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ARTICLE INFO ABSTRACT

Autism spectrum disorders (ASD) are a highly heterogeneous group of neurodevelopmental disorders that are
more commonly diagnosed in boys than in girls. The reasons for gender differences in ASD are unknown and no
definitive current evidence can explain male predominance. Therefore, in search for laboratory biomarkers
responsible for ASD, a comprehensive metabolomics study was performed by metabolic profiling of urine
samples in 51 ASD subjects and 51 age- and sex-matched children with typical development. Orthogonal partial
least-squares discriminant analysis (OPLS-DA) models with poor quality failed to perform the analysis based on
gender in the ASD and control groups. OPLS-DA models based on single-sex samples, especially in female
subjects, had better clustering between the ASD and control groups with an increase in the R? and Q? values
compared with those in the whole group. Significantly increased levels of adenine, 2-Methylguanosine, creati-
nine, and 7alpha-hydroxytestololactone and a decrease in creatine were observed in the female ASD subjects. In
particular, 7alpha-hydroxytestololactone, which has a structure similar to that of testolactone, was positively
correlated with adenine (Pearson correlation coefficient, r = 0.738, p < 0.01), creatinine (r = 0.826,
p < 0.01), and 2-Methylguanosine (r = 0.757, p < 0.01) and negatively correlated with creatine (r=-0.413,
p < 0.05). A receiver operating characteristic curve analysis using the creatinine:creatine ratio yielded an area
under the curve of 0.913 (95% CI: 0.806-1). These metabolites may be sex-related or sex-sensitive to an extent
and can be valuable for identification of the molecular pathways involved in the gender bias in manifestation of
ASD. The creatinine:creatine ratio has a potential to be a good predictor of ASD in the female subjects.

Keywords:

Autism spectrum disorders
Gender bias

Urinary metabolomics

Sex hormone

Biomarker

fixed feature of ASD that stays constant despite a significant increase in
the global prevalence of ASD in the past decades. The gender ratio of

1. Introduction

Autism spectrum disorders (ASD) represent a highly heterogeneous
collection of neurodevelopmental conditions characterized by social
and communication deficits, stereotypic and rigid patterns of behavior,
and restricted interests (American Psychiatric Association, 2013). Re-
cent statistic estimates indicate that the global incidence of ASD has
increased to 1 per 100 children (Lai et al., 2014). Despite the lack of
good statistical data, it is estimated that there is a large number of
autistic children in China because the corresponding special schools
and rehabilitation facilities have been significantly expanding during
the recent years; the number of new cases will be increasing con-
tinuously due to the Two-Child Policy implementation in the near fu-
ture.

ASD are more commonly diagnosed in boys than in girls; this is a
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ASD varies depending on the geographical area; the 4:1 gender ratio has
been widely cited based on a study that calculated the mean male-to-
female ratio in the population prevalence studies of ASD (Fombonne,
2009). A recent systematic review showed that the true male-to-female
ratio was closer to 3:1 (Loomes et al., 2017). The reasons for gender
differences in ASD are unknown; investigators have attributed the
gender bias in manifestation of ASD to the implications of hormones,
genetic variations, environmental factors and differential brain growth
as well as to the effect of the intra-associated events (Baruah et al.,
2018; Kushak and Winter, 2018). However, no definitive evidence
currently exists to explain male predominance.

Alterations in glutamate, a primary excitatory neurotransmitter in
the brain, have been implicated in ASD (Wickens et al., 2018).
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Bredewold found that male mice had higher levels of glutamate induced
by social play compared to that in females, which may be attributed to
sex differences in sensitivity to perturbations in the glutamate system
(Bredewold et al., 2015). Certain studies hypothesized that the in-
testinal microbiome may be a factor contributing to the prevalence of
ASD in boys based on microbial metabolites and/or epigenetic factors
capable of regulating the host gene expression through DNA methyla-
tion and/or histone modification (Kushak and Winter, 2018; Stilling
et al., 2014). These findings suggested an intriguing hypothesis im-
plying the existence of certain specific metabolites responsible either
for a cause or for a consequence of the male predominance.

