Research article

Impact of superparamagnetic iron oxide nanoparticles (SPIONs) and ionic iron on physiology of summer squash (Cucurbita pepo): A comparative study

Huseyin Tombuloglu, Yasmine Slimani, Guzin Tombuloglu, Ayse Demir Korkmaz, Abdulhadi Baykal, Munirah Almessiere, Ismail Ercan

ARTICLE INFO

Keywords:
SPIONs, Plant growth, Cucurbita pepo, Transmission electron microscopy, Iron deficiency, Magnetization

ABSTRACT

This study investigates the effect of SPIONs (superparamagnetic iron oxide nanoparticles, ~12.5 nm in size) on summer squash plant (Cucurbita pepo) in the presence and absence of supplementary iron (Fe(II)-EDTA). The plants were grown in nutrient solution with different iron sources: (i) Fe(II)-EDTA, (ii) without Fe(II)-EDTA (iii) SPIONs only, and (iv) Fe(II)-EDTA with SPIONs. Plant growth and development were assessed after 20 days of soaking by measuring physiological parameters such as plant biomass, chlorophyll content, amount of carotenoids, and the catalase enzyme activity. Transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy, X-ray diffraction, and vibrating sample magnetometer methods were used to detect uptake and translocation of SPIONs in plant tissues. Our results showed that SPIONs treatment (without Fe(II)-EDTA) caused growth retardation and decreased the plant biomass and chlorophyll content. Hence, they are not efficient sources to compensate for iron demand of squash plant. Electron microscopy observations, magnetization and elemental analyses revealed that SPIONs are taken-up by plant roots but not translocate to upper organs. In roots, SPIONs use a symplastic route for intercellular transfer. These findings suggest that as an iron source, SPIONs alone are not efficient for plant growth, but can contribute it together with Fe(II)-EDTA.

1. Introduction

Nanoparticles (NPs), which are in the size range from 1 to 100 nm, have emerged in the last fifty years and are used in many practical applications including material science, electronics, medicine and pharmacology (Nikalje, 2015). Moreover, in the last decade, efforts to use NPs in agriculture such as nano-formulations for efficient fertilization, nanosensors for early detection of stressors, or nano-devices for effective genetic manipulations have increased tremendously (Prasad et al., 2016). Low solubility of the iron (III) ion in the soil limits the iron uptake by plants and therefore the symptoms of iron deficiency occur in plants (Zuo and Zhang, 2011; Samaranayke et al., 2012). This situation can cause iron deficiency in animals and human through nutrition as well (White and Broadley, 2009).

In comparison to traditional iron fertilizers, Fe₂O₃ NPs enhanced the growth of peanuts, a plant which is very sensitive to iron deficiency (Rui et al., 2016). In addition, superparamagnetic iron oxide NPs (SPIONs, Fe₃O₄) treatment increased chlorophyll levels in soybean (Ghafariyan et al., 2013), and the mass of 1000-seeds (by 7%), the iron content (by 34%), and chlorophyll level (by 10%) in black-eyed peas (Delfani et al., 2014). In opposite to these findings, several studies have
showed that iron oxide NPs (magnetites) cause detrimental effects (Mushtaq, 2011; García et al., 2011; Marusenko et al., 2013; Barhoumi et al., 2015; Ma et al., 2013). Due to their potential phytotoxic and genotoxic effects on plants, ecologically responsible disposal of wastes containing those NPs is required (Aulani et al., 2014).

In addition to the indeterminate effects on plants, the bioaccumulation of these NPs in the plant body remains a challenge awaiting for further investigation (Fadeel et al., 2017). The possible accumulation of iron oxide NPs in plants as well as their transmission from plants to animals and/or humans is a matter of concern (Rai et al., 2018). For that reason, the uptake and translocation of NPs on plant body should be studied in lab scale before large-scale applications. So far, the translocation of Fe3O4 NPs from root to leaf has been shown in soybean (Ghafariyan et al., 2013), pumpkin (Zhu et al., 2008), and common bean (Govea-Alcaide et al., 2016). In opposite to these findings, Wang et al. (2011), Li et al. (2018), and Konate et al. (2018) reported that Fe3O4 NPs were unable to translocate in ryegrass, pumpkin, cucumber, and Citrus maxima.

