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ARTICLE INFO ABSTRACT

Keywords: Constant exposure to foreign particles in the airways requires tight immune regulation in order to maintain
Lung sufficient anti-microbial defences, while preventing immunopathological responses that could impair gas ex-
Immunoregulation change. Dysregulation of immunoregulatory pathways has been associated with asthma and allergy. This review
égezrog(i);:sthma will focus on the CD200 regulatory pathway and its role in the asthmatic cascade.

CD200 receptors

CD200 and its receptors are highly expressed in the lung, on epithelial cells and leukocytes, and emerging
evidence links dysregulation of the CD200 pathway with asthma. Moreover, pharmacological modulation of

CD200 receptors was shown to improve clinical and inflammatory outcomes of preclinical asthma models.
Therefore, the involvement of CD200 in asthma is increasingly recognized and preclinical studies support the
contention that it could constitute an additional target to alleviate asthma exacerbation and/or reduce disease

severity.

1. Introduction

Asthma is a chronic airway disease characterized by airway hy-
perreactivity, inflammation and remodeling leading to episodic airflow
limitation and breathlessness. Despite a state-of-the-art management
with currently available drugs, a significant proportion of asthma pa-
tients have poorly controlled symptoms and remain with an evolving
inflammatory disease, highlighting our partial understanding of the
pathogenesis. In the past decades, there was a great focus on in-
vestigating pro-inflammatory mediators involved in asthma pathogen-
esis, which led to the development of antagonists of those inflammatory
pathways with varying degree of success in altering the asthmatic
cascade. Nevertheless, it becomes evident that regulatory pathways are
also involved and dysregulated in allergic asthma.

The immunoregulatory role of CD200 is well documented in various
contexts, including cancer, neuroinflammation, arthritis and trans-
plantation (Holmannova et al., 2012b). CD200 is highly expressed in
normal lung (Jiang-Shieh et al., 2010) and increasing evidence supports
its critical involvement in pulmonary immunoregulation (Holt and
Strickland, 2008). This focussed review will thus summarize the current
knowledge of CD200 and CD200 receptor distribution in the lungs, as
well as the evidence supporting its involvement in asthma.

2. Pathogenesis: CD200 and its receptors
2.1. CD200

CD200, formerly known as OX-2, is a transmembrane glycoprotein
and a member of immunoglobulin (Ig) supergene family (Holmannova
et al., 2012a). CD200 has two Ig-like domains, a single transmembrane
region and a short cytoplasmic tail with no known signaling motifs
(Holmannova et al., 2012a), suggesting that CD200 does not induce
signalling in the cells expressing it. Interestingly, a recent study in B-
cells chronic lymphocytic leukemia raised the possibility that upon
cleavage of membrane CD200 (see section 2.2 below), an in-
tracytoplasmic fragment can relocalize to the nucleus and alter gene
expression (Chen et al., 2018). Nevertheless, implications of this novel
mechanism of action remain to be investigated in the context of im-
mune responses.

CD200 is highly conserved, with 74% amino acid homology be-
tween the human and murine orthologs (Holmannova et al., 2012a).
There is cross specificity binding between human CD200 and murine
CD200 receptor (CD200R), with a stronger binding with rat CD200R
compared to mouse CD200R (Wright et al., 2003). Although dis-
crepancies on CD200 expression might be related to detection techni-
ques and/or the activation state of the cells, it is now well accepted that
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Table 1

Cell types expressing CD200 and CD200R in human and mice. m: expressed
consituvely; m: expressed upon activation or by a cell subset; O: not expressed.

Cell types CD200 CD200R References

Macrophages (Koning et al., 2010;
Mukhopadhyay et al., 2010; Wright
et al., 2003; Zhu et al., 2019)
(Akkaya et al., 2013; Koning et al.,
2010; Schiitz and Hackstein, 2014;

Wright et al., 2003)

Dendritic cells

Monocytes (Koning et al., 2010; Krejsek et al.,
2010; Steiniger et al., 1990; Wright
et al., 2003)

T cells (Akkaya et al., 2013; Caserta et al.,
2012; Wright et al., 2003)

B cells (Akkaya et al., 2013; Snelgrove
et al., 2008; Wright et al., 2003)

Neutrophils (Akkaya et al., 2013; Koning et al.,
2010; Krejsek et al., 2010; Wright
et al., 2003)

Eosinophils (Akkaya et al., 2013; Blom et al.,
2017; Koning et al., 2010)

Mast cells (Blom et al., 2017; Cherwinski et al.,

2005; Wright et al., 2003)
(Akkaya et al., 2013; Blom et al.,
2017; Wright et al., 2003)
(Lauzon-Joset et al., 2015; Wright
et al., 2001)

(Barclay et al., 2002; Cherwinski
et al., 2005; Jiang-Shieh et al.,
2010)

(Cherwinski et al., 2005; Jiang-
Shieh et al., 2010)

(Barclay et al., 2002; Cherwinski
et al., 2005)

Natural killer cells
Smooth muscle cells

Endothelial cells

Epithelial cells

Neurons

88 80 OO0 0 @ O
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CD200 is broadly distributed on cells from both hematopoietic and non-
hematopoietic origin (Table 1 and Fig. 1), and is conserved between
humans and rodents.

