantified proteins was mainly concentrated in the range of 10^7 to 10^8, and the numbers of the highest and the lowest abundance proteins in the mutant decreased, while the numbers of proteins in the intensity range of 10^7 to 10^8 increased when compared with WT (Fig. 3C).

(A) Venn diagram of qualitatively identified proteins from sbe6-a1 mutant (M1 and M2) and WT (W1 and W2). Different colors in the Venn diagram indicate different plant groups. (B) Pearson’s correlation analysis diagram of the quantitatively identified proteins from sbe6-a1 mutant and WT. (C) Distribution of MS intensities of proteins identified in two independent biological replicates for the mutant sbe6-a1 and WT.

(A) Phenotypes of the sbe6-a1 albino mutant (red arrows) and WT in the segregation population of the EMS M3 generation. (B) The contents of total chlorophyll, chlorophyll a/b, and carotenoids. Cv: Total chlorophyll content; Cx: c. carotenoids. ** indicates a significant difference at the 0.01 level; * indicates a significant difference at the 0.05 level.

Fig. 2. Phenotypic characteristics of the albino lethal mutant sbe6-a1 and WT at seedling-stage.

Fig. 3. Statistical analysis of qualitatively and quantitatively identified proteins from sbe6-a1 mutant and WT.

and WT (Table S2). Among them, 580 proteins were up-regulated and 516 were down-regulated, while 1,134 proteins showed no significant changes (fold change was < 2) in two independent biological replicates of the sbe6-a1 mutant (Fig. 4).

3.3. Functional categorization of identified DAPs

The functions of all the DAPs were investigated using BLAST algorithm-based and GO enrichment analyses with OmicsBean (http://www.omicsbean.com). The GO enrichment analyses of the identified 516 down-regulated, 580 up-regulated and 1,134 unchanged proteins were performed, and the major entries of the three main GO categories, biological process, cellular component, and molecular function are shown in Fig. S5. The enrichment analysis of biological process indicated that the up-regulated proteins identified in the albino mutant were significantly enriched in catabolic processes, nucleoside metabolic processes, protein/peptide transport and localization, and other processes. In contrast, the down-regulated proteins in the albino mutant participated in photosynthesis, biosynthetic processes, metabolic processes, and the localization of chloroplasts and other organelles. The unchanged proteins took part in compound biosynthetic and metabolic processes. Putative cellular components of these MS-identified DAPs were determined through a GO analysis. The majority of up-regulated proteins were predicted to be localized in mitochondria, organelle membranes, vacuole, proteasomes, and chloroplast stroma, while the down-regulated proteins were specifically distributed in chloroplasts, plastids, photosynthetic membranes, and ribosomes. The unchanged proteins localized in many parts, including the cytoplasm, ribosomes, chloroplasts, plastids, mitochondria, and vacuoles. The analysis of the molecular functions of DAPs showed that the majority of the 580 up-regulated proteins were mapped to 181 molecular functions, including catalytic activities, hydrolase activities and molecule binding. The 516 down-regulated proteins were significantly involved in 187 molecular functions, which were related to many enzymes activities and the pigments binding, Chl binding, and other factors binding. The 1,134 unchanged proteins were significantly involved in 293 molecular functions, and they mainly participated in structural molecule activities, structural constituents of ribosomes, many enzyme activities, and the binding of nucleosides, RNA, and many other factors.

3.4. KEGG enrichment analysis of DAPs

To better understand the biological processes of the DAPs, the proteomics data were further analyzed for KEGG pathway enrichment using OmicsBean (http://www.omicsbean.com). According to the KEGG analysis of accurately quantitated proteins, 57% of the 580 up-regulated proteins, 49% of 516 down-regulated proteins, and 43% of 1,134 unchanged proteins in both of the independent biological replicates of the sbe6-a1 mutant were annotated as “unknown function”. When comparing the total of accurately quantitated proteins, 59% of the up-regulated, 56% of the down-regulated, and 45% of the unchanged proteins were annotated as “unknown function” (Table S3 and Fig. S1). Based on the annotation information of these DAPs except the unknown function proteins, we found these 249 up-regulated proteins, 263 down-regulated proteins and 732 unchanged proteins in the albino mutant were mainly enriched in same or different pathways (Table S4). In addition, according to KEGG analysis of the DAPs, the p-values of important pathways enriched were varied between the albino mutant and WT (Table 1).