These controversial results revealed the requirement of extensive investigations about the impact and translocation of iron oxide NPs on plants. Therefore, in this study, uptake and translocation of SPIONs were investigated on summer squash plant (Cucurbita pepo), one of the members of Cucurbitaceae. In addition, whether SPIONs were a potential source of iron for plants were evaluated by comparing them with the commonly used iron source, Fe(II)-EDTA. Comprehensive analyses were conducted on plant parts by using VSM, ICP-OES, XRD, and TEM analyses. In addition, physiological and enzymatic responses of the plant under iron deficient and single or combined iron containing conditions were assessed.

2. Material and methods

2.1. Characterization of SPIONs

The SPIONs were purchased from Sigma Aldrich. Phase identification and purity of SPIONs were analyzed using X-ray powder diffraction (XRD; Rigaku Benchtop MiniFlex 600) with Cu Kα radiation. A TEM sample was prepared by depositing a droplet of SPIONs dispersed in ethanol onto the TEM grid. TEM was operated at accelerating voltage of 80 kV. The XRD powder pattern and TEM image of used SPIONs are indexed by the cubic structure of Fe3O4 (ICDD card no: 16-080). The mean size of the crystallites was estimated from the diffracting angle. The average crystallite size, DXRD, was calculated to be about 12.5 nm. The TEM image indicates that the size of the crystallites is the X-ray wavelength, β is the full width at half maximum (FWHM) and θ is the Bragg diffraction angle. The average crystallite size, DXRD, was calculated to be about 12.5 nm. The TEM image indicates that the average particle size is about 13 nm, which is in accordance with XRD. Vibrating sample magnetometer (VSM) analysis was used to investigate the magnetic behavior of the SPIONs (Fig. 1c). It is obvious that SPIONs exhibits superparamagnetic behavior, with a saturation magnetization Ms ∼ 60 emu/g in addition to negligible values of remanent magnetization (Mr) and coercive field (Hc).

2.2. Growth conditions and SPIONs exposure

Cucurbita pepo (summer squash) seeds (n = 15) were germinated in Petri plates for five days in dark. Uniform seedlings were transferred to Hoagland solution containing 6 mM KNO3, 1 mM NH4H2PO4, 2 mM MgSO4, 4 mM Ca(NO3)2, 50 μM H2BO3, 9 μM MnCl2, 0.3 μM CuSO4, 0.8 μM ZnSO4 and 0.12 μM MoO3 (85%) (Hoagland and Arnon, 1950; Tombuloglu et al., 2013, 2015). The solution was modified by including or excluding Fe(II)-EDTA (25 μM, ∼ 8.6 mg/L) and/or SPIONs (100 mg/L) (Hu et al., 2017). Accordingly, nutrient solutions amended either with (i) Fe(II)-EDTA only (= control, “Plant A”), (ii) without Fe(II)-EDTA or SPIONs (“Plant B”), (iii) SPIONs treatment alone without Fe (II)-EDTA (“Plant C”), and (iv) SPIONs with Fe(II)-EDTA (“Plant D”) were prepared. By doing so, plant growth settings mimicking both iron efficient and deficient environments were prepared. The solutions were sonicated for 30 min before application to minimize the agglomeration of SPIONs (Powersonic 410, Hwashin Technology, Korea) while the pH of the solutions was kept constant at 5.8. The seedlings were grown under greenhouse conditions (16:8 h light/dark cycle, 60–70% humidity, and 23–26 °C temperature) for three weeks. Meanwhile, the nutrient solution was aerated by an air pump (30 min every 3 h). Fresh and dry weight, tissue lengths, chlorophyll and carotenoids contents, soluble protein content, and catalase enzyme activities were measured after 20 days of the treatment.

