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A B S T R A C T

During tissue ischemia succinate accumulates. Herein, literature spanning the past nine decades is reviewed
leaning towards the far greater role of Krebs cycle’s canonical activity yielding succinate through α-ketoglutarate
-> succinyl-CoA -> succinate even in hypoxia, as opposed to reversal of succinate dehydrogenase.
Furthermore, the concepts of i) a diode-like property of succinate dehydrogenase rendering it difficult to reverse,
and ii) the absence of mammalian mitochondrial quinones exhibiting redox potentials in the [-60, -80] mV range
needed for fumarate reduction, are discussed. Finally, it is emphasized that a “fumarate reductase” enzyme
entity reducing fumarate to succinate found in some bacteria and lower eukaryotes remains to be discovered in
mammalian mitochondria.

1. Introduction

That muscle contains succinate as an endogenous metabolite was
first reported by Einbeck in 1914 (Einbeck, 1914), disproving views
suggested by Wolff in 1904 (referenced in Moyle, 1924) that it is always
a product of putrefaction. The discovery that muscle converts glutamate
and aspartate to succinate, fumarate and malate during anaerobiosis is
credited to Dorothy Mary Moyle Moyle, 1924; Needham (1930) in the
1920s (Needham DM and Moyle DM is the same person: she assumed
the family name of her spouse, Joseph Needham). She further postu-
lated that during anaerobic conditions, succinate is not formed re-
versibly from fumarate nor malate (Needham, 1927). Observations on
the same line of research, i.e., succinate is formed from pyruvate and/or
α-ketoglutarate during anaerobiosis have been reported by Toenniessen
and Brinkmann in 1930 (Toenniessen, 1930) and six years later by
Weil-Malherbe (1936) and even Krebs (1936)!

The present mini-review focuses on i) literature appearing within
the past 95 years regarding the origin of succinate in tissue ischemia/
hypoxia/anoxia, ii) the difficulty of succinate dehydrogenase (SDH)
operating in reverse due to an inherent diode-like property and the lack
of suitable quinones in mammalian mitochondria for reduction of fu-
marate, iii) the pitfalls regarding data interpretation implicating SDH
directionality and especially when using malonate in whole tissues or
intact cells and iv) exerting caution on the concept of a mammalian
mitochondrial “fumarate reductase” enzyme entity, known to be ex-
pressed only in some bacteria and lower eukaryotes. The roles of suc-
cinate as a signal and downstream pathological implications stemming
from its accumulation are reviewed elsewhere (Tretter et al., 2016;
Mills and O’Neill, 2014; Murphy and O’Neill, 2018; Grimolizzi and

Arranz, 2018; Benit et al., 2014; Andrienko et al., 2017; Pell et al.,
2016; Mithieux, 2018).

2. Succinate as a substrate or product: biochemical pathways

In humans, succinate can be substrate or product in 31 reactions (for
comparison: 51 in mammals), summarized in Table 1 (assembled from
BRENDA database, www.brenda-enzymes.org, (Jeske et al., 2019)).
These reactions take place within different subcellular compartments,
each contributing in altering tissue succinate concentration to a vari-
able extent; thus, they all need to be taken into consideration if succi-
nate is quantified by metabolomic analysis from whole tissue extracts or
cells. However, the reactions anticipated to play a significant role in
altering tissue succinate concentration within minutes of ischemia/
hypoxia are depicted in Fig. 1, all taking place within mitochondria.
The thickness and size of the arrows imply flux amplitude based on
literature reviewed in sections 3, 3.1, 5 and 5.1. Succinate formed
through ketone body metabolism or the GABA shunt is not expected to
play a significant role (omitted for clarity), see also (Tretter et al.,
2016). The rapid loss of accumulated succinate upon restoration of
blood flow is better explained by its efflux through the mono-
carboxylate transporter (MCT1) rather than its catabolism (Andrienko
et al., 2017).