3.5. PRM and qRT-PCR verification

The results of the LFQ and bioinformatics analyses showed that many down-regulated proteins were significantly enriched in pathways related to photosynthesis. Twenty photosynthesis-related proteins and other important down-regulated proteins were selected to verify the protein expression levels determined by the PRM method using the second biological replicate sample, and the gene expression levels of six PRM verified proteins were further analyzed by qRT-PCR (Primers of the genes of 6 DAPs used for real-time PCR were listed in Table S6). The protein expression patterns of these 20 proteins were basically consistent with the two LFQ datasets (LFQ-1 and LFQ-2) from the two biological replicates. Unlike the protein expression patterns, only four genes (Sobic.005G056400, Sobic.004G056900, Sobic.002G033900, and Sobic.003G029800) were down-regulated, while two genes (Sobic.005G087000 and Sobic.009G234600) were up-regulated in the mutant when compared with their expression levels in WT (Table 2).

4. Discussion

Albinism has been reported in many higher plant species and many albinism-responsive genes/proteins have been identified (Li et al., 2018; Shi et al., 2017). Recently, proteomics research has shifted toward the reverse genetic characterization of gene function at the proteome level. However, there are few reports related to sorghum albinism. To understand the intricate mechanisms of albinism mutations in sorghum, a proteomics analysis (LC-MS/MS) was performed to compare the EMS-induced sorghum albino mutant sbe6-a1 with WT (Fig. 1).

Photosynthetic pigments are present in chloroplasts or photosynthetic bacteria and can capture the light energy necessary for photosynthesis. Leaf color is affected by chlorophyll and carotenoid levels in plant leaves, and leaf albinism indicates a typical Chl-deficient mutation (Li et al., 2018; Wang et al., 2016). If the biosyntheses of chlorophyll and carotenoids are suppressed and/or the synthesized chlorophyll is destroyed, then the plants are unable to produce green photosynthetic tissues. Therefore, their growth is halted, leading eventually to death. In this study, the contents of photosynthetic pigments, including Chl a, Chl b, Total Chl, and carotenoids in the leaves of mutant sbe6-a1 were significantly lower than in WT plants (Fig. 2A and B). Thus, the albino lethal phenotype of mutant sbe6-a1 was related to severe deficiencies in all pigments, as indicated by previous studies.

The chloroplast is a semi-autonomous organelle that contains ∼ 100 genes and more than 3,000 proteins. A defect in chloroplast development generally results in leaf-color mutants, such as pale-green, etiolated, variegated, and albino mutants (Hayashi-Tsugane et al., 2014;
Leaf albinism is an obvious and common Chl-deficient mutation in which the most typical characteristic is that chloroplasts cannot develop normally (Wu et al., 2007). In this study, the TEM revealed that the chloroplast structures of normal plants exhibited an elliptical shape, with a typical lamellar grana and thylakoid structure (Fig. 2C). By contrast, the chloroplasts in mutant sbe6-a1 leaves were abnormal in appearance, with a dispersed chloroplast structure (Fig. 2D). The morphological structure had obviously changed in the photosynthetic organelles of sbe6-a1 leaves, indicating that the thylakoid membrane and grana formation in the mutant were seriously affected. So that the disintegration of chloroplast structure was one of important causes of mutant sbe6-a1 death.

