1. Introduction

The most recent climate change predictions indicate that it will impose significant increases in the global average air and sea surface temperatures by about 2.5 °C (IPCC, 2001) together with an increase of atmospheric CO₂ concentration to value of c. 760 ppm by 2100. Due to this global warming, sea level rise (SLR) and soil salinization will be some of the major side-effects, as a result of polar ice meltdown and the increment of surface water evaporation, respectively (IPCC, 2001). There is a consensus on the direct physiological impact of increasing CO₂ concentration on plant photosynthesis and metabolism, stimulating growth and development in hundreds of plants species (Ghannoum et al., 2000). However, the information is very scarce in relation with the effect of atmospheric CO₂ enrichment on photosynthesis in plants subjected to a complex environmental matrix.

Therefore, the majority of studies that have tried to address this concern were designed to explore as much two environmental factor interactions; i.e. the effect of rising CO₂ along with salinity (Lenssen et al., 1993; Rozema, 1993; Geissler et al., 2009a, 2015, 2009b; Mateos-Naranjo et al., 2010a, 2010b; Pérez-Romero et al., 2018), drought (Yang et al., 2014; Slama et al., 2015; Calvo et al., 2017), temperature (Bernacchi et al., 2006) or flooding (Duarte et al., 2014), etc. Only few studies have addressed the impact of more than two coexisting factors (Lenssen et al., 1995). Although the majority of them only performed shallow physiological evaluations being difficult to find a complete analysis of photosynthetic responses taking into account carbon assimilation capacity and energy use efficiency together with other metabolism processes, such as antioxidant enzyme modulation, involved in the plants responses to environmental stress.

Salicornia ramosissima J. Woods (Chenopodiaceae), represent a...
suitable model plant to study in detail the effect of atmospheric CO2 enrichment on the physiological responses of a plant species under co-existing suboptimal environmental conditions, such as soil flooding and salinity conditions. Since this species is a C3 halophyte which inhabits salt marshes and inland salty habitats like shores of salt lakes being able to tolerate a wide range of salinity and a certain degree of immersion (Davy et al., 2001). However, these estuarine areas will be particularly vulnerable to SLR (Reed, 2002; Duarte et al., 2014) and salinization (Davy et al., 2001). Our recent study showed that CO2 enrichment improves S. ramosissima response to suboptimal salinity conditions through an overall protection of its photosynthetic pathway (Pérez-Romero et al., 2018), but non-attention have been paid in SLR risk. Therefore, this study was designed and conducted to fill this gap of knowledge. In particular, we asked the following questions: (i) Would atmospheric CO2 enrichment have a positive impact on S. ramosissima physiological performance under co-occurrence of different stress factors, such as prolonged soil flooding and salinity? (ii) Would this effect be different to previous described only in presence of salinity, especially at the level of specific steps of photosynthetic pathway? (iii) Would other metabolism processes, such as antioxidant enzyme machinery or fatty acids profiles modulation, be involved in these differential responses?

2. Material and methods

2.1. Plant material

Seeds of S. ramosissima were collected in September 2016 from a well established population located in Odiel marshes (37°15’N, 6°58’O; SW Spain). Then, collected seed were placed into a germinator (ASL Aparatos Científicos M-92004, Madrid, Spain) and subjected to a day-night regime of 16 h of light (photon flux rate, 400–700 nm, 35 μmol m−2 s−1) at 25°C and 8 h of darkness at 12°C, for 15 days. After germination, seedlings were planted in individual plastic pots (9 cm high x 11 cm diameter) filled with perlite as substrate, and moved to a greenhouse with controlled conditions (temperature between 21 and 25°C, 40–60% relative humidity and natural daylight 250–1000 μmol m−2 s−1 light flux). The pots were placed in shallow trays watering with 20% Hoagland’s solution (Hoagland and Arnon, 1938) and 171 mM NaCl (Pérez-Romero et al., 2016). Plants were kept under the previously described conditions until the beginning of the experiment.

2.2. Experimental treatments

After 3 months of seedlings culture, when plants had a mean height c. 13 cm, perlite was washed off and plants were transferred to individual plastic pots of 0.25 l containing an organic commercial substrate (Gramoflor GmbH und Co. KG.) and sand mixture (2:1) in order to facilitate water level treatment. Pots were randomly divided in eight experimental blocks with eleven plants in each one, as follow: two atmospheric CO2 concentrations (400 ppm and 700 ppm) in combination with two water levels (water logging, WL and no water logging, noWL) and two salinity concentrations (171 and 510 mM NaCl). These conditions were kept for 45 days in order to obtain a more realistic approximation about the maximum permanent inundation period that we have observed during field surveys in natural populations of S. ramosissima which inhabits inland salty habitats (data not published). In addition, being an annual specie, this period was used to avoid a decreased in the physiology variables due to age because after the 3 months of seedlings culture the plants where around 135 days old.