3. In ischemia, succinate originates mostly from canonical TCA
activity

Following the reports by Moyle-Needham in the 20 s (Moyle, 1924;
Needham, 1927, 1930), Toenniessen (1930), Weil-Malherbe (1936),
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and Krebs (1936) in the 30 s -all showing that succinate accumulates in
anoxic tissues originating from canonical TCA cycle activity- and the
hiatus in research due to the second World War, the topic was re-ad-
dressed by Hunter in 1949 (Hunter, 1949). He showed that in anoxic rat
kidney and liver, α-ketoglutarate is oxidized to succinate and CO2,
while oxaloacetate is reduced to malate; furthermore, α-ketoglutarate
oxidation and creation of high energy phosphate bonds were equimo-
larly coupled. Essentially, he was describing that α-ketoglutarate was
being transformed to succinyl-CoA using NAD+ coming from mi-
tochondrial malate dehydrogenase (MDH2) reversal, and that succinyl-
CoA was becoming succinate forming high-energy phosphates through
mitochondrial substrate-level phosphorylation (mSLP) (Chinopoulos
et al., 2010), see Fig. 1.

A flurry of similar findings using different substrate combinations,

methods of ischemia/hypoxia/anoxia and multitude of tissues and
preparations were reported every few years or so to date, reaching the
same conclusion: in ischemia/hypoxia/anoxia, α-ketoglutarate and
upstream metabolites oxidize to succinate and this is coupled to equi-
molar production of high energy phosphate bonds, reflecting mSLP:
(Chinopoulos et al., 2010; Penney and Cascarano, 1970; Gailis and
Benmouyal, 1973; Hochachka et al., 1975; Taegtmeyer et al., 1977;
Taegtmeyer, 1978; Sanborn et al., 1979; Freminet et al., 1980;
Pisarenko et al., 1983; Peuhkurinen et al., 1983; Pisarenko et al., 1985;
Bittl and Shine, 1983; Gronow and Cohen, 1984; Matsuoka et al., 1986;
Pisarenko et al., 1986; Weinberg et al., 2000; Kiss et al., 2013, 2014;
Nemeth et al., 2016; Kacso et al., 2016; Chinopoulos and Seyfried,
2018; Ravasz et al., 2018; Kohlhauer et al., 2018; Bui et al., 2019).
Recently, proof that succinate accumulates in cardiac ischemia via α-

Table 1
Reactions in which succinate is substrate or product, in humans.

Enzyme E.C. number Reaction catalyzed

succinate dehydrogenase EC 1.3.5.1 succinate+ubiquinone= fumarate+ubiquinol succinate+ FAD= fumarate+ FADH2

succinate-hydroxymethylglutarate
CoA-transferase

EC 2.8.3.13 3-hydroxy-3-methylglutaryl-CoA+ succinate= 3-hydroxy-3-methylglutarate + succinyl-CoA

succinate-CoA ligase (GDP-forming) EC 6.2.1.4 GTP+ succinate+CoA=GDP+phosphate+ succinyl-CoA
succinate-CoA ligase (ADP-forming) EC 6.2.1.5 ATP+ succinate+CoA=ADP+phosphate+ succinyl-CoA
gamma-butyrobetaine dioxygenase EC 1.14.11.1 gamma-butyrobetaine + α-ketoglutarate+O2 = carnitine+ succinate+CO2

(the enzyme also catalyzes other reactions involving succinate)
peptide-aspartate beta-dioxygenase EC 1.14.11.16 peptide L-aspartate + α-ketoglutarate+O2 = peptide 3-hydroxy-L-aspartate+ succinate+CO2 (the enzyme also

catalyzes other reactions involving succinate)
taurine dioxygenase EC 1.14.11.17 taurine + α-ketoglutarate+O2 = succinate+CO2 + aminoethanol+ sulfite
phytanoyl-CoA dioxygenase EC 1.14.11.18 phytanoyl-CoA + α-ketoglutarate+O2 = alpha-hydroxyphytanoyl-CoA+ succinate+CO2 (the enzyme also

catalyzes other reactions involving succinate)
procollagen-proline 4-dioxygenase EC 1.14.11.2 proline containing peptide + α-ketoglutarate+O2=4-hydroxyproline containing peptide+ succinate+CO2 (the

enzyme also catalyzes other reactions involving succinate)
[histone-H3]-lysine-36 demethylase EC 1.14.11.27 protein N6,N6-dimethyl-L-lysine + α-ketoglutarate+O2 = protein