Metabolomics, a widely utilized bioanalytical methodology in sys-
tems biology, employs mass spectrometry (MS) or nuclear magnetic
resonance (NMR) spectroscopy to define small molecules present in
biological samples in response to the genetic, physiological, and en-
vironmental changes. Numerous recent studies based on metabolomics
have been utilized to search for potential biomarkers of ASD (Bitar
et al., 2018; Dieme et al., 2015; Emond et al., 2013; Gevi et al., 2016;
Liang et al.,, 2018; Lussu et al., 2017; Mussap et al.,, 2016;
Nadaldesbarats et al., 2014; Repiska et al., 2017; Wang et al., 2016;
Xiong et al., 2016). However, the gender effect has been very rarely
investigated independently in these studies, partly due to the small
sample size of female individuals, even though metabolic changes have
been shown to be associated with gender (Psihogios et al., 2008;
Slupsky et al., 2007).

Taking into consideration these issues and aiming to maximize the
probability of reliable sex differences in metabolite levels, we focused
on autistic and unrelated typically developing children (control) tightly
matched in age and gender, Han Chinese, and on a city of origin within
the country. A nontargeted metabolomics study used high-performance
liquid chromatography-quadrupole time-of-flight mass spectrometry
(HPLC-QTOF-MS). A mass spectrometer equipped with a dual electro-
spray ionization (ESI) source uses a technology focused on increasing
the sensitivity and is suitable for the detection of metabolites in bio-
logical fluids. Application of this experimental approach in combination
with multivariate statistical analysis has identified urinary metabolites
with the most significant differences in their levels in the ASD subjects
versus typically developing children and gender-related metabolic
changes in ASD.

2. Materials and methods
2.1. Subjects and specimen collection

This prospective study was approved by the Ethics Committee of
Hunan Provincial Maternal and Child Health Care Hospital. Informed
consent was obtained from the parents of the participants. ASD subjects
were recruited from four special schools and rehabilitation facilities in
Changsha, China, by referring to their medical records issued by the
local medical facilities based on the DSM-IV or DSM-V criteria; only
children with strictly defined autistic disorder were enrolled, whereas
children with pervasive developmental disorder-not otherwise specified
(PDD-NOS) or Asperger syndrome were excluded from the study.
Participants with typical development were recruited from a local
kindergarten. All subjects were screened via a questionnaire to assess
current and past physical illness. Children with known endocrine, car-
diovascular, liver or kidney diseases were excluded from the study.
Dietary restriction was not required for participation in the study.
Subjects less than 3 years old and more than 7 years old (< 3, > 7)
formed a very small fraction of the enrolled ASD individuals; hence,
subjects within the age range from 3 to 7 years were selected.
Therefore, the final study group included 51 ASD subjects (34 male and
17 female) and 51 age- and sex-matched (34 male and 17 female)
children with typical development. The age was not significantly dif-
ferent in the total group (mean age 4.855 = 1.232 VS 5.016 * 1.018,
p = 0.072), male subjects (4.794 + 1.212 VS 5.017 = 0.977,
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p = 0.102), and female subjects (4.977 = 1.299 VS 5.016 = 1.126,
p = 0.438) in the ASD and control groups, respectively. There was no
significant difference in the age of the male and female participants
between the ASD and control groups.

The collection and storage of urine samples in the clinic procedures
in laboratory were based on a systemic protocol previously described
(Yin et al., 2015). Urine specimens were collected from the ASD and
control subjects between 9:00 a.m. and 4:00 p.m. The samples were
kept on ice, transported to the laboratory within 1h, and stored at
—80°C.

2.2. Reagents

HPLC-grade acetonitrile was purchased from Merck KGaA
(Germany); formic acid, ammonium acetate, uric acid, 5-methyl-
thioadenosine, creatinine, creatine, and adenine were obtained from J&
K Chemical (Beijing, China). All reference solutions for HPLC-QTOF-MS
were obtained from Agilent Technologies (Santa Clara, USA).