Salinity treatments, 171 and 510 mM NaCl, were established by using tap water and NaCl of the appropriate concentration. In addition, these solutions were added to each tray to get water treatments. Thus, for the WL treatment, water level was continuous maintained at soil surface level, and for no WL treatment water level was continuous covering 2 cm from the bottom of the tray. Finally, for the atmospheric CO2 concentration treatments pots were placed in controlled-environment chambers (Aralañ/Fitoclima 18.000 EH, Lisbon, Portugal) with alternating diurnal regime of 14 h of light and 25°C and 10 h of darkness and 18°C and relative humidity between 40 and 60% and atmospheric CO2 control. Atmospheric CO2 concentrations in chambers were continuously recorded by CO2 sensors (Aralañ, Lisbon, Portugal) and maintained by supplying pure CO2 from a compressed gas cylinder (Air liquide, B50 35K). As well as the salinity and water levels to avoid changes due to evaporation.

2.3. Growth analysis

At the beginning of the experiment just before treatments imposition belowground and aboveground fractions of 10 randomly selected plants were separated, dried at 80°C for 48 h and weighed. At the end of the essay, 8 plants per treatment were processed in the same way. The relative growth rate (RGR) was calculated using the formula: RGR = (lnBf - ln B0) / D (g/g day−1)

Where B0 = initial dry mass (an average eight plants per treatment), Bf = final dry mass (average of the ten plants dried at the beginning of the experiment) and D = duration of experiment (days).

2.4. Plant water status

Water content (WC) of primary branches (n = 8, per treatment) were calculated after 45 days of treatment as follow: WC = (FW - DW) / FW 100

Where FW = fresh weight of the branches and DW = dry weight after oven-drying at 80°C for 48 h.

On the other hand, the osmotic potential (Ψs) of primary branches (n = 5, per treatment) was determined 45 days after the onset of the treatments, using psychrometric technique with a Vapour Pressure Osmometer (5600 Vapro, Wescor, Logan, USA).
2.5. Measurement of gas exchange

Instantaneous gas exchange measurements were taken on randomly selected primary branches of individual plants (n = 7, per treatment) using an infrared gas analyser in an open system (LI-6400, LI-COR Inc., Neb., USA) equipped with a light leaf chamber (Li-6400-02B, Li-Cor Inc.) after 45 days of treatment. Net photosynthetic rate (AN), stomatal conductance (gₛ), intercellular CO₂ concentration (Ci) and intrinsic water use efficiency (WUE) were determined under the follow leaf cutvete conditions: a photosynthetic photon flux density (PPFD) 1000 μmol photon m⁻² s⁻¹ (with 15% blue light to maximize stomatal aperture), vapour pressure deficit of 2.0–3.0 kPa, air temperature of 25 ± 2 °C, relative humidity of 50 ± 2% and CO₂ concentration surrounding leaf (Cc) of 400 and 700 μmol mol⁻¹ air for plants exposed to 400 and 700 ppm CO₂, respectively. Photosynthetic area was calculated as half the area of the cylindrical branches, as only the upper half received the unilateral illumination in the leaf chamber (Redondo-Gómez et al., 2010). Intrinsic water use efficiency (WUE) was calculated as the ratio between AN and gₛ.