Qualitative analyses of proteomes showed that approximately 47.9% of the total identified proteins were simultaneously detected in leaves of two independent biological repeats of the albino mutant sbe6-a1 and WT plants, and more proteins were identified from the albino mutant sbe6-a1 (Fig. 3A). Meanwhile, quantitative analyses showed that most of proteins identified from mutant were medium abundance proteins ($10^7 - 10^8$) (Fig. 3C). A Pearson’s correlation analysis of the four groups showed that the correlations of the quantitative proteins of the albino mutant sbe6-a1 or the WT between two independent biological replicates was relatively high (Fig. 3B), which indicated that the experimental results are highly reproducible and can be used for subsequent bioinformatics analysis. Among the 4,233 accurately quantitated proteins, the numbers of both up-regulated and both down-regulated proteins in the two independent biological replicates of the sbe6-a1 mutant were 580 and 516, respectively, and the total number of up-regulated proteins was significantly greater than that of down-regulated proteins (Fig. 4). These data indicated that more up-regulated proteins were detected in sbe6-a1 mutant and they may be involved in the phenotype of the albino mutant.

GO analyses were performed on the up-regulated, down-regulated, and unchanged proteins identified in sorghum albino mutant, respectively. Most of the up-regulated proteins were localized in mitochondria, organelle membranes, vacuoles, and proteasomes, had molecular functions involving in catalytic and/or hydrolase activities, and participated in the biological processes of catabolism and nucleoside
indicated p-value < 0.05. Some important KEGG enriched proteins were showed in Table S5.

According to the KEGG-enrichment analysis of accurately different biological processes, cellular components, and molecular functions (Fig. 5). The up- and down-regulated proteins identified in the leaves of the sorghum albino lethal mutant sbe6-a1 were found to be associated with diverse biological processes and multiple metabolic pathway (Table 1). The quantitative protein accumulation revealed that the major differences between the WT and albino mutant were determined by chloroplast-related proteins at the proteomic level, in which the significant difference was that chloroplast development and photosynthesis were obviously destroyed in the albino mutant as shown in Fig. 2, the chloroplast structure was severely damaged, and the Chl content decreased significantly in sbe6-a1 leaves. The resul

Table 1

<table>
<thead>
<tr>
<th>KEGG Pathway Name</th>
<th>Pathway ID</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon metabolism</td>
<td>sbi01200</td>
<td>9.21E-05**</td>
</tr>
<tr>
<td>Valine, leucine and isoleucine degradation</td>
<td>sbi00820</td>
<td>1.72E-03**</td>
</tr>
<tr>
<td>Glycolysis/Gluconeogenesis</td>
<td>sbi00010</td>
<td>1.72E-03**</td>
</tr>
<tr>
<td>Pyruvate metabolism</td>
<td>sbi00620</td>
<td>1.19E-02*</td>
</tr>
<tr>
<td>Alanine, aspartate and glutamate metabolism</td>
<td>sbi00250</td>
<td>2.28E-02*</td>
</tr>
<tr>
<td>Propanoate metabolism</td>
<td>sbi00640</td>
<td>2.28E-02*</td>
</tr>
<tr>
<td>Proteasome</td>
<td>sbi03050</td>
<td>2.28E-02*</td>
</tr>
<tr>
<td>Fatty acid degradation</td>
<td>sbi00071</td>
<td>3.54E-02*</td>
</tr>
<tr>
<td>Citrate cycle (TCA cycle)</td>
<td>sbi00020</td>
<td>4.50E-02*</td>
</tr>
<tr>
<td>Pentose phosphate pathway</td>
<td>sbi00300</td>
<td>0.84E-03</td>
</tr>
<tr>
<td>Metabolic pathways</td>
<td>sbi01100</td>
<td>0.94E-03</td>
</tr>
<tr>
<td>Biosynthesis of amino acids</td>
<td>sbi01230</td>
<td>0.94E-03</td>
</tr>
<tr>
<td>Carbon fixation in photosynthetic organisms</td>
<td>sbi00710</td>
<td>0.10E-03</td>
</tr>
<tr>
<td>Arginine biosynthesis</td>
<td>sbi00220</td>
<td>0.10E-03</td>
</tr>
<tr>
<td>Glyoxylate and dicarboxylate metabolism</td>
<td>sbi00630</td>
<td>0.236</td>
</tr>
<tr>
<td>Oxidative phosphorylation</td>
<td>sbi00190</td>
<td>0.675</td>
</tr>
<tr>
<td>Glycine, serine and threonine metabolism</td>
<td>sbi00260</td>
<td>0.749</td>
</tr>
<tr>
<td>One carbon pool by folate</td>
<td>sbi00670</td>
<td>0.75</td>
</tr>
<tr>
<td>Glutathione metabolism</td>
<td>sbi00480</td>
<td>0.804</td>
</tr>
<tr>
<td>Carbohydrate metabolism</td>
<td>sbi00060</td>
<td>0.91</td>
</tr>
<tr>
<td>Ribo-5-phosphate and ribonucleotide biosynthesis</td>
<td>sbi00340</td>
<td>0.94E-03</td>
</tr>
<tr>
<td>Photosynthesis</td>
<td>sbi00230</td>
<td>1</td>
</tr>
<tr>
<td>Aminoacyl-tRNA biosynthesis</td>
<td>sbi00630</td>
<td>1</td>
</tr>
<tr>
<td>Ribosome</td>
<td>sbi00300</td>
<td>1</td>
</tr>
<tr>
<td>Thiamine metabolism</td>
<td>sbi00310</td>
<td>1</td>
</tr>
<tr>
<td>Photosynthesis - antenna proteins</td>
<td>sbi00320</td>
<td>1</td>
</tr>
<tr>
<td>Carotenoid biosynthesis</td>
<td>sbi00480</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: pathway enrichment analysis by p-value selection, *“.”* indicated the pathway was not enriched in the KEGG pathway analysis. **“.”** indicated p-value < 0.01; *“.”* indicated p-value < 0.05. Some important KEGG enriched proteins were showed in Table S5.
Table 2: The results of PRM and RT-PCR verification of 20 DAPs in albino mutant sbe6-a1.