2.3. Determination of soluble protein content and catalase activity

50 mg of fresh root and leaf samples were harvested from the plants and grounded in ceramic mortar filled with pre-cold 0.15 M phosphate buffer (pH 7.8) containing 1 mM EDTA. The extract was centrifuged for 20 min at 4 °C (15 000×g). The aqueous phase was collected and used to determine the soluble protein content. Coomassie Brilliant Blue G-250 solution and BSA (bovine serum albumin) standards (6.25–200 mg/L) were prepared and the absorbance of reaction mixture was measured by a spectrophotometer at 595 nm (Biotek, Synergy Neo2). The catalase enzyme activity was determined by using 10 μg of soluble protein according to previously described methods (Aebi, 1984; Tombuloglu et al., 2018). The consumption of H2O2 in every 30 s was recorded by reading the absorbance at 240 nm. The enzyme activity was calculated according to the following equation:

\[
C = \frac{(Abs_0 - Abs_1)}{(\epsilon \cdot C_{prot} \cdot t \cdot d)}
\]

where, Abs0 and Abs1 are the absorbance value at 240 nm after 1 min interval. ε is the H2O2 extinction coefficient (39.4 M⁻¹ cm⁻¹), d is size of cuvette path (cm), t is time between the measurement (min), Cprot is the amount of protein in the test tube (mg), v is volume of the test sample in cuvette (mL).

2.4. Measurement of chlorophyll and carotenoids

The content of chlorophyll a, b, and carotenoids were determined according to procedure by Lichtenthaler and Wellburn (1983). 50 mg of fresh leaf samples were cut into small pieces and mixed with 4 mL of 96% aceton. The homogenate was centrifuged at 4000 × g for 15 min. The absorbance (663, 646, and 470 nm) were measured from the collected supernatant by using a plate reader (Biotek, Synergy Neo2). The following equations were used to calculate the chlorophyll a, and b and, carotenoids contents, respectively:

\[
Chl_a = 12.21 \times A_{663} - 2.81 \times A_{646}
\]

\[
Chl_b = 20.13 \times A_{463} - 5.03 \times A_{436}
\]

\[
Car = (1000 \times A_{470} - 3.27 \times Chl_a - 104 \times Chl_b) ÷ 227
\]

2.5. Iron content analysis

0.5 g of root and leaf tissues were harvested from all tested plants. In order to clean the adsorbed NPs on the root surface, the roots were immersed in water and sonicated for 5 s (Powersonic 410, Hwashin Technology, Korea), and thoroughly washed with distilled water several times. The tissues were dried in an oven (60 °C) for three days and grounded in a mortar with a pestle. They were digested in a digiPrep (II)-EDTA (1:4) mixture of nitric acid (HNO3, 65%) (SCP Science, Thermo Fisher), and hydrogen peroxide (H2O2, 30%) (Sigma-Aldrich) was poured on the
dry powder which was then heated up to 180 °C for 30 min. The iron (Fe) content was determined with an inductively coupled plasma optical emission spectroscopy (ICP-OES) (PerkinElmer AvioR 145 500 ICP-OES Scott/Cross-Flow, USA) instrument.

2.6. Ultrastructure analysis

Roots and leaves of summer squash plants treated with or without SPIONs (100 mg/L) were sampled after washing with PBS and placed in
an automatic tissue processor (Leica EM TP, Leica Microsystems, Belgium). The tissues were fixed in phosphate buffer (pH 7.2) including 3% glutaraldehyde and 1% osmium tetroxide (OsO4) and, rinsed with 0.1 M PBS (pH 7.4) three times. Then, the tissues were dehydrated in a series of graded ethanol and acetone solutions in water increasing up to 100% concentration. Afterwards, the samples were embedded in epoxy resin and cured in an oven for 2 days at 60 °C. Ultrathin sections (75 nm) were cut on an ultra-microtome (Leica EM UC7, Leica Microsystems, Belgium) and stained with 2% uranyl acetate and 2% lead citrate. Subsequently, the sections were examined using a Morgagni™ 268 transmission electron microscope (TEM) (FEI, Eindhoven, The Netherlands).