2.3. Sample pretreatment

The samples were pretreated as described in our previous work with
minor modifications(Xiong et al., 2015). Briefly, urine samples (200 uL)
were initially treated with 30.0 pL urease (1.2 U/uL) at 37 °C for 30 min
to remove interfering urea. Proteins, including added urease, were
precipitated with 600 pL ethanol and removed after 4 min centrifuga-
tion (3000 r/min). The supernatant was filtered through a 0.22 pm
microporous membrane and 5 pL filtrate was injected into HPLC-QTOF-
MS for analysis.

2.4. HPLC-QTOF-MS metabolic profiling analysis

LC-MS was performed using a 1290 Agilent HPLC system coupled to
an Agilent quadrupole time of flight (QTOF, 6550) mass spectrometer.
The separation of metabolites was performed by an Agilent ZORBAX
SB-C18 column (3.0 X 100 mm, 1.8-micron particle size) by main-
taining column temperature at 45 °C. The mobile phases were A (water
with 5 mM ammonium acetate) and B (acetonitrile) in the negative ESI
mode and A (water with 0.1% formic acid) and B (acetonitrile) in the
positive ESI mode, respectively. A sample size of 5 uL was injected at a
flow rate of 0.4 mL/min. The gradient was started with 5% B and fol-
lowed the gradient program: 5% B (1 min), 5-60% B (1-3.5min),
60-95% B (3.5-6 min), and 95% B (6-10 min). A post-run time of 4 min
was buffered before injection of a subsequent sample. Mass detector
was operated using dual electrospray with reference ions of m/
2112.9856 and 1033.9885 in the negative ESI mode and m/
2121.050873 and 922.009798 in the positive ESI mode, respectively, to
enable continuous internal calibration during the analysis and to ensure
accuracy and reproducibility. The main parameters for MS were as
follows: gas temperature 250 °C, drying N, gas flow rate 14 L/min,
nebulizer pressure 35 psig, fragmentor voltage 380V, skimmer 65V,
sheath gas temperature 350 °C, sheath gas flow 11 L/min, capillary
voltage 3500V, and nozzle voltage (Expt) 1000V. Targeted MS/MS
mode was used to identify potential biomarkers. The collision energy
was applied by a fixed value of 10 and 20. A full range mass scan from
50 to 1200 m/zwith an extended dynamic range of 2 GHz standardized
at 3200 was applied. Centroid mode was used for data collection and
storage. MS spectra acquisition was carried out in a mass range from 30
to 1200 m/z, whereas MS/MS data were obtained from 30 to 500 m/z. A
quality control sample (QC) obtained by mixing 20 uL of each urine
sample was used to validate the method for monitoring the consistency
of the HPLC-QTOF-MS system. The QC sample was analyzed 5 times
before the test samples in the negative and positive ESI modes to va-
lidate the method. Six single ions with different m/zwere randomly
selected according to their retention time to test the repeatability and
stability; the relative standard deviations (RSD) of the retention times
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Fig. 1. OPLS-DA models based on overall samples and permutation tests in positive and negative ESI mode. OPLS-DA model based on overall subjects from ASD and
controls in positive ESI mode, R? = 0.958, Q2 = 0.777 (A) and in negative ESI mode, R? = 0.946, Q2 = 0.871 (B), controls are shown in blue, and ASD are shown in
green. Model validation by 200 times permutation test in positive ESI mode (C) and negative ESI mode (D). The 2 points on the right side correspond to R? and Q? of
the observed data set. Other points on the left side correspond to R%s and Qs of permuted data sets. All Q? values on the permuted data set to the left are lower than
the Q? value on the actual data set to the right, indicating that the OPLS-DA modela were valid. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

and peak areas of these ions were < 12% (data not shown). These re-
sults indicate that the present method was suitable for the subsequent
analysis of urine samples based on good reliability of the method.