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Annotation</th>
<th>Protein IDs</th>
<th>LFQ 1 (M + W)</th>
<th>LFQ 2 (M + W)</th>
<th>LFQ 1 (M + W)</th>
<th>LFQ 2 (M + W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photosynthetic organisms</td>
<td>Carbon fixation - antenna proteins</td>
<td>Sobic.005G056400.1.p</td>
<td>0.166</td>
<td>0.173</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>Photosynthesis - antenna proteins</td>
<td>Sobic.005G056400.1.p</td>
<td>0.166</td>
<td>0.173</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>Photosynthesis - secondary metabolites</td>
<td>Sobic.005G056400.1.p</td>
<td>0.166</td>
<td>0.173</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>Photosynthesis - antenna proteins</td>
<td>Sobic.005G056400.1.p</td>
<td>0.166</td>
<td>0.173</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>Photosynthesis - antenna proteins</td>
<td>Sobic.005G056400.1.p</td>
<td>0.166</td>
<td>0.173</td>
<td>0.09</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Note: LFQ 1 and LFQ 2 represent the two quantitative datasets from two independent biological experiments.

considered to be the principal strategies for plants in response to invading pathogens and/or stress situation (Ali et al., 2018; Chun and Chandrasekaran, 2019). sHSPs are highly conserved proteins as important member of heat shock protein (HSP) gene family, which could either protect the plant from damage caused by the stress or help repair the damage, and have vital roles in response to abiotic stresses (Wang et al., 2015; Zhang et al., 2018). ACPs have important function in synthesis of fatty acids, polyketides and non-40 ribosomal peptides, in which ACP3 was reported in involved in oxidative stress response in *Pseudomonas aeruginosa* (Chen et al., 2018). AOXs are a kind of unique terminal oxidases in plant mitochondria, and can influence chloroplast energy metabolism and help plants to adapt to abiotic stress (Hu et al., 2018; Sunil et al., 2019). All these four up-regulated DAPs in mutants are found to be related to abiotic stress response. The relationship between the significantly increased expression of these defense-related proteins and the formation of albinism phenotype in sorghum mutant will be the focus of further studies.