2.7. Statistical analysis

All experiments were carried out with randomized sets including at least triplicate sampling. The data was statistically analyzed by t-test (*p < 0.05, **p < 0.01, ***p < 0.005). The values were presented as means ± SE (standard error) of at least three technical replicates. SPSS program version 15.0 (SPSS Inc., Chicago, USA) was used for statistical analyses.

3. Results

3.1. Effects of SPIONs on growth and pigment content

In Fig. 2a, the first true leaf of squash plants treated by different iron sources, either SPIONs or Fe(II)-EDTA, is displayed. The treatment of the plant with SPIONs and Fe(II)-EDTA supplementation (Plant D) showed no visible morphological changes. However, the leaf color was darker than the control leaves (Plant A). As it was shown in Fig. 2b, it can be attributed to increased content of pigments (chlorophyll a, b, and carotenoids), which were significantly higher (∼17%, p < 0.01; ∼18%, p < 0.005; and ∼16%, p < 0.05, respectively) in “Plant D” when compared to “Plant A”. When compared to the control plant, the use of SPIONs as an iron source instead of Fe(II)-EDTA (Plant C) increased the leaf size, turned the leaf color to light green, and decreased the pigment content (chlorophyll a, b, and carotenoids) significantly similar to the results obtained from iron deficient plant (Plant B). These results show that SPIONs are not a good source of iron for squash plants.

3.2. Effects of SPIONs on plant biomass

The SPIONs treatment in the absence of Fe(II)-EDTA (Plant C) decreased the fresh weight (FW) and dry weight (DW) of the leaf and root tissues significantly (at least p < 0.05) (Fig. 3a and b). The decrease in FW was recorded as ∼38% (p < 0.05) in leaves, and ∼%53 (p < 0.005) in roots, compared to non-treated (control) plants. This result revealed that the applied dose of SPIONs is not enough to led the growth of squash plants as it was done by Fe(II)-EDTA in “Plant A”, probably due to the inadequate iron content in the nutrient solution. On the other hand, the SPIONs treatment with Fe(II)-EDTA (Plant D) had an opposite effect where the plant biomass in root and leaves was significantly (at least p < 0.05) increased in comparison to the control (Plant A) plant. The enhancement was recorded for the FW by ∼24% and ∼66%; and for the DW by ∼22% and ∼96% in leaf and root tissues, respectively (Fig. 3a and b).
3.3. Impact of SPIONs on soluble protein content and catalase activity

Fig. 4. Catalase activity in the leaf (a) and root (b) tissues from the plants subjected with or without different iron resources. The data was statistically analyzed by t-test (*p < 0.05, **p < 0.01, ***p < 0.005). Data are mean ± SE of three replicates. Plant A: Fe(II)-EDTA or control, Plant B: without Fe(II)-EDTA or SPIONs, Plant C: SPIONs alone, Plant D: SPIONs with Fe(II)-EDTA.

3.3. Impact of SPIONs on soluble protein content and catalase activity

Fig. 3c and 3d represent the soluble protein content of leaf and root specimens after being supplied by different iron resources, respectively. Compared to control group, the replacement of Fe(II)-EDTA with SPIONs (Plant C) decreased the soluble protein content in leaves significantly (p < 0.01, 16%). When SPIONs were added into the solution with Fe(II)-EDTA (Plant D), the root protein content was increased significantly (p < 0.05) by comparing to the control plant (Plant A).

Fig. 4 represents the activity of catalase enzyme. Among the leaf specimens, a significant reduction was observed in the plant with iron deficiency (Plant B) (p < 0.05). In contrast, the catalase activity in the roots increased significantly both in iron deficient (Plant B) and SPIONs-treated seedlings (Plant C and D) (at least p < 0.05).

3.4. XRD analysis

The XRD powder patterns of root and leaf samples of squash plant are presented in Fig. 5. When compared to the diffractogram of the control root plant (Plant A), some additional peaks were detected in the roots of plants “C” and “D”. This confirms that the root organs absorb the SPIONs. However, these additional peaks between diffractograms in the various leaf samples of the squash plant do not exist. This reveals that the SPIONs are not transferred to the leaf tissues.