N6-methyl-L-lysine+ succinate+ formaldehyde+CO2 (the enzyme also catalyzes other reactions involving
succinate)

hypoxia-inducible factor-proline
dioxygenase

EC 1.14.11.29 hypoxia-inducible factor-L-proline + α-ketoglutarate+O2 = hypoxia-inducible
factor-(4R)-4-hydroxy-L-proline + succinate+CO2 (the enzyme also catalyzes other reactions involving succinate)

hypoxia-inducible factor-asparagine
dioxygenase

EC 1.14.11.30 hypoxia-inducible factor-L-asparagine + α-ketoglutarate+O2 = hypoxia-inducible
factor-(3S)-3-hydroxy-L-asparagine + succinate+CO2 (the enzyme also catalyzes other reactions involving succinate)

DNA oxidative demethylase EC 1.14.11.33 DNA-1-methylguanine + α-ketoglutarate+O2 = DNA-guanine+ formaldehyde+ succinate+CO2 (the enzyme also
catalyzes other reactions involving succinate)

procollagen-lysine 5-dioxygenase EC 1.14.11.4 peptidyl-L-lysine + α-ketoglutarate+O2 = peptidyl-5-hydroxy-L-lysine+ succinate+CO2 (the enzyme also
catalyzes other reactions involving succinate)

tRNAPhe (7-(3-amino-3-
carboxypropyl)wyosine37-C2)-
hydroxylase

EC 1.14.11.42 7-(3-amino-3-carboxypropyl)wyosine37 in tRNAPhe +
α-ketoglutarate+O2=7-(2-hydroxy-3-amino-3-carboxypropyl)wyosine37 in tRNAPhe+ succinate+CO2

DNA N6-methyladenine demethylase EC 1.14.11.51 N6-methyladenine in DNA + α-ketoglutarate+O2 = adenine in DNA+ formaldehyde+ succinate+CO2

mRNA N6-methyladenine demethylase EC 1.14.11.53 N6-methyladenine in mRNA + α-ketoglutarate+O2 = adenine in mRNA+ formaldehyde+ succinate+CO2 (the
enzyme also catalyzes other reactions involving succinate)

mRNA N1-methyladenine demethylase EC 1.14.11.54 N1-methyladenine in mRNA + α-ketoglutarate+O2 = adenine in mRNA+ formaldehyde+ succinate+CO2 (the
enzyme also catalyzes other reactions involving succinate)

procollagen-proline 3-dioxygenase EC 1.14.11.7 (Gly-L-Pro-L-4-hydroxyproline)5 + α-ketoglutarate+O2 = (Gly-trans-3-hydroxy-L-Pro-trans-4-hydrox-L-Pro)5 +
succinate+CO2 (the enzyme also catalyzes other reactions involving succinate)

trimethyllysine dioxygenase EC 1.14.11.8 N6,N6,N6-trimethyl-L-lysine + α-ketoglutarate+O2=3-hydroxy-N6,N6,N6-trimethyl-L-lysine+ succinate+CO2

(the enzyme also catalyzes other reactions involving succinate)
[histone-H3]-lysine-9-demethylase EC 1.14.11.B1 [histone H3]-N6,N6,N6-trimethyl-L-lysine4 + α-ketoglutarate+O2= [histone H3]-L-lysine4 +

succinate+ formaldehyde+CO2 (the enzyme also catalyzes other reactions involving succinate)
[histone-H3]-lysine-4-demethylase EC 1.14.11.B2 protein 6-N,6-N-dimethyl-L-lysine + α-ketoglutarate+O2 = protein

6-N-methyl-L-lysine+ succinate+ formaldehyde+CO2 (the enzyme also catalyzes other reactions involving
succinate)

5,6-dihydroxyindole-2-carboxylic acid
oxidase

EC 1.14.18.B1 histone H3 N6,N6,N6-trimethyl-L-lysine27 + α-ketoglutarate+O2 = histone H3 N6,N6-dimethyl-L-lysine27 +
succinate+ formaldehyde+CO2 (the enzyme also catalyzes other reactions involving succinate)