2.2. Post translational modifications of CD200

A naturally-occurring truncated splice variant of CD200 was
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documented to act as an antagonist of CD200R (Holmannova et al.,
2012a). In addition, the ectodomain of membrane-bound CD200 can be
cleaved by metalloproteases resulting in a soluble form of CD200,
sCD200 (Wong et al., 2016). Yet, sCD200 displays a limited ability to
activate CD200 receptors (Cherwinski et al., 2005), and its biological
role remains misunderstood.

Although the role of sCD200 is still unclear, sCD200 was identified
as a potential biomarker in multiple diseases. Elevated level of serum
sCD200 is an early positive prognostic factor after engraftment
(Gorczynski, 2012), supporting the involvement of sCD200 in the
control and resolution of inflammation. On the other hand, CD200
shedding correlates with disease severity in advanced stage of breast
cancer and inflammatory skin disorders (Gorczynski, 2012), as well as
in uncontrolled asthma (Tural Onur et al., 2015); supporting an in-
flammatory role for sCD200. Alternatively, sCD200 levels could in-
crease during inflammation in an attempt to reduce the inflammatory
cascade. Thus, the levels of sCD200 are modified under pathological
conditions, but the impact of this modulation remains unclear and
might depend on the pathophysiological context.

2.3. CD200 receptors

The structure of CD200 receptor shares similarities with CD200,
both containing two Ig superfamily extracellular domains and a single
transmembrane region. In contrast with CD200, the receptors have a
longer cytoplasmic domain with signaling capacity (Wright et al.,
2003). CD200 receptors are unusual inhibitory receptors that do not
contain any ITIM (immunoreceptor tyrosine-based inhibitory motifs).
Instead, there is a phosphotyrosine-binding (PTB) domain-recognition
motif (NPXY) (Holmannova et al., 2012a). Engagement of CD200R in-
duces tyrosine phosphorylation of the PTB domain recruiting adaptor
proteins Dokl and Dok2. The anti-inflammatory signal of CD200R is
mediated via Dok2 and activation of Ras p21 protein activator 1
(RasGAP), whereas Dokl would act as a negative regulator of CD200R
signaling by recruiting CrkL (Holmannova et al., 2012a).

CD200 receptor expression is limited to lymphoid and myeloid cell
lineages (see Table 1 and Fig. 1). In human and rat, there are only two
CD200R isoforms, CD200R1 and CD200R2, whereas there are at least 5
isoforms in mouse, numbered CD200R1 to CD200R5. In mouse, the

Fig. 1. CD200 and CD200 receptor expression in the airways.
Under homeostatic conditions, airway epithelial cells express
high levels of CD200. Correspondingly, resident lung immune
cells, including mast cells, dendritic cells and alveolar macro-
phages, express CD200 receptor (CD200R1). Lung CD200 ex-
pression is not restricted to the epithelium, and is also found
on some immune cells, including alveolar macrophages and
dendritic cells. In asthma pathogenesis, CD200 is down-
regulated on the airway epithelium, whereas lung resident
immune cells display increased CD200R1 levels. Moreover,
many inflammatory cells recruited to the airways during
asthma pathogenesis also express either CD200R1, such as
eosinophils, or varying levels of CD200 and CD200R1, in-
cluding neutrophils and lymphocytes.
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receptors CD200R2 to CD200RS5 are also named CD200 “receptor-like”,
respectively CD200RLc, b, a, e. CD200R1 is an inhibitory receptor
whereas CD200R2 (or CD200R4/La in mouse) is an activating receptor.
Although the activating receptor is closely related to CD200R1, it does
not bind CD200 and has no known ligand (Holmannova et al., 2012a).

3. CD200/CD200R in asthma
3.1. The interplay between CD200 and CD200R in the lung

The microenvironment of the lung is particular given its exposure to
a plethora of foreign particles and microbes. The presence of inhibitory
modulators to avoid unnecessary inflammation is thus crucial.
Accordingly, airway epithelial cells are actively involved in maintaining
lung homeostasis. Airway epithelium express many immonumodulatory
molecules, including CD200, which binds CD200R1 on alveolar mac-
rophages and dendritic cells, preventing their activation in absence of
inflammatory stimuli (Snelgrove et al., 2008) (Fig. 1). Of note, airway
epithelial cells were also shown to influence the level of CD200R1 on
dendritic cells (Rate et al., 2012), and alveolar macrophages express
high basal levels of CD200R1, compared with macrophages from other
tissues (Snelgrove et al., 2008). Recently, CD200 expression by alveolar
macrophages was also reported, highlighting their unique capacity to
regulate and be regulated by CD200/CD200R pathway (Lauzon-Joset
et al., 2018).