3.5. Microscopy analysis

Ultrastructure analysis of SPIONs-treated plants was carried out to observe the cellular uptake and the route of SPIONs in the plant body. In Fig. 6, the TEM analyses revealed that SPIONs (~12.5 nm in size) can penetrate the root cells (Fig. 6c and d). However, the presence of SPIONs was not observed in the leaf samples (Fig. 6a and b). In the roots, SPIONs are abundantly found at the periplasmic spaces and the cell wall structure. In addition, SPIONs were observed at plasmodesmata, channels that enable cell-to-cell connection and nutrient transport (Fig. 6e and f).

3.6. Magnetization analyses

Analyses by a vibrating sample magnetometer (VSM) were conducted in order to confirm the uptake of SPIONs by squash plant. Fig. 7 presents the curves of magnetization against an applied magnetic field of ±10 kOe, M(H), for various root specimens of squash plants; A (control), B (without Fe(II)-EDTA), C (SPIONs treatment alone without Fe(II)-EDTA) and D (applied dose of SPIONs with Fe(II)-EDTA). The M(H) analysis indicates that the root specimens of “Plant A” is a combination of paramagnetic (PM) and ferromagnetic (FM) behavior, where the PM dominates. The germination of squash plant in water free of Fe(II)-EDTA (Plant B) leads to decrease slightly the magnetization magnitude compared to the one of control plant. Furthermore, it is obvious that the root specimens of “Plant B” reflect practically a PM behavior. This is mostly due to the absence of Fe nutrient element in nutrient solution. In addition, the SPIONs treatment alone without Fe(II)-EDTA (Plant C) increases the magnetization magnitude of root specimens. The M(H) curve of this sample showed a well-defined ferromagnetic nature with values of saturation magnetization (M_s), remanent magnetization (M_r), and coercive field (H_c) equal to 1.65 emu/g, 0.15 emu/g, and 300 Oe, respectively. The magnitude of magnetization shows a unique increase in root specimens of squash plants grown in the presence of Fe(II)-EDTA and SPIONs (Plant D) compared to other roots of squash plants. The root specimens of “Plant D” displays a super-paramagnetic (SPM) behavior. For this sample, the value of M_s is equal to 9.1 emu/g. The M_r and H_c, with values equal respectively to 0.5 emu/g and 300 Oe, respectively, are negligible confirming the super-paramagnetic behavior. The manifestation of the SPM nature is principally owing to the presence of SPIONs. This result confirms that the root specimens absorb noticeable amounts of SPIONs.

M(H) measurements were explored in root, stem and leaf tissues of “Plant A” and “Plant D” in order to evaluate the translocation of SPIONs to aerial organs. The M(H) plots are presented in Fig. 8. The applied dose of SPIONs (“Plant D”) showed a SPM nature, confirming that noticeable amounts of SPIONs were absorbed by root organ. On the other hand, the M(H) curve of Fe(II)-EDTA added plant (Plant B) shows a diamagnetic (DM) behavior, where the PM dominates. The germination of squash plant in water free of Fe(II)-EDTA and Fe(II)-EDTA leads to decrease slightly the magnetization magnitude compared to the one of control plant. It is clearly seen that the M(H) behavior changes suddenly in the stem of “Plant D” compared to the control one (Fig. 8d). Nevertheless, this magnetic behavior reveals the occurrence of a mixture of DM and SPM phases. However, the leaf of “Plant D” is less sensitive to the inclusion of SPIONs. The magnetization behavior indicates that there is a combination of DM and SPM phases however, the DM phase dominates in this sample (Fig. 8f). The obtained findings reveal that the absorbed amounts of SPIONs by root organs are not translocate to the leaf organs.