succinate-semialdehyde
dehydrogenase

EC 1.2.1.24 succinate semialdehyde+NAD(P)+ + H2O= succinate+NAD(P)H

dihydroorotate dehydrogenasea EC 1.3.98.1 L-dihydroorotate+ fumarate= orotate+ succinate
3-oxoacid CoA-transferase EC 2.8.3.5 succinyl-CoA+ a 3-oxo acid= succinate+ a 3-oxoacyl-CoA (3-oxo acid can be acetoacetate or 3-hydroxybutyrate)
cholinesterase EC 3.1.1.8 succinyl(thio)choline + H2O= succinate + (thio)choline
S-succinylglutathione hydrolase EC 3.1.2.13 S-succinylglutathione + H2O=glutathione+ succinate
acyl-CoA hydrolase EC 3.1.2.20 succinyl-CoA + H2O=CoA+ succinate
hydroxyacylglutathione hydrolase EC 3.1.2.6 S-succinylglutathione + H2O=glutathione+ succinate (same as EC 3.1.2.13)
acylphosphatase EC 3.6.1.7 succinoyl phosphate + H2O= succinate+phosphate

a This enzyme may not perform this reaction in human mitochondria because mammalian dihydroorotate dehydrogenase is a “Type 2″ enzyme, thus, its reaction
mechanism is different than the “Type 1″ found in BRENDA database.
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ketoglutarate -> succinyl-CoA -> succinate came through metabo-
lomic analysis using 13C-labeling, performed by the Brookes lab (Zhang
et al., 2018).

3.1. If succinate originates from canonical TCA activity during ischemia,
where does NAD+ (needed for the α-ketoglutarate dehydrogenase complex)
come from?

As mentioned above, Hunter reported that in anoxic rat kidney and
liver, α-ketoglutarate is oxidized quantitatively to succinate and CO2

while oxaloacetate is reduced to malate, implying NAD+ recycling
through MDH2 (operating in reverse) and α-ketoglutarate dehy-
drogenase complex (KGDHC) (Hunter, 1949), see Fig. 1. This is not far-
fetched, mindful that MDH2 is strongly favored towards reduction of
oxaloacetate due to a large positive change of free energy (ΔG) of the
reaction (+28.04 kJ/mol, Chinopoulos, 2013); in organello, it proceeds
towards oxaloacetate because the larger ΔG in the negative range (-36.6
kj/mol Chinopoulos, 2013) of citrate synthase pulls the reaction along
and keeps oxaloacetate concentration at a very low level. Other sources
of NAD+ have been proposed: the malate/aspartate shuttle operating in
reverse -a possibility entertained in (Chouchani et al., 2014)- and/or
matrix diaphorases: at least one of them is NQO1 which is known to
provide NAD+ to KGDHC during mitochondrial respiratory arrest, (Kiss
et al., 2014; Ravasz et al., 2018). Another possibility is residual activity
of complex I; although this has not been specifically addressed, data
from (Zhang et al., 2018) support this, because rotenone, a specific
inhibitor of complex I yielded less succinate during anoxia. Interest-
ingly, in the 1967 report by Hoberman and Prosky that favor succinate
formation by reduction of fumarate through mostly SDH reversal, in-
clusion of rotenone in the Ringer’s liver perfusate resulting in an in-
complete anaerobiosis also yielded less succinate, than in the absence of
rotenone (Hoberman and Prosky, 1967). This could mean that complex
I was still performing NADH oxidation –albeit small- but to an extent
sufficient for KGDHC to support mSLP. Finally, NAD+-dependent iso-
citrate dehydrogenase was also shown to operate in reverse towards
NAD+ formation, a process driven by acidic pH (Nadtochiy et al.,
2016); relevant to this, it is important to emphasize that acidic pH is a
hallmark of ischemia/hypoxia (Rouslin and Broge, 1989; Katsura et al.,
1991).

4. Limitations in reverse operation of SDH due to a diode-like
property and absence of suitable quinones in mammalian
mitochondria