2.6. Chlorophyll fluorescence

Modulated chlorophyll fluorescence measurements were performed at the same time as gas exchange measurements on the same branches of gas exchange using a FluorPen FP100 (Photo System Instruments, Czech Republic) on light and 30 min dark-adapted primary branches after 45 days of treatment (n = 7, per treatment). Light energy yields of photosystem II (PSII) reaction centres were determined with a saturation pulse method as Schreiber et al. (1986) described. The maximum fluorescence signal across time was estimated by using a saturating light pulse of 0.8 s with an intensity of 8000 μmol m⁻² s⁻¹. The minimum fluorescence (F₀), the maximum fluorescence (Fm) and the operational photochemical efficiency values of light and dark adapted branches were compared. Quantum yield of PS II (Φm) and relative Quantum yield of PS II (Φm/ΦPSII) were calculated as Fm/F₀ and ΦPSII respectively. Maximum electron transport rate (ETRmax) and the Kautsky curves, or JIP-test, which depicts the rate of reduction kinetics of various components of PSII, were also measured in dark-adapted branches. For this purpose, the pre-programmed RLC and OJIP protocols of the FluorPen (n = 5, per treatment) according to Duarte et al. (2015). For this purpose, the pre-programmed RLC and OJIP protocols of the FluorPen were used. All derived parameters for both RLC and OJIP were calculated according to Marshall et al. (2000) and Strasser et al. (2004) respectively (Table 1). Finally, ETRmax/AN ratio was calculated with the values obtained from fluorescence rapid light curves, RLC (see below) and instantaneous gas exchange measurements.

2.7. Anti-oxidant enzymatic activity

Enzyme extraction was done following the method used by Duarte et al. (2015). At the end of experiment, 500 mg of fresh branches samples were grounded in 8 ml of 50 mM sodium phosphate buffer (pH 7.6) with 0.1 mM Na-EDTA and were centrifuged at 10.000 rpm for 20 min at 0 °C to obtained the soluble proteins. Three samples per treatment were used and three measurements per sample were registered. Protein content in the extracts was obtained according to Bradford (1976), using bovine serum albumin as a standard.

Guaiacol peroxidase EC 1.11.1.7 (GPX) was calculated as Bergmeyer (1974) indicated. With a reaction mixture made of 50 mM of sodium phosphate buffer (pH 7.0), 2 mM of H₂O₂ and 20 mM of guaiacol. For all this enzymatic activities 100 μL of vegetal extract was added at the reaction mixture to start the reaction. Superoxide dismutase EC 1.15.1.1 (SOD) activity was assayed by monitoring the reduction of pyrogallol at 325 nm following Marklund and Marklund (1974) work. The reaction mixture was 50 mM of sodium phosphate buffer (pH 7.6), 0.1 mM of Na-EDTA, 3 mM of pyrogallol, Mill-Q water. The reaction was started with the addition of 10 μL of enzyme extract. Auto-oxidation of the substrates was evaluated by control samples with the reaction mixture but without the enzyme extract.

2.8. Betain concentration

Betain were determined as the main osmocompatible solute present in succulent halophytes (Duarte et al., 2013). To quantify the betain concentration 500 mg samples of fresh branches were collected at the end of the essay and freeze-dried for 48 h. Then, the samples were grinded and left in ultra-pure water for 24 h. After that, the sample extract was diluted 1:1 with 2 N H₂SO₄. Cold KI-I₂ reagent (0.20 ml) was mixed with 0.5 ml of the diluted sample. The tubes were stored at 4 °C for 16 h and then centrifuged at 10.000 rpm for 15 min at 0 °C. The supernatant was carefully aspirated with a fine tipped glass tube. The

Table 1
Summary of fluorometric analysis parameters and their description.

<table>
<thead>
<tr>
<th>Photosystem II Efficiency</th>
<th>Rapid Light Curves (RLCs)</th>
<th>Energy Fluxes (Kautsky curves)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fv/Fm</td>
<td>PS II Operational and Maximum Quantum Yield (ΦPSII)</td>
<td>Area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum quantum efficiency of PSII photochemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Light and dark-adapted quantum yield of primary photochemistry, equal to the efficiency by which a PS II trapped photon will reduce Qₐ to Qₐ’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum ETR after which photo-inhibition can be observed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corresponds to the oxidized quinone pool size available for reduction and is a function of the area above the Kautsky plot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum yield of primary photochemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Probability that an absorbed photon will move an electron into the electronic transport chain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quantum yield of the non-photochemical reactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Probability of a PS II trapped electron to be transported from Qₐ to Qₐ’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electron movement efficiency from the reduced intersystem electron acceptors to the PSI and electron acceptors.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reaction centre turnover rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relative pool size of PQ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Net rate of PS II RC closure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Absorbed energy flux per leaf cross-section.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trapped energy flux per leaf cross-section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electron transport energy flux per leaf cross-section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dissipated energy flux per leaf cross-section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of available reaction centres per leaf cross section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The grouping probability is a direct measure of the connectivity between the two PS II units (Strasser and Stribet, 2001)</td>
</tr>
</tbody>
</table>
periodic crystals produced were dissolved in 9.0 ml of 1.2-dichloroethane (reagent grade). After 2–2.5 h, the absorbance was measured at 365 nm with a Hitachi Spectrometer model 100–20 (Grieve and Grattan, 1983).