2.5. Multivariate statistical analysis

The data files (“.d”) obtained from LC-Q-TOF-MS were extracted
and aligned using the Agilent Mass Hunter Profinder B08.00 software
for a Batch Recursive Feature Extraction (small molecules/peptides)
including molecular feature extraction (MFE) and “Find by ion” algo-
rithm. Profinder MFE algorithm extracts the data based on mass spectra
and chromatographic characteristics and bins and aligns the features of
the compounds; then, these results are used to create a list for a “Find
by ion” algorithm. This targeted feature algorithm assists with mini-
mization of the false-positive and negative features detected by the MFE
procedure. Files in two types of format, a common format (.csv) and a
single data file format (.cef), for each sample were exported. The re-
sulting binning data in the data matrix (.csv), including molecular
weight, retention time, m/z, and abundance of detected metabolites,
were Pareto-scaled (mean centering and scaled to square root of var-
iance) and used in the multivariate statistical analysis by using SIMCA
(version 14.1, MKS Umetrics). An orthogonal partial least-squares dis-
criminant analysis (OPLS-DA) was performed to discriminate the me-
tabolic profiles of the ASD and control subjects. The OPLS-DA model
was assessed by the intercepts of R and Q? in the permutation test to
avoid overfitting. The criteria for the model validity included two
condition: 1) all Q2 values of the permuted data set to the left are lower
than the Q2 values of the actual data set to the right and 2) the re-
gression line (line joining the point of observed Q2 to the centroid of a
cluster of permuted Q? values) has a negative value of intercept with
the Y axis(Mahadevan et al., 2008). Variable importance in the pro-
jection (VIP) value of each metabolite was obtained from the OPLS-DA

model and the VIP value > 1.0 was retained to select the metabolites
that differ between the two groups.

A series of individual “.cef” files were subsequently exported into
the Agilent Mass Profiler Professional (MPP, version 13.1.1) software
for statistical and differential analysis. The retention time alignment
parameter was set to 0.4 min with a mass tolerance of 10 ppm. The data
were normalized using a percentile shift algorithm set to 75 and were
adjusted to the baseline values of the median of all samples; this pro-
cedure can eliminate the bias caused by the weight differences of the
initial urine samples(Mayengbam et al., 2016). An unpaired Mann-
Whitney t-test was employed by the MPP software to evaluate the sta-
tistical significance of the metabolites. P-value computation was per-
formed with multiple testing correction by the Benjamini-Hochberg
procedure. Differential metabolites that have p < 0.05 (corrected) and
fold change > 2 in the t-test and VIP score > 1 according to OPLS-DA
were preliminary selected; only those metabolites that are observed in
the male-only or female-only subjects and are involved in the corre-
sponding pathways were finally retained.

2.6. Identification of metabolites

Metabolite identification was based on the results obtained in our
laboratory, databases and verification with standards. Potential mar-
kers were initially annotated on the basis of their exact mass data (mass
error < 5ppm) and isotopic distributions corresponding to the m/
zpeaks by searching against the Metlin database and Human
Metabolome Database (HMDB). Comparison of the structures of the
proposed compounds with the fragments obtained in the MS/MS ex-
periments confirmed the identity. Mass spectra, chromatographic re-
tention times and fragmental information of the commercially pure
standards were used for the final confirmation.
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Fig. 2. OPLS-DA models based on male- and female-only subjects in positive and negative ESI mode. In positive ESI mode, OPLS-DA model based on male subjects,
R% = 0.903, Q% = 0.768 (A) and that based on female subjects, R? = 0.992, Q% = 0.85 (B); In negative ESI mode, OPLS-DA model based on male subjects,
R? = 0.986, Q% = 0.921 (C) and that based on female subjects, R?> = 0.993, Q* = 0.944 (D). Controls are shown in blue, and ASD are shown in green. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3. Results
3.1. Multivariate statistical analysis

After extraction by the software and manual verification, a total of
320 and 388 variables were detected across the data set and imported
into the multivariate models in the negative and positive ESI modes,
respectively. As shown in Fig. 1A-B, the OPLS-DA models with high R*
(goodness of fit parameter) and Q? (goodness of prediction parameter)
show distinct separation between the ASD and control groups regard-
less of gender in the positive and negative ESI modes. The validity of
the OPLS-DA models was additionally evaluated as indicated by as-
sessment of the R? and Q2 values that were considerably lower than the
original points on the right side (Fig. 1C-D).