3.7. Iron content in plant tissues

In order to confirm the uptake and migration of iron elements to the plant aerial organs, the iron content in root and leaf organs of all tested plants was determined (Table 1). As it is expected, iron deficient plants (Plant B) has the less iron content in its tissues. However, the plants supplemented with both SPIONs and Fe(II)-EDTA (Plant D) harbor the highest iron content (~250 mg kg⁻¹ DW) in their roots. Compared to control plant (Plant A), it seems that the SPIONs addition contributed to the iron level of plants. The comparison of iron content in “Plant C” (SPIONs only) and “A” (control, Fe(II)-EDTA only) shows that the applied dose of SPIONs (100 mg/L) is not sufficient to achieve the level of iron content obtained from control plants. Furthermore, the leaf iron content of “Plant C” (10.37 mg kg⁻¹ DW) is almost the same as that of iron deficient plant, “Plant B” (8.47 mg kg⁻¹ DW). These results point out that SPIONs are unable to translocate to the aerial organs of squash.
plant, which is displayed in Figs. 5 and 6.

4. Discussion

Nanoparticles have been successfully implemented in agriculture for the purposes of plant growth regulation and quality enhancement (Parisi et al., 2015). In addition, they are proposed to remediate plants suffering from nutrient deficiencies, such as iron (Rui et al., 2016), magnesium (Delfani et al., 2014), and calcium (Hua et al., 2015). Compared to traditional fertilizers, nano-fertilizers allows better dissolution and faster absorption and assimilation by the plant (Morales-Díaz et al., 2017). Therefore, they can enhance plant-growth in certain concentration ranges and be used in agricultural applications to increase agronomic yields of crops and/or minimize environmental pollution (Liu and Lal, 2015).

In this study, it was shown that the use of SPIONs as an iron source instead of Fe(II)-EDTA is not sufficient to compensate the iron demand of squash plants. In contrast, the treatment with SPIONs alone caused growth retardations and symptoms like iron-deficiency in plants (Fig. 2a). For instance, leaves of iron deficient plant (Plant B) were found to be yellowed and expanded. The increase in the leaf area is a kind of adaptation to enable efficient photosynthesis against low iron content (Fernández et al., 2008). Since the iron is required to produce chlorophyll and photosynthetic enzymes (Rout and Sahoo, 2015), the abundance of chlorophyll a, b, and carotenoids were decreased significantly (∼20%, p < 0.005; ∼15%, p < 0.05; and ∼18%, p < 0.01, respectively) in the iron deficient plant (Plant B) when compared to the control plant (Plant A). Similar results were obtained for the plants grown in nutrient solution amended with SPIONs only (Plant C) (Fig. 2b). Furthermore, the plant biomass (FW and DW) were...
decreased which is in turn parallel to these findings (Fig. 3a and b). A possible explanation of the decreased growth could be that SPIONs are unable to serve as an iron source for the metabolic processes of the plant completely. The disassociation of iron elements from iron oxide nanoparticles may partially contribute to the iron demand of plant as shown in a previous study by Hu et al. (2017) in which a negligible amount of Fe$^{3+}$ ($\sim 14 \mu g/L$) is dissolved from γ-Fe$_2$O$_3$ NPs suspended in Hoagland solution. The presence of SPIONs affected the protein content of the leaves and roots differently (Fig. 3c and d). The increase in the soluble protein content of roots could be attributed to the enhanced de novo synthesis of defensive or stress-related proteins for cell protection (Teixeira et al., 2005). On the other hand, the decrease in leaf protein content can be explained due to the reductions in the activity of some enzymes such as RuBisCo which depresses the synthesis of protein and accelerates their degradation thus creates an imbalance in soluble amino acid/protein ratio (Baroowa et al., 2016; Surendar et al., 2013). Similarly, the activity of the catalase enzyme was different in root and leaf tissues (Fig. 4). In roots, dramatic increases were obtained from all tested groups which is attributable to the production of reactive oxygen species (ROS). Previous studies have observed similar findings (Moore, 2006; Hund-Rinke and Simon, 2006). However, it is obvious that SPIONs-treatment did not alter the enzyme activity in leaves, probably due to the prevented transfer of SPIONs to the aerial organs.

The existence of SPIONs in the root cells were verified by TEM and XRD analyses. However, no SPIONs were found in the leaf parts (Figs. 5 and 6).
Nanoparticles can enter the plant cells and may be transported either apoplastically or symplastically from one cell to another via plasmodesmata (Rico et al., 2011; Zhai et al., 2014). In our study, SPIONs were abundantly found at this structure (plasmodesmata) which serve as the channels enabling cell-to-cell communication and transport. This finding suggests that SPIONs use a symplastic transport route in pumpkin through plasmodesmata.