2.9. Fatty acid profile

At the end of the experiment, 150 mg samples of fresh and green branches were taken to determine the fatty acids composition. The method used was the direct acidic trans-esterification previously described by Matos et al. (2007). A gas chromatograph (3900 Gas Chromatograph; Varian, Palo Alto, CA, USA) equipped with a hydrogen flame-ionisation detector was used to separate the fatty acid methyl esters (FAME) with a fused silica 0.25 mm i.d. x 50 m capillary column (WCOT Fused Silica, CP-Sil 88 for FAME; Varian). The internal standard was heptadecanoate (C17:0). Double-bond index (DBI) was calculated as:

\[DBI = \frac{(16:1\% + 18:1\%) + (2\times18:2\%) + (3\times18:3\%)) \times 100}{
\]

Where 16:1\% was the percentage of palmitoleic fatty acid, 18:1\% the percentage of oleic fatty acid, 18:2\% the percentage of linoleic fatty acid, 18:1\% the percentage of linoleic fatty acid and 18:3\% the percentage of omega-3 fatty acid.

2.10. Statistical analysis

Statistical software package R was used to perform the entire statistical analysis. A multivariate statistical approach using a principal component analysis model was performed to get an overview of the plant development, physiological and biochemical status in response to the different experimental treatments. Then, a downscaling assess was carried out through to generalized linear models (GLM) to analyze the interactive effects of atmospheric CO2 concentration, water level and NaCl concentrations (as categorical factors) on the growth, physiological and biochemical parameters (as dependent variables) of *Salicornia ramosissima* plants. Multiple comparisons were assessed by LSD (post hoc) test. Before statistical analysis, Kolmogorov-Smirnov and Levene tests were used to verify the assumptions of normality and homogeneity of variances, respectively.

3. Results

3.1. Multivariate approach: global overview of physiological and biochemical status

PCA ordination provided an overall picture of the physiological/biochemical condition of *Salicornia ramosissima* during the experimental setup explaining 64% of the proportion of variation of the recorded data (i.e. Axis 1 and Axis 2 a 43% and a 21%, respectively; Fig. 1). Hence, the bidimensional plot revealed a certain divergence between both atmospheric CO2 concentration treatments along axis 2, with most of non-CO2 enrichment plants located in the upper part (Fig. 1A). This separation by CO2 treatment was mainly explained by higher AW, Gs, iWUE, Ψo, SOD activity and SFA accumulation at 700 ppm CO2 compared to 400 ppm CO2 (Fig. 1B). In addition, PCA analysis reflected a clear divergence of plants grown at 700 ppm CO2 + WL + 510 mM NaCl in the left part of the plot linked with the greater PC, N, Sm, qφo, DI/CS and Betain concentration compared with the rest of treatments (Fig. 1A and B).

3.2. Growth analysis

RGR values were greater overall in plants exposed to 700 ppm CO2 than their non-CO2 enrichment counterpart, obtaining the highest values in plants grown at 700 ppm CO2 + noWL at both NaCl concentrations; however this positive effect was in certain degree mitigated under WL conditions (GLM: WL, p < 0.05; Table 2).

3.3. Plant water status

Water content (WC) did not vary with atmospheric CO2 concentration, water logging and salinity, showing in all cases values c. 86% (Table 2). Contrarily, there were significant effects of atmospheric CO2 concentration and salinity on the osmotic potential (Ψo) but no

Table 2

<table>
<thead>
<tr>
<th>[CO2]</th>
<th>Water level</th>
<th>[NaCl]</th>
<th>RGR (%)</th>
<th>WC (g)</th>
<th>Ψo(MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>no WL</td>
<td>171</td>
<td>0.104 ± 0.01</td>
<td>87.1 ± 1.0</td>
<td>3.38 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>WL</td>
<td>171</td>
<td>0.093 ± 0.01</td>
<td>85.8 ± 0.3</td>
<td>4.94 ± 0.09</td>
</tr>
<tr>
<td>700</td>
<td>no WL</td>
<td>171</td>
<td>0.096 ± 0.01</td>
<td>87.8 ± 0.3</td>
<td>4.24 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>WL</td>
<td>171</td>
<td>0.113 ± 0.01</td>
<td>86.0 ± 0.4</td>
<td>3.05 ± 0.18</td>
</tr>
</tbody>
</table>

Fig. 1. PCA biplot of the physiological and biochemical data of *Salicornia ramosissima* plants in the experimental set-up. Loading plots for the first axis (explained variation is 42.97%) and second axis (explained variation is 20.78%).
significant interactions (GLM: [CO2], p < 0.001; [NaCl], p < 0.05; Table 2). Thus, Ψo increased at 510 mM NaCl being this increment overall reduced at elevated CO2 concentration, independently of WL level (Table 2).