Some down-regulated DAPs involved in carbon fixation pathway and photosynthesis should also play important roles in the formation of mutant *sbe6-a1* phenotype. Fructose-bisphosphate aldolases (FBAs) and malate dehydrogenases (MDHs) are all involved in carbon fixation pathway. FBAs are a kind of enzyme that participates in glycolysis and Calvin cycle. In this study, three FBAs (Sobic.008G053200.1.p, Sobic.005G056400.1.p, Sobic.010G188300.1.p) were identified as down-regulated proteins in the mutant, and one-of-them was verified with PRM and RT-PCR. It suggested that the carbon fixation pathway maybe weakened in mutant comparing with that in WT. MDHs are a kind of critical enzymes of the C4 pathway and participate in pyruvate metabolism and carbon fixation pathway. The main role of MDHs is to catalyze the oxidative decarboxylation of malic acid to provide CO2 for the photosynthetic carbon fixation of the Rubisco enzyme, which is closely associated with photosynthesis (Drinovich et al., 2011). Besides, NADP-MDH may relate to crop abiotic stress, such as drought, low temperature, salt stress (Guo et al., 2018; Hyskova et al., 2014). In this study, one NADP-MDH (Sobic.007G166300.1.p) was identified to be down-regulated in the mutant. Moreover, phosphoenolpyruvate carboxylases (PEPCs) are a kind of cytosolic enzymes which are widely present in higher plants. In C4 and crassulacean acid metabolism (CAM) plants, PEPCs play important roles in pathways of photosynthesis, seed maturation and germination and stomatal opening (Masumoto et al., 2010; O’Leary et al., 2011). One protein (Sobic.010G160700) was identified as down-regulated PEPC in mutant *sbe6-a1* by proteomics analysis. Chloroplast ATP synthase contains nine subunits, six of which are encoded by chloroplast genes, and subunit γ, δ and II are encoded by the nuclear genes atpC, atpD and atpG, respectively. Two genes encoding γ and δ subunit of ATP synthase have been characterized in *Arabidopsis* seedling-lethal mutants (daa1 and atp6) (Dal Bosco et al., 2004; Mainwald et al., 2003), and a ATP synthase mutant atpg showed lethal albinism phenotype due to its inability to photoautotrophic growth (Kong et al., 2013). One δ subunit and two β subunits (encoded by Sobic.004G235200, Sobic.003G159101, Sobic.004G087000, respectively) were identified as down-regulated DAPs. It indicated that they may play important roles in albinism phenotype of mutant *sbe6-a1*. The light-harvesting chlorophyll a/b binding protein complex is mainly composed of chlorophyll a/b binding proteins (CABs) and the disruption of CABs is a mainly reason which effect on chlorophyll catabolism (Peng et al., 2013). In our study, six CABs (Sobic.004G056900.1.p, Sobic.003G209800.1.p, Sobic.005G087000.1.p, Sobic.009G234600.1.p, Sobic.002G242000.1.p, Sobic.002G338000.1.p) were identified as down-regulated DAPs, and some of them were verified with PRM, and the mRNA expression of two of them were verified by RT-PCR (Table 2). In chlorophyll synthesis, Mg-chelatases catalyze the insertion of Mg^{2+} into protoporphyrin IX, then Mg-protoporphyrin IX is methylated by magnesium-protoporphyrin IX methyltransferase (CHLM), which was reported to affect the stomatal aperture in *Arabidopsis thaliana* (Tomiyama et al., 2014), and finally four subsequent catalytic
reactions produce chlorophyll a (Bollivar, 2006; Masuda, 2008). In mutant sbe6-a1, 4 proteins related to photosystem I and photosystem II were down-regulated in LFQ data and were verified with PRM. One of them was photosystem I subunit X (Sobic.002G033900) and its mRNA expression was also verified to be down-regulated. Moreover, a Mg-protoporphyrin IX chelatase (Sobic.008G051000) and a putative CHLH (Sobic.010G022100) were also verified to be down-regulated in sorghum albino mutant by using PRM. As mentioned above, the proteins involved in carbon fixation pathway such as FBAs and MDHs, and the proteins related to photosynthesis and chlorophyll synthesis such as PEPC, ATP synthase, CABS, and CHLH were all identified to be down-regulated in mutant sbe6-a1, and all the contents of Chl a, Chl b, Total Chl, and carotenoids in mutant were significantly lower than in WT plant. These results indicated that photosynthesis in mutant were severely weaker than in WT plant. The decrease/absence of these important proteins may affect the normal operation of pathways related to carbon fixation, photosynthesis and chlorophyll synthesis, and thus affect the normal growth and development of plants. The association between albinism and these proteins in sorghum needs to be further verified.