The OPLS-DA models based on single-sex studies provide better
clustering between the ASD and control groups with increased R? and
Q? values (positive ESI mode, Fig. 2A-B; negative ESI mode, Fig. 2C-D),
especially in the female subjects. We hypothesized that intrinsic me-
tabolic variations may exist between the male and female subjects in
the ASD group. Nevertheless, OPLS-DA models with poor quality (low
R? and Q?) failed to perform based on gender in the ASD and control
groups (data not shown). These results suggest that the metabolic
changes in the ASD group versus the control group are present and that
certain metabolic changes are sex-related or depend on gender to an
extent. Thus, to maximize the probability of reliable detection of sex-
related differences in the metabolite levels, a list of differential meta-
bolites between the ASD and control groups separated by gender was
acquired using the metabolomics investigation of urine samples.

3.2. Identification of biomarkers

Urine marker metabolites were determined by MSMS fragmentation
and comparisons with authentic standards if available (see
Supplemental materials, Fig. S1). Authentic standards were used to

identify uric acid, 5’-Methylthioadenosine, adenine, creatinine, and
creatine. ~ The  identities of  2-Methylguanosine, = N2,N2-
Dimethylguanosine, and 7alpha-hydroxytestololactone were tentatively
determined through accurate mass-based interpretation of MSMS frag-
mentation and previous publication on their MSMS spectra (Allen et al.,
2015) Finally, 8 most discriminating metabolites (3 in the positive
mode and 5 in the negative mode) were identified as summarized in
Table 1 with data on exact mass, mass error, corrected p, fold change
(FC) and VIP.

3.3. Pathway analysis

The discriminating metabolites were introduced in the pathways
analysis module for metabolic pathway analysis (MetPA) in
MetaboAnalyst software (version 4.0, http://www.metaboanalyst.ca).
Hypergeometric test was selected for over-representation analysis. The
MetPA results show that the purine and arginine metabolic pathways
are the most perturbed pathways in ASD (Fig. 3).

4. Discussion

Purine metabolites are well represented in the urine of ASD children
(Fig. 4). A reduction in uric acid bears an interesting resemblance to
that obtained in a patient with ASD features with phosphoribosylpyr-
ophosphate synthetase deficiency(Page, 2000). Urate has antioxidant
properties and reduction in urate indicates increased oxidative stress,
which has been consistently reported in ASD. As shown in Fig. 4, ASD
children preferentially transform adenosine into adenine and 5’-me-
thylthioadenosine, whereas the adenosine-inosine pathway, in which
adenosine is converted to inosine by adenosine deaminase (ADA), is less
utilized. Interestingly, we found that the adenosine-adenine pathway
appears to be more prominent in the female ASD subjects resulting in an
increase in adenine in the female subjects. The finding is in line with
previous reports that ADA activity is decreased in ASD(Stubbs et al.,
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Table 1
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Differential metabolites obtained by metabolomics study of urine samples between ASD and controls.