3.4. Gas exchange measurements

There were significant effects of atmospheric CO2 concentration, WL and salinity on net photosynthetic rate (AN) after 45 d of treatment, but no synergistic effect could be identified (GLM: [CO2], WL, [NaCl], p < 0.05). Thus, plants grown at higher CO2 concentration showed slightly higher values of AN than their 400-ppm CO2 counterparts; being this augmentation more evident under water logging conditions compared with the remaining treatments. In addition, there was a decrease in AN at 510 mM NaCl, but less pronounced at high CO2 concentration and in presence of water logging (Fig. 2A). Furthermore, stomatal conductance (gs) values were lower at elevated atmospheric CO2 concentration and at 510 mM NaCl in noWL plants (GLM: [CO2], WL, [NaCl], p < 0.05; Fig. 2B). Overall, intercellular CO2 concentration (Ci) values were greater in plants grown at 700 ppm CO2 independently of saline and water logging conditions (GLM: [CO2], p < 0.01; Fig. 2C). Finally, iWUE was only affected by CO2 concentration with higher values for plants grown at 700 ppm CO2 (GLM: [CO2], p < 0.01; Fig. 2D).

3.5. Fluorescence measurements

Fv/Fm and ΦPSII values did not show any significant differences between atmospheric CO2 concentration, WL or salinity treatments showing mean values of between 0.68–0.63 and between 0.64 and 0.65 for Fv/Fm and ΦPSII, respectively (data not shown). However, there was a significant effect of atmospheric CO2 concentration on ETRmax with higher values at 700 ppm CO2 (GLM: [CO2], p < 0.001; Fig. 2E). Also, there was a synergistic effect of the three factors studied on ETRmax/AN; thus this ratio increased in plants grown at 510 mM NaCl but this increment was mitigated at elevated atmospheric CO2 concentration and plants exposed to WL conditions (GLM: [CO2] x WL x [NaCl], p < 0.01; Fig. 2F).

Focusing on the derived-parameters from the Kautsky curves, there was not a clear pattern of response to atmospheric CO2 concentration, WL and salinity treatments. This lack of pattern was seeing at the oxidized quinone pool size available for reduction (Area), net rate of PS II RC closure (M0), electron movement efficiency from the reduced intersystem electron acceptors to the PSI and electron acceptors (δR0), maximum yield of primary photochemistry (φP0), probability of a PS II trapped electron to be transported from QA to QB (Ψ0), probability that an absorbed photon will move an electron into the electronic transport chain (φE0), quantum yield of the non-photochemical reactions (φD0) (Fig. 3A, B, E, F and Fig. 4A–D). Nevertheless, grouping probability (P), reaction centre turnover rate (N) and relative pool size of PQ (Sm) values increased markedly in plants grown at 700 ppm CO2 and elevated water and salinity levels compared with the rest of treatments (GLM: [CO2] x WL x [NaCl], p < 0.05; Fig. 3B, C, D). Finally, regarding the energetic fluxes on a leaf cross-section basis (phenomological fluxes) showed that absorbed (ABS/CS), trapped (TR/CS), dissipated (DI/CS)
3.6. Anti-oxidant enzymatic activity and osmocompatible solutes

GPX enzyme activity did not vary between the plant exposed to the different experimental treatment (Fig. 6A), but SOD presented a clear tendency to be higher when *S. ramosissima* was grown at 700 ppm of CO2 (GLM: [CO2], p < 0.001; Fig. 6B): although without WL or salinity treatment variations.

On the other hand, there was a synergistic effect of the three experimental factors in betain concentration (GLM: [CO2] x WL x [NaCl], p < 0.05). Thus, betain concentration increased considerable at 700 ppm CO2 in plants grown at 510 mM NaCl at both WL treatments (Fig. 6C).