The reaction catalyzed by SDH exhibits a ΔG of -0.59 kj/mol

(Chinopoulos, 2013), thus, from the thermodynamic point of view it is
reversible. Indeed, SDH reversibility was shown by Thunberg in 1925
(Thunberg, 1925); this was re-addressed by Massey and Singer in 1957
(Massey and Singer, 1957a). More specifically, they used specific
electron carriers in order to demonstrate reversibility of isolated SDH
(Massey and Singer, 1957b). Likewise, by using such carriers, the group
of Cecchini showed that the reaction catalyzed by mammalian SDH in
reverse is ˜40 times slower than that in forward mode (Maklashina
et al., 2018). There are two factors contributing to the difficulty of SDH
in reducing fumarate: firstly, SDH behaves like a diode (Sucheta et al.,
1992), i.e., reduction of fumarate abruptly slows to a diminished cata-
lytic rate below a redox potential of ˜ -60 −80mV, despite an increase
in the driving force. The diode-like property (also known as tunnel diode
effect due to its similarity to an electronic device exhibiting the property
of negative resistance) enforcing kinetics over thermodynamics has
been thoroughly examined by Fraser Armstrong, Brian Ackrell, Judy
Hirst and colleagues (Pershad et al., 1999; Hirst et al., 1997, 1996)
using cyclic voltammetry. By adsorbing purified SDH A/B subunits on a
graphite electrode immersed in an equimolar mixture of succinate and
fumarate and changing the electrode potential that mimicked the redox
potential of the quinone pool, in a cyclic manner (pH 7, 38 °C), they
obtained voltammograms as depicted in Fig. 2. When the applied po-
tential was in the positive range, succinate oxidation was observed.
When the potential was in the negative range, fumarate reduction
commenced at an appreciable rate only in the range of -60 −80mV. At
potentials more negative than −80mV fumarate reduction was se-
verely depressed. This suggests that SDH can only reduce fumarate if
the redox potential of the quinone pool falls within a narrow range [-60,
-80] mV, an observation evoking the second argument regarding the
difficulty of SDH in reducing fumarate in mammalian mitochondria:
ubiquinones found in mammalian mitochondria exhibit redox poten-
tials of>+45mV (Urban and Klingenberg, 1969). Thus, unless qui-
nones exhibiting redox potentials in the [-60, -80] mV range exist –and
yet to be discovered- the severely diminished capacity of SDH reducing
fumarate in mammalian mitochondria can be partially explained by this
fact alone. The explanation behind the diode-like property of SDH has
been attributed to reduction of FAD and that a conformational change
may occur upon formation of FADH2, (Hirst et al., 1996); this latter
mechanism has been proposed to represent an evolutionary adaptation
to aerobic metabolism (Ackrell et al., 1993).

5. Succinate originating from SDH reversal: reports and pitfalls in
data interpretation

Just as succinate has been widely reported to originate from

Fig. 1. Reactions altering succinate concentration in the mi-
tochondrial matrix. α-Kg: α-ketoglutarate; c I: complex I of the
respiratory chain; c III: complex III of the respiratory chain;
FH: fumarate hydratase; GLUD: glutamate dehydrogenase;
GOT2: aspartate aminotransferase isoform 2 (mitochondrial);
KGDHC: α-ketoglutarate dehydrogenase complex; MDH2:
malate dehydrogenase isoform 2 (mitochondrial); SDH: suc-
cinate dehydrogenase; SUCL: succinate-CoA ligase; UQ:
Ubiquinone; UQH2: Ubiquinol. Succinate exits mitochondria
probably through both MCT1 and the dicarboxylate trans-
porter.
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canonical TCA cycle activity, contribution from SDH reversal has also
been methodically scrutinized. During ischemia, succinate was un-
equivocally shown to originate not only through α-ketoglutarate, but
also from fumarate or upstream metabolites (see Fig. 1); however, all
studies agreed that the extent of this ranges from 2% to 15%:
(Hoberman and Prosky, 1967; Cascarano et al., 1968; Taegtmeyer et al.,
1977; Taegtmeyer, 1978; ; Hohl et al., 1987; Wiesner et al., 1988; Kita
et al., 1988; Laplante et al., 1997; Zhang et al., 2018). Some of these
reports evoked the argument of a fumarate reductase system, in which
fumarate is reduced to succinate by SDH reversal and this is coupled to
NADH oxidation and ATP production also involving complex I and
cytochrome b. This fumarate reductase system (not to be confused with
the fumarate reductase enzyme found in some bacteria and lower eu-
karyotes addressed in section 5.1) has been originally proposed by
Slater in 1950 (Slater, 1950), later refined in the 60′s and 70′s by Sanadi
and Fluharty (1963); Haas (1964) and Wilson and Cascarano (1970).
The contribution of cytochrome bhas been subsequently refuted by the
group of Vinogradov (Grivennikova et al., 1993). The concept of a fu-
marate reductase system in mammalian mitochondria –mostly in sub-
mitochondrial particles- gained momentum because of the near si-
multaneous discovery of the genuine fumarate reductase enzyme in
helminths in 1969 (De Zoeten and Tipker, 1969), fueling the erroneous
idea that the enzyme exists in all types of mitochondria. Furthermore,
the possibility of ATP production from mSLP was not known at that
time, as it was believed that succinate-CoA ligase could generate only
guanine nucleotides, now known to be incorrect (Johnson et al., 1998;
Lambeth et al., 2004); the discovery of mitochondrial nucleotide di-
phosphate kinases transferring a high-energy phosphate bond from one
type of nucleotide to another was reported in 1962 (Chiga and Plaut,
1962) and re-addressed in 1967 (Goffeau et al., 1967) and 1969
(Colomb et al., 1969), thus, it is not known if this information was
brought to these authors’ attention as there is no cross-reference. Fi-
nally, the reduction of fumarate through SDH reversal -whether in
isolation or in submitochondrial particles- could only be shown by
using artificial electron carriers, discussed in (Grivennikova et al.,
1993). Mindful that the only reaction in the matrix capable of gen-
erating ATP during respiratory arrest is that catalyzed by succinate-CoA
ligase (Chinopoulos, 2011a; Chinopoulos et al., 2010), this fumarate