Compound

Male subjects Female subjects

Data in positive ESI mode

Name Detect mass Mass error Regulation
ppm

Creatinine 113.0594 4.4 up

Creatine 131.0701 4.6 down

7alpha-hydroxy- testololactone 318.1833 0.6 up

Data in negative ESI mode

Name Detect mass Mass error Regulation
ppm

Adenine 135.0544 -0.7 up

Uric acid 168.0286 1.8 down

5'-Methylthioadenosine 297.0889 -2.4 up

2-Methylguanosine 297.1067 -2.0 up

N2,N2-Dimethylguanosine 311.1227 -1.0 up

p (Corr) FC VIP p (Corr) FC VIP
3.17E-06 3.53 1.54
1.50E-02 -2.82 0.54
6.50E-05 3.11 1.36
p (Corr) FC VIP p (Corr) FC VIP
7.47E-10 3.89 1.79
1.38E-12 —7.65 1.63 1.81E-09 -11.23 1.66
1.79E-13 2.57 1.88 1.35E-09 3.56 1.78
1.48E-09 4.65 1.70
8.18E-12 2.19 1.80 1.14E-05 2.48 1.63
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Fig. 3. Metabolic pathway analysis plot. Color intensity (white to red) reflects
increasing statistical significance, while circle diameter reflects pathway im-
pact. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

1982), and that the presence of the low-activity ADA allele (ADA2) in
autistic cases shows a significantly elevated frequency(Bottini et al.,
2001; Persico et al., 2000). Importantly, a disruption of the adenosine-
to-inosine pathway in ASD may be linked to adenosine-to-inosine (A to
I) RNA editing, a neurodevelopmentally regulated epigenetic mod-
ification shown to modulate complex behavior and one of the many
mechanisms connecting environmental stimuli and behavioral output
(Gatsiou et al., 2018). A to I RNA editing biochemically refers to hy-
drolytic deamination of adenosine to inosine in double stranded RNA at
the presence of ADA acting on RNA (ADAR). Altered inosine metabo-
lism may imply changes in A to I RNA editing. Supporting the hy-
pothesis, a previous study described a high dynamic range of the editing
levels of synaptic genes related to ASD. Moreover, a dysfunctional form
of the editing enzyme adenosine deaminase acting on RNA Bl(pre-
mRNA of the glutamate receptor subunit B) was found more commonly
in the postmortem cerebella from individuals with ASD compared with
that in the case of neurotypical individuals (Eran et al., 2013). This
study suggests that A-to-I editing of synaptic genes may be informative
for assessing the epigenetic risk for autism, which is in line with the
results of the current study and also a more recent study by Tran et al,
in which they observed a global bias of hypoediting in a large cohort of
postmortem brains of people with ASD (Tran et al., 2019). A global
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S-Adenosylhomocysteine

Fig. 4. Metabolic pathway of purine metabolism and methionine cycle. GMP:
guanosine monophosphate, AMP: adenosine monophosphate, ADA: adenosine
deaminase. Increases of metabolites are shown in red, while decreases of me-
tabolites are shown in blue. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

change of the editing profile is supposed to cause alterations in gene
expression program associated with ASD. In the future study, it would
be interesting to establish a direct link between purine metabolites and
autistic genes.