In addition, some other DAPs which had been proved to be related to albino phenotype in rice were also identified to be significantly down-regulated in sorghum mutant sbe6-a1. For example, plastid ribosomal proteins (PRPs) are important components for chloroplast biogenesis and early chloroplast development. Any defect in essential or non-essential PRPs can lead to lethality or chlorophyll deficiency in plants (Tiller and Bock, 2014; Wang et al., 2017). In this study, two proteins like PRPs (Table S3), a protein similar to PRPL11 (Sobic.001G527100.1.p) and a protein similar to PRPS6 (Sobic.001G017000.1.p) were only identified in WT, and the intensity of them was all reached to 10^6 (Table S2). It suggests that the loss of these proteins in mutants may be closely related to albinism phenotype in sorghum.

5. Conclusions

In this study, a sorghum leaf albino lethal mutant, sbe6-a1, was identified by screening an EMS-induced mutant pool. Compared with WT plant, the albino phenotype of the sbe6-a1 mutant was associated with a decreased Chl content and abnormal chloroplast morphology. A proteomics analysis showed that more proteins were identified from the albino mutant sbe6-a1, and most of up-regulated proteins had not been well characterized. A GO-enrichment analysis of the DAPs showed that some up- and down-regulated proteins were significantly enriched in different biological processes, cellular components and molecular functions. In addition, the degradation and metabolic pathways of fatty acids, as well as some amino acids and secondary metabolites, were significantly enhanced in the mutant, while photosynthesis-related pathways and some secondary metabolites’ biosynthesis, as well as ribosomal pathways, were significantly inhibited in the mutant. Analysis of existing literature shows that some DAPs, such as FBAs, MDHs, PEPC, ATP synthase, CABS, CHLH and PRPs were identified to be down-regulated, and pathogenesis-related protein such as hSHP, ACP2 and AOX were up-regulated in albino mutant.

Author contributions

Y.P. and L.Z. designed the research experiments; L.Z., D.W., J.S., Y.M. W.P., F.R. and W.Y. performed the experiments and analyzed the data; B.M., Z.Z. and G.L. supervised the experiments; L.Z., W.P. and B.M prepared the figures and tables; L.Z., D.W., J.S., Y.L. and Y.P. wrote the manuscript. All authors read and approved the final manuscript. The authors declare that they have no competing financial interests.

Contribution

Leaf color mutants are ideal materials for research on chloroplast development and photosynthetic mechanisms. While sorghum albino lethal mutants have been reported, their biological bases and intrinsic mechanisms are not clear. Here, we first determined that the albino phenotype of the sbe6-a1 mutant is associated with a decreased chlorophyll content and abnormal chloroplast morphology. More differentially abundant proteins were identified from the albino mutant, and most of the up-regulated proteins had not been well characterized. Proteins with different abundance levels were enriched in different GO and KEGG pathways. We also found that some degradation and metabolic pathways were significantly enhanced in the mutants, while photosynthesis-related pathways and most biosynthetic and ribosomal pathways were significantly inhibited in the mutants. Thus, these differentially abundant proteins may be related to the albino phenotype. Our work provides new insights into the functional effects of differences in protein relative abundance levels in the leaves of the sbe6-a1 mutant and WT.

Acknowledgments

This work was jointly supported by the “National Natural Science Foundation of China” (31471558), the “Fundamental Research Funds for Central Non-profit Scientific Institution” (Y2017PT25), the “National Key Research and Development Program of China” (2018YFD1000702), the “Agricultural Science and Technology Innovation Program” (Development and Application of Molecular Markers in Crops) and the “IAEA Coordinated Research Project” (D23031). We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