3.7. Fatty acid composition

Percentage of palmitic acid (C16:0) and linolenic acid (C18:3) were significantly affected by CO2 (GLM: [CO2], p < 0.01). Hence, overall 16:0 percentage was greater at elevated CO2 concentration for all salinity and WL treatments; while the percentage of C18:3 decreased (Fig. 7A). In both cases, the differences were less evident for low salinity and water level being statistically significant the interactions for palmitic acid (GLM: [CO2] x WL x [NaCl], p < 0.05). For the remaining fatty acids analysed there were no significant differences between experimental treatments (Fig. 7A). The relative abundance of the saturation classes showed an increase in saturated fatty acid (SFA) and a decrease in the unsaturated classes (UFA, PUFA and MUFA) owing to the increment in atmospheric CO2 (GLM: [CO2], p < 0.01) (Fig. 7B). Unsaturated/saturated ratio (UFA/SFA) (Fig. 7C) showed a significant slightly decrease at high CO2 atmospheric concentration along with 510 mM NaCl at both WL treatments (GLM: [CO2] x WL x [NaCl], p < 0.05). Nevertheless, there were no significant effect in PUFA/SFA, 18:2/18:3 and DBI for any of the variables studied (Fig. 7C).

4. Discussion

Understanding the effects of possible interactions between atmospheric CO2 enrichment and other ecosystems factors on plants species physiological performance is essential for designing more realistic models about the impact of climatic change on plant species development (Bernacchi et al., 2006). This information is particularly important in the most vulnerable ecosystems such as coastal areas and its vegetation, owing to its elevated risk of SLR (Reed, 2002; Duarte et al., 2014) and salinization events (IPCC, 2007).

This study showed that atmospheric CO2 enrichment could ameliorate the deleterious impact of co-existed water logging and salinity suboptimal growth conditions on the physiological performance of *S. ramosissima*. Thus, plants grown at 700 ppm CO2, WL and at both salinity levels surpassed the AN values obtained in the plants grown in...
optimal conditions (i.e., no WL and low salinity). Furthermore, gs values decreased at 510 mM NaCl in no WL plants and overall were lower at elevated CO2 atmospheric concentration. This reduction could be explained by the increase of Ci originated by the elevated CO2 concentration; this could promote partial stomatal closure (Robredo et al., 2007). In addition, it is worth to mention that gs values did not vary respect to values registered in plants grown at noWL+171 mM NaCl contrary to the drop recorded in AN at high salinity and WL levels in not CO2 enrichment plants. This mitigation effect fot gs of water logging has been previously described by Ullah et al. (2017). Ullah et al. (2017) ascribed it to the water excess which would stimulates the stomatal aperture ameliorating the stomata closure effect of high salinity. This effect was also evident at 700 ppm CO2 for our treated plants. The general gs reduction at 700 ppm CO2 would contribute to preserve the trade-off between CO2 acquisition for photosynthetic process and water losses in S. ramosissima as indicated the higher WUE values, being this impact especially important at 510 mM NaCl since these plants would be able to cope with the stress derived from salt excess. Robredo et al.
aperture rising the e

centration allow plants to acquire the carbon needed with less stoma
[C02], WL, [NaCl] or [CO2] x WL x [NaCl] in the corner of the panels indicate
different from each other (GLM, [CO2] x WL x [NaCl]; LSD test, P < 0.05).

mean ± SE, n = 3. Dis
could be also ascribed to up-regulation of some component involved in
endurance bene
(2007) previously highlighted, the increment in CO2 atmospheric con-
fier trend has been previously reported in Salicornia ramosissima in response to treatment with two of NaCl concentrations
(171 and 510 mM) and with water logging (WL) and with no water logging (no WL) at 400 and 700 ppm CO2 x WL x [NaCl] after 45d of treatment. Values represent
mean ± SE, n = 3. Different letters indicate means that are significantly dif-
different from each other (GLM, [CO2] x WL x [NaCl]; LSD test, P < 0.05).
[CO2], WL, [NaCl] or [CO2] x WL x [NaCl] in the corner of the panels indicate
main or interaction significant effects ("P < 0.01, ""P < 0.001, """"P < 0.0001).

Fig. 6. Betain (A), superoxide dismutase (SOD) (B) and guaiacol peroxidase
(GPx) (C) enzymatic activities in randomly selected, primary branches of
Salicornia ramosissima in response to treatment with two of NaCl concentrations
(171 and 510 mM) and with water logging (WL) and with no water logging (no WL) at 400 and 700 ppm CO2 after 45d of treatment. Values represent
mean ± SE, n = 3. Different letters indicate means that are significantly dif-
different from each other (GLM, [CO2] x WL x [NaCl]; LSD test, P < 0.05).