DNA methylation has been shown to play regulatory roles in
maintenance of genomic stability, defining tissue and cell type-specific
gene expression, and regulation of cellular function in response to the
environment and may provide valuable mechanistic insights into ASD
(Ciernia and Lasalle, 2016). In the current study, a large excess of 2-
Methylguanosine and N2,N2-Dimethylguanosine was observed in ASD,
providing a clue for an altered DNA methylation in ASD. As 2-Me-
thylguanosine was detected only in the female ASD subjects, sex-de-
pendent and methylation modification-based regulatory mechanisms
may exist. Indeed, retinoic acid-related orphan receptor alpha (RORA),
a transcription factor involved in the sex steroid hormone expression
regulatory pathway, has been identified to have elevated methylation
in ASD and decreased expression in the ASD frontal cortex and cere-
bellum (Nguyen et al., 2010). Moreover, regulatory targets of RORA
show sex-dependent differential expression levels (Hu et al., 2015;
Sarachana et al., 2011) supporting a pattern of sex-dependent differ-
ential methylation in ASD. Previous studies also demonstrated that, the
level of aromatase protein, a crucial enzyme in the biosynthesis of es-
trogen from testosterone, was strongly correlated with the level of the
RORA protein in the brain tissues, and both RORA and aromatase
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proteins were decreased in the frontal cortex of subjects with ASD. On
the basis of these findings, it is speculated that a reduction in RORA
observed in ASD may be exacerbated by a negative feedback me-
chanism involving decreased aromatase level, which in turn aggravates
accumulation of testosterone and reduction in estradiol. Interestingly,
we detected a significant increase in 7alpha-hydroxytestololactone only
in the female samples. The structure of this compound is similar to the
structure of testolactone, an aromatase inhibitor that blocks conversion
of androgens to estrogens; the compound may have the same role as
testolactone suppressing the activity of aromatase and leading to dis-
ruptive biosynthesis of estrogen from testosterone and reduction in
RORA by a negative feedback mechanism reported in the previous
studies. Alterations in the levels of 2-Methylguanosine and 7alpha-hy-
droxytestololactone in the urine of female subjects are likely linked to
methylation regulation of RORA pathway and the interplay between
RORA and aromatase, thereby being valuable for evaluating the epi-
genetic risk for autism, and also important for identification of the
molecular pathways involved in ASD and male-biased biology.
Significant alterations in the arginine metabolism are observed as a
reduction in urinary creatine and an increase in creatinine; in parti-
cular, this pattern is observed in the female subjects (Fig. 5). The en-
dogenous synthesis of creatine requires two amino acids, glycine and
arginine, and two enzymes, L-arginine:glycine amidinotransferase
(AGAT), and N-guanidinoacetate methyltransferase (GAMT), along
with a membrane transporter, encoded by the SLC6A8 gene. Initially,
AGAT catalyzes the transfer of the guanidino group from arginine to
glycine to form ornithine and guanidinoacetate; this step occurs mainly
in the kidney. The second step occurs essentially in the liver; GAMT
catalyzes the transfer of a methyl group from S-adenosylmethionine to
guanidinoacetate to form S-adenosylhomocysteine and creatine, which
can enter the cells and tissues through a specific membrane transporter
encoded by the SLC6A8 gene. Thus, primary creatine deficiency dis-
orders are directly caused by a deficiency in either AGAT, GAMT or X-
linked recessive SLC6AS8 creatine transporter; the disorder is known as
cerebral creatine deficiency and has been reported in children with ASD
(Aydin, 2018; Cameron et al., 2017; Longo et al., 2011; Pooarguelles
et al., 2006). Creatine plays a relevant function in the cellular energy
metabolism supplying high-energy phosphate groups to the cells
through phosphorylation of creatine by creatine kinase. In our study,
creatinine was significantly increased at the expense of high levels of
creatine and phosphocreatine; thus, the cells will become rapidly de-
pleted in energy, especially neurons, and reduced creatine content can
explain neuronal injury observed in ASD. The influence of gender on
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creatine metabolism and transport has been proposed in the reports of
the literature suggesting that inhibition by estrogens and stimulation by
testosterone of SLC6A8 is a coherent basis for the higher leakage of
body creatine to urine observed in the female subjects (Joncquel-
Chevalier et al., 2013, 2015). In the current study, higher secretion of
creatine (5,940,151 = 3,933,993 vs 3,901,302 * 2,638,589, peak
intensity) and lower level of creatinine (6,221,110 * 5,409,894 vs
24,429,825 + 12,341,786) were observed in the urine samples of the
female subjects compared with that in the male subjects in the control
group. However, in the ASD group, an increase in 7alpha-hydro-
xytestololactone in the female subjects may reverse this pattern by in-
hibiting the conversion of testosterone to estrogen leading to accumu-
lation of testosterone and reduction in estrogen, which exacerbates
enhanced transport of creatine from the blood to the cells and finally
leads to a reduction in creatine and an increase in creatinine in urine of
the female ASD subjects. Nevertheless, these two metabolites are not
significantly different between the male and female subjects with ASD.

Correlation analysis of these metabolites in the female subjects was
conducted. As shown in Table 2, 7alpha-hydroxytestololactone was
positively correlated with adenine (Pearson correlation coefficient,
r=0.738, p < 0.01), creatinine (r = 0.826, p < 0.01) and 2-Me-
thylguanosine (r = 0.757, p < 0.01) and negatively correlated with
creatine (r=-0.413, p < 0.05) in the female subjects. The results in-
dicate that the effect of 7alpha-hydroxytestololactone on the hormones
may play a key role in triggering the gender-related metabolic dis-
turbances.