Since SPIONs have magnetic character, their involvement in plant parts was investigated by VSM analysis (Fig. 6). The data of $M(H)$ are divided by the mass of the sample. Therefore, the magnetic signal strength is linked to the magnetic material concentration. This means that the greater the magnetic signal is, the greater the concentration of magnetic nanoparticles will be. It is obvious that the magnetic responses collected for the various root squash specimens are very smaller than the magnetization of SPIONs alone (~ 60 emu/g) (Fig. 1c), which is an expected result. This observation agreed with the previous investigations done by Tombuloglu et al. (2018).

Table 1

<table>
<thead>
<tr>
<th>Samples</th>
<th>ROOT</th>
<th>LEAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Plant A"</td>
<td>196.33 ± 17.2</td>
<td>80.37 ± 10.1</td>
</tr>
<tr>
<td>"Plant B"</td>
<td>25.17 ± 8.1</td>
<td>8.47 ± 6.5</td>
</tr>
<tr>
<td>"Plant C"</td>
<td>100.06 ± 19.1</td>
<td>10.37 ± 4.6</td>
</tr>
<tr>
<td>"Plant D"</td>
<td>254.87 ± 8.4</td>
<td>43.70 ± 5.6</td>
</tr>
</tbody>
</table>

Fig. 8. $M(H)$ curves of the different root, stem and leaf organs of squash “Plant A” (left) and “Plant D” (right). Plant A: Fe(II)-EDTA or control, Plant D: SPIONs with Fe(II)-EDTA.
Moreover, the iron content analysis by ICP-OES showed a negligible amount of iron is transferred to the leaves upon SPIONs treatment (Plant C) (Table 1). These findings are in agreement with previous studies. For instance, the uptake of SPIONs without being translocated to leaves has been shown in ryegrass, pumpkin (Wang et al., 2011), cucumber (Konate et al., 2018), and Citrus maxima (Li et al., 2018). On the other hands, their translocation has been shown in soybean, pumpkin, and common bean in some studies (Table 2). It is obvious that the translocation is dependent on the plant type. Despite the small size of NPs, different plants can have different “mechanisms” that ultimately affect NPs translocation. For example, biological structures, such as the cell wall, Casparian strip and the cell membrane with sizes ranging from 1 to 100 nm (depending on the plant species) can prevent or allow NPs to pass through cells or organs (Wang et al., 2016). In addition, the size of plant cell wall pores varies between 3.5 nm and 20 nm (Chichiricco and Poma, 2015). The size distribution of the SPIONs in this study is around 12.5 nm which would allow them to form agglomerates in the plant body which in turn increases their size and hence may prevent their translocation.

5. Conclusion

In this study, the uptake and translocation of SPIONs (~12.5 nm in size) were investigated and their effects on summer squash were evaluated by comparing with iron oxide (Fe(II)-EDTA). The magnetization, XRD, and elemental analyses revealed that SPIONs were up-taken by roots but could not pass into leaf tissues, probably due to several size exclusion limits (i.e. cell wall, Casparian strip, or cell membrane). In the roots, SPIONs use a symplastic transport route through plasmodesmata. The treatment of the plant with SPIONs alone (without Fe(II)-EDTA) caused retardation in growth and biomass, therefore it can be concluded that SPIONs alone are not sufficient to meet the iron requirement of the plant. However, they can contribute to the iron concentration of the summer squash when used with Fe(II)-EDTA.

Acknowledgments

This study is supported by Deanship of Scientific Research (Project no. 2018-139-IRMCE) and Institute for Research and Medical Consultations (Projects nos. 2018-IRMCE-S-2 and 2017-IRMCE-S-3) of Imam Abdulrahman Bin Faisal University (IAU, Saudi Arabia).

References

Pérez-de-Luque, A., 2017. Interaction of nanomaterials with plants: what do we need for
real applications in agriculture? Front. Env. Sci. 5, 12.