(2007) previously highlighted, the increment in CO2 atmospheric con-
centration allow plants to acquire the carbon needed with less stoma
aperture rising the efficiency in the use of water for them. A very si-
tilar trends have been previously reported in S. ramosissima in response to NaCl excess and in combination with soil flooding conditions (Lensen et al.,
1995). Nevertheless, to our knowledge, this is the first study where CO2
enrichment beneficial effects under coexisted root flooding conditions
could be also ascribed to up-regulation of some component involved in
PSII energy transport chain, accumulation of osmoprotective com-
ounds and the modulation of fatty acids profiles, as indicated our
multivariate statistical approach.

Despite the existence of widely documented deleterious effect of
prolonged water logging (Mateos-Naranjo et al., 2007; Cao et al., 2017;
Ullah et al., 2017) and NaCl concentration excess (Flexas et al., 2004;
Mateos-Naranjo and Redondo-Gómez, 2016) on photochemical appa-
rus our results showed a different scenario. It could be seen that in
general PS II and its antennae complex were not affected by any of the
tested stressful treatments. As it was indicated by the similarities in Fv/
Fm, φPSII, Area, δR0, φPSI, ΨPSI, φPSI, ABS/CS, TR/CS and ET/CS values
between all experimental treatments. Nevertheless, plants exposed to
700 ppm CO2 + WL + 510 mM NaCl presented the higher Pn, N and
Sm values, which indicate that their reaction centres had lower re-
oxidation rates and thus were able to generate electrons from photons
in higher amounts per unit of time (Duarte et al., 2017). Moreover, the
descriptive difference in electron transport flux (ET/CS) suggests that the
electron transport chain can deal with this increased number of elec-
trons, derived from higher Pn, N and Sm values, and therefore under
normal conditions it would be working at sub-saturated conditions.
Hence, the positive impact of atmospheric CO2 enrichment on photo-
chemical apparatus of S. ramosissima could be ascribed to the enhanced
of the efficiency for energy transport, avoiding the accumulation of
energy excess, which could contribute to reduce the risk of oxidative
stress due to the accumulation of reactive oxygen species (ROS). In fact,
the lower risk of ROS production was supported by the decrease in
ETRmax/Αv ratio recorded in S. ramosissima plants grown at 700 ppm
CO2 + WL + 510 mM NaCl compared with their non-CO2 supplied
counters. This ratio could be considered as an indicator of the poten-
tial ROS stress that plants are subjected to and derived from a possible
lack of carbon units correspondent to the number of electrons
generated (Salazar-Parra et al., 2012; Hussin et al., 2017). Together
with the maintenance of energy transport efficiency, the accumulation
of different protection compounds as osmocompatible solutes or the
modulation of the anti-oxidative stress enzymes machinery was also in
the basis of the redox-balance maintenance. Therefore, compounds
such as betain are known to be produced by plants to cope with salinity
or drought stress (Moradi et al., 2017). In this study, betain con-
encentration showed a clear pattern of increment in relation with the
atmospheric CO2 in plants grown under stressful conditions. In addi-
tion, there was modulation effect, driven from an atmospheric CO2
enrichment, in certain anti-oxidant enzymes of S. ramosissima as SOD.
This enzyme showed higher activity levels compared their 400-ppm
CO2 counterpart contributing to cope with oxidative stress in greater
extent.

Finally, the ameliorative effect of atmospheric CO2 fertilization on
S. ramosissima physiological responses under coexistence of water log-
ging and salt excess was also supported by fatty acids profiles. Fatty
acids profile has been suggested as useful biomarker for abiotic stress in
halophytes species, such as Spartina maritima, Spartina patens, Halimione
portulacoides and Sarcocornia fruticosa, and its levels are highly related
to the photosynthetic functioning of these species (Duarte et al., 2017,
2018a; 2018b). Our results revealed that generally at elevated CO2
concentrations there was a decrease in unsaturated/saturated ratio for
all WL and salinity treatments, due to a major decrease in C18:3. A
direct action of ROS production during stress exposition with the aug-
mentation of the membrane lipid peroxidation has been described,
which could lead to a decrease in the C18:2 and C18:3 relative contents
(Ouariti et al., 1997; Upchurch, 2008). In addition, it is well known that
in photosynthetic tissues the C18:3 fatty acid is mostly associated with
the galactolipids monogalactosyldiacylglycerol (MGDG) and diga-
lactosyldiacylglycerol (DGDG), which are fundamental for the correct
function of photosynthesis (Mizusawa and Wada, 2012). Hence, tissues
with low amount of these kind of lipids (and consequently low C18:3
content) have disrupted photosynthetic membranes and a complete
impairment of photochemical processes (Kobayashi et al., 2007;
Aronsson et al., 2008). However, according to Duarte et al. (2017) in the halophyte *Aster tripolium* we found that there was not a correlation between the decrease in C18:3 and photosynthetic apparatus performance. The lack of relationship was ascribe to an adaptation in which the polyunsaturated fatty acids (more specific the C18:3) decrease to cope with salinity stress (Duarte et al., 2017). In addition, we found that plants grown at 700 ppm CO2 showed higher values for the fatty acid C16:0. This increment would be associated to an improvement in the PS II function since this fatty acid presents an important role in this component of the photosynthetic pathway (Gounaris and Barber, 1985; Duarte et al., 2017).