Ratios of metabolites can uncover biological properties that are not
evident in the case of individual metabolites and increase the signal
when two metabolites with a negative correlation are evaluated. For
example, this strategy formed the basis of the standard phenylketonuria
diagnostics using a ratio of phenylalanine and tyrosine (Eastman et al.,
2000). Since creatinine is biosynthesized from creatine similar to phe-
nylalanine and tyrosine and the former two metabolites are very
commonly used in routine testing, we evaluated the ratio of creatinine
to creatine as a predictor of ASD diagnosis. As shown in Fig. 6A, in the
female subjects, a receiver operating characteristic (ROC) curve ana-
lysis using the creatinine:creatine ratio yields an area under the curve
(AUC) of 0.913 (95% CIL 0.806-1). Scatter plots of the creatinine:-
creatine ratio were used to create a diagnostic test (Fig. 6B); the red
horizontal line is the diagnostic threshold (threshold = 2.71), which
clearly distinguishes ASD from the control with a specificity of 0.824
and a high sensitivity of 1.000. However, in the male subjects, a poor
AUC value of 0.511 was obtained and it is difficult to distinguish

Fig. 5. Creatine synthesis and transport. The mechanism in-
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y volved of sex hormones is in part currently hypothetic and
AGAT might explain unexpected decrease of creatine and increase of
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Table 2
Correlation analyses among those metabolites observed in female subjects.
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Creatine Creatinine 7alpha-hydroxy-testololactone Adenine 2-Methylguanosine
Creatine r=-0.277 r=-0.413 r=-0.195 r=-0.207
p=0.112 p =0.015 p=0.268 p = 0.240
Creatinine r=-0.277 r=0.826 r=0.784 r=0.775
p = 0.112 p < 0.01 p < 0.01 p < 0.01
7alpha-hydroxytestololactone r=-0.413 p = 0.015 r = 0.826 r=0.738p < 0.01 r = 0.757
p < 0.01 p < 0.01
Adenine r=-0.195 r=0.784 r=0.738 r = 0.897
p = 0.268 p < 0.01 p < 0.01 p < 0.01
2-Methylguanosine r=-0.207 r=0.775 r=0.757 r = 0.897
p = 0.240 p < 0.01 p < 0.01 p < 0.01
"Pearson correlation coefficient.
Creatinine/creatine ratio
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Fig. 6. ROC curve and scatter plots of creatinine:creatine ratio in female subjects. The red horizontal line is the diagnostic threshold. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. ROC curve and scatter plots of creatinine:creatine ratio in male subjects. The red horizontal line is the diagnostic threshold. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

between ASD and the control (Fig. 7). These results show that the
creatinine to creatine ratio may be a good predictor of ASD in the fe-
male subjects.

5. Conclusions

A comprehensive metabolomics study was performed to search for
gender-related metabolites in autism spectrum disorders using the
sensitive HPLC-QTOF-MS approach in the positive and negative ESI
modes. No discriminating metabolites between the male and female
subjects with ASD were identified; however, changes in 5 sex-sensitive

metabolites were observed in the female subjects. Interestingly, 7alpha-
hydroxytestololactone was positively correlated with adenine, creati-
nine and 2-Methylguanosine and negatively correlated with creatine
possibly suggesting an association with the sex hormone pathway.
These results may provide very interesting leads toward possible pa-
thophysiological explanations for the gender bias in manifestation of
ASD. A high AUC value obtained by ROC analysis revealed that the
creatinine to creatine ratio may have a potential use as a biomarker for
the clinical diagnosis and evaluation of ASD in the female subjects.
Further investigations with a larger group of ASD patients (especially
involving recruitment of sufficient number of the female patients) will
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be necessary in the near future to verify an extent of the gender bias-
based reflection of intrinsic metabolic variations.
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