reductase system could only be a combination of i) minor SDH reversal,
ii) residual complex I activity oxidizing NADH or some other reaction
(see section 3.1) and iii) mSLP yielding ATP. The lack of a genuine
fumarate reductase enzyme entity in mammalian mitochondria is fur-
ther addressed in section 5.1. The possibility of SDH becoming more
prone to acting as a fumarate reductase due to alternative assembly
(Bezawork-Geleta et al., 2018) has not been investigated.

5.1. The risks of using malonate in whole tissues or cells for interrogating
SDH directionality

In (Chouchani et al., 2014), Chouchani et al., reported that succi-
nate accumulates in cardiac ischemia as a result of SDH reversal. They
deduced that SDH was operating in reverse because i) dimethyl mal-
onate (which is converted to malonate once inside the cell, a compe-
titive inhibitor of SDH) decreased succinate accumulation in the is-
chemic myocardium and ii) this was suggested by in silico flux analysis.
The second argument is debatable because their model was overly
simplistic, not accounting for participation of metabolites involved in
the malate/aspartate shuttle in other reactions, and not including the
barrier of an inner mitochondrial membrane. The use of malonate in
interrogating SDH directionality in whole tissue carries many risks,
some of which have been stressed as early as 1936: Greville (1936)
pointed out that at high concentrations (such as 20mM, used in) mal-
onate inhibits catabolism of acetoacetic acid (Quastel and Wheatley,
1935), inhibits malate dehydrogenase Greville (1936) and increases the
formation of ketone bodies Greville (1936). These reports echo a widely
known observation of a promiscuous ligand when administered at high
doses: off-target effects. Furthermore, one more point to address when
using malonate in whole tissues: malonate is transported by the di-
carboxylate transporter (DIC), the same transporter that carries succi-
nate (Palmieri et al., 1971); succinate, malate and malonate compete
with each other in the kinetics of uptake (Palmieri et al., 1971). Thus,
20mM malonate will pose a serious challenge for succinate (and ma-
late) transport, especially in light of the fact that malonate is metabo-
lized at a much slower rate (if at all) than succinate. That would shift
the reversible reaction catalyzed by succinate-CoA ligase to the right,
halting succinate generation. Thus, malonate (and cell-permeable de-
rivatives) are inappropriate for interrogating the role and directionality
of SDH in terms of succinate concentration. Finally, there seems to be
much more regarding succinate (and malonate) transport that remains
to be discovered: based on the fact that the molecules are transported
by well-characterized entities out of mitochondria and out of the cell,
yet they are considered membrane-impermeable when given exogen-
ously, hence the development of membrane-permeable analogues
(Ehinger et al., 2016).

Mindful of the above, it is important to emphasize that the con-
clusions of Chouchani et al are valid and extremely informative, i.e.,
succinate does accumulate in ischemia and is a critical driver of re-
perfusion injury (Chouchani et al., 2014). However, the extent of SDH
reversibility to succinate accumulation is rather small; this is important,
because as pointed out by Zhang et al (Zhang et al., 2018), the timing of
SDH inhibition is critical during ischemia/reperfusion.