5. Conclusion

This experiment confirmed previous work that had demonstrated atmospheric CO2 enrichment ameliorative effect on salinity tolerance of *S. ramosissima* (Pérez-Romero et al., 2018). Nevertheless, we found that this positive effect under synergistic root-flooding was mainly owing to upregulation its energy sink capacity, as indicated the increment in the rate of reaction centre turnover, relative pool size of PQ and the connectivity between PSII units, together with the already previously described increment in carbon assimilation and water balance capacity. In addition, our results indicated that the beneficial effect of CO2 concentration was ascribed to a better modulation of the antioxidant enzyme machinery and of the betain accumulation on tissues to cope with oxidative stress, as well as to a great presence in saturated fatty acids, which would be associated with the aforementioned improvement in the PSII function.

Fig. 7. Palmitic acid (16:0), palmitoleic acid (16:1), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and omega-3 (18:3) abundance (A); saturated (SFA), unsaturated (UFA), monounsaturated (MUFA) and polyunsaturated (PUFA) relative abundance (B); unsaturated-saturated fatty acids (UFA/SFA), polyunsaturated-saturated fatty acids (PUFA/SFA), linoleic acid-omega-3 fatty acids (18:2/18:3) ratios and double-bond index (DBI) (C) calculated in randomly selected primary branches of *Salicornia ramosissima* in response to treatment with two of NaCl concentrations (171 and 510 mM) and with water logging (WL) and with no water logging (noWL) at 400 and 700 ppm CO2 after 45d of treatment. Values represent mean ± SE, n = 5. Different letters indicate means that are significantly different from each other (GLM, [CO2] x WL x [NaCl]; LSD test, P < 0.05). [CO2], WL, [NaCl] or [CO2] x WL x [NaCl] in the corner of the panels indicate main or interaction significant effects (*P < 0.01, **P < 0.001, ***P < 0.0001).
CRediT authorship contribution statement

Jesus Alberto Pérez-Romero: Conceptualization, Investigation, Methodology, Formal analysis, Writing – original draft. Bernardo Duarte: Formal analysis, Supervision, Writing – review & editing. Jose-Maria Barcia-Piedra: Data curation, Methodology. Ana Rita Matos: Formal analysis, Resources. Susana Redondo-Gómez: Conceptualization, Project administration. Isabel Caçador: Formal analysis, Resources. Enrique Mateos-Naranjo: Formal analysis, Conceptualization, Supervision, Writing – review & editing.

Acknowledgements

This work has been funded by Ministerio de Economía y Competitividad (MINECO Project CGL2016-75550-R funded by FEDER). J.A Pérez-Romero thanks Ministerio de Educación, Cultura y Deporte for its personal financial support (FP1104/03987). We are grateful University of Seville Greenhouse General Services (CITIUS) for its collaboration. The authors would also like to thank to the “Fundación para a Ciência e a Tecnologia” for funding the research in the Marine and Environmental Sciences Centre (MARE) and the Intercollegiate Studies Institute throughout the projects UID/MAR/04292/2013 and UID/MULTI/04046/2013 respectively. B. Duarte investigation was supported by PCT through a Postdoctoral grant (SFRH/BPD/115162/2016). We are grateful to Pablo Robles Delgado for revision of the English text of this manuscript.

References

Lensen, G., Lames, J., Strootenga, M., Rozema, J., 1993. Interactive effects of atmo- spheric CO2 enrichment, salinity and flooding on growth of C3 (Dysphania athrithicum) and C4 (Spartina alterniflora) salt marsh species. Vegetatio 104/105 (0), 379–388.