6. Mammalian mitochondria do not express a “fumarate
reductase” enzyme entity

Fumarate reductases are enzymes present in Gram-negative bac-
teria, some Gram-positive bacteria, green algae, protozoa, parasitic
helminths and some lower marine organisms (freshwater snails, mus-
sels, lugworms, and oysters) but not mammals (Van Hellemond and
Tielens, 1994; Van Hellemond et al., 1995). They reduce fumarate to
succinate by oxidizing quinols exhibiting a redox potential typically
more negative than −60mV, such as rhodoquinols in eukaryotes and
menaquinols or napthoquinols in prokaryotes (Van Hellemond et al.,
1995). In my opinion, the very existence of genuine fumarate

Fig. 2. Catalytic profile for SDH (adsorbed on a graphite electrode) acting on a
1:1 succinate/fumarate mixture (pH 7.0, 38°C) as a function of applied poten-
tial (potential in volts vs that of Standard Hydrogen Electrode [SHE]), mi-
micking the redox potential of the quinone pool. Modified from (Pershad et al.,
1999), distributed under a Creative Commons license. Green rectangle re-
presents quinone redox potential values that allow succinate oxidation. Red
rectangle represents quinone redox potential values that allow fumarate re-
duction. Grey area represents the range of quinone redox potential values in
which SDH performs reduction of fumarate at an appreciable rate. Note that
mammalian mitochondria harbor ubiquinone that exhibits a redox potential
of>+45 mV, (Urban and Klingenberg, 1969). Thus, from the kinetic point of
view, reduction of fumarate to succinate by mammalian SDH in organello, is
severely restricted. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article).
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reductases attests to the notion that SDH is not reversible to an ap-
preciable extent. However, in E. coli, fumarate reductases can work in
reverse as SDH (Cecchini et al., 1986; Sucheta et al., 1993), and this is
physiologically important when SDH is deleted (Guest, 1981).

The concept of fumarate reductase activity in mammalian mi-
tochondria and especially in cancer cells is pursued by the group of
Tomitsuka (Tomitsuka et al., 2009, 2010; Sakai et al., 2012; Tomitsuka
et al., 2012). Although the authors acknowledge that fumarate re-
ductase enzyme entities similar to those present in parasites are absent
from mammalian cells, they claim that phosphorylation of type II fla-
voprotein subunit of human mitochondrial SDH increases its fumarate
reductase activity (Tomitsuka et al., 2009; Sakai et al., 2013); in turn,
they suggest that this leads to sufficient proton pumping through
complex I that drives ATP synthesis by the Fo-F1 ATP synthase. Apart
from the fact that they report a fumarate reductase activity in cancer
cells on the order of ˜0.1% (during normoxia, and double that after
hypoxia) of that found in mitochondria of parasites (Sakai et al., 2012),
the notion of ATP synthesis by the Fo-F1 ATP synthase during hypoxia is
baseless: the ATP synthase of intact mitochondria requires a membrane
potential more negative than ˜−132mV to synthesize ATP, which is
impossible to achieve during ischemia/hypoxia (Chinopoulos, 2011b).

Unfortunately, these reports may have led to the potentially false
impression that genuine fumarate reductases reside in mammalian
mitochondria, similar to those found in parasites. It is emphasized,
however, that Tomitsuka and others do not make the claim of mam-
malian fumarate reductase enzyme entities. By this mini-review I aim to
emphasize that genuine fumarate reductases have never been reported
in mammalian tissues, whether healthy or diseased.

7. Conclusions

In tissue ischemia, succinate originates mostly from α-ketoglutarate
and upstream metabolites. That also highlights the value of mSLP in-
volved in this process. SDH operating in reverse also exerts a minor
contribution in yielding succinate, but only 6–40 times less than that
coming from α-ketoglutarate, depending on conditions; for this, sui-
table quinones with a sufficiently negative redox potential are required
for reducing fumarate. The presence of such quinones in mammalian
mitochondria remain to be discovered. Finally, although fumarate re-
ductases are very important enzymes in bacterial and lower eukaryotes
biochemistry, their existence in mammalian mitochondria remain to be
reported.
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