During inflammation, CD200 expression on the epithelium is ra-
pidly, but transiently reduced (Jiang-Shieh et al., 2010), whereas
CD200R1 expression on macrophages increases gradually (Snelgrove
et al., 2008) (Fig. 1), consistent with the role of alveolar macrophages
in resolving inflammation. Absence of CD200 increased the in-
flammatory response to influenza infection and prevented its resolu-
tion, although the viral load was reduced (Snelgrove et al., 2008). In-
terestingly, the administration of CD200Fc lowered the inflammatory
response to influenza without compromising viral clearance. This
highlights the critical role of CD200 in resolving lung inflammation
while preserving anti-microbial capacities, whereas a defect in CD200/
CD200R pathway may result in inflammatory diseases.

3.2. CD200 in asthma

Dysregulation of CD200 in asthma was first mentioned in a gene
expression study investigating factors involved in asthma exacerbation
(Aoki et al., 2009). Peripheral blood mononuclear cells of children
during an asthma exacerbation have reduced expression of CD200
compared with those from controlled asthmatics. In addition, serum
levels of sCD200 are higher in uncontrolled asthmatic subjects com-
pared with controlled subjects (Tural Onur et al., 2015). Interestingly,
asthmatics treated with anti-IgE have improved pulmonary functions
and reduced inflammation, concomitant with lower sCD200 levels
(Yalcin et al., 2013). It is probable that during asthma pathogenesis,
CD200 is shed from multiple circulating or lung resident cells, including
activated leukocytes and lung epithelial cells, which could ultimately
increase plasma levels of sCD200. Our understanding of sCD200 mode-
of-action is very limited, and it remains unclear how it can activate
CD200R1 or have anti-inflammatory proprieties. Yet, CD200 (and
maybe sCD200) could constitute meaningful regulatory mechanisms of
lung inflammation, since CD200R1 is instrumental to control the acti-
vation of alveolar macrophages and pulmonary dendritic cells (Lauzon-
Joset et al., 2015; Snelgrove et al., 2008).

3.3. CD200R1 in asthma

Multiple cells involved in asthma pathogenesis express various le-
vels of CD200R1. Amongst the lung resident immune cells, alveolar
macrophages, dendritic cells and mast cells have high levels of
CD200R1 (Fig. 1). Moreover, these cell types overexpress CD200R1
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under allergic and/or inflammatory conditions (Rate et al., 2012;
Snelgrove et al., 2008), supporting their role in maintaining lung im-
mune homeostasis (Fig. 1). Interestingly, many inflammatory cells re-
cruited to the airways during asthma also express CD200R1, including
eosinophils, Th2 cells, and innate lymphoid cells type 2 (Blom et al.,
2017; Wright et al., 2003). The role of CD200R1 on inflammatory cells
is poorly understood, although it is expected that CD200R1 expression
by these cells should dampen inflammatory response and/or enable the
resolution of inflammation. Alternatively, recent evidence suggests that
CD200R1 activation could favor the production of Th2 cytokines, via
the inhibition of ERK pathway (Blom et al., 2017). Further studies are
required to understand cell specific functions of CD200 receptors in
homeostatic and inflammatory conditions.

3.4. CD200 receptors as therapeutic targets in asthma

Although no current asthma therapies target the CD200/CD200R1
pathway, Moodley et al showed that corticosteroid, a common anti-
inflammatory treatment of asthma, increases CD200 expression of
bronchial epithelial cells (Moodley et al., 2013). Furthermore, for-
moterol, a long-acting B2 agonist, and roflumilast, an inhibitor of
phosphodiesterase 4, synergize with corticosteroids to activate genes
under glucocorticoid response elements, including CD200 (Moodley
et al., 2013). Thus, restoring CD200/CD200R1 pathway in asthma is an
attractive target that could improve control and reduce disease severity.

A proof-of-concept study to activate CD200R1 pathway in asthma
was carried out in an animal model of acute allergic asthma using
CD200Fc (Lauzon-Joset et al., 2015). Airway delivery of CD200Fc be-
fore allergen exposure reduces some features of lung Th2 inflammation,
including bronchoalveolar lavage levels of IL-13 and airway hy-
perreactivity. There is also a downregulation of dendritic cell accu-
mulation, mirrored by a lower Th2 activation of lung CD4* T cells.
However, CD200R1 activation does not alter eosinophil recruitment to
the lungs nor does it modulate cellular accumulation in the airway
draining lymph node in this acute model. Similar data were observed
using an aptamer activating CD200R1 in a mouse model of allergic
asthma (Prodeus et al., 2018).

The mechanisms involved in CD200Fc modulation of asthma pa-
thogenesis are not completely understood and probably implicate nu-
merous cell types, given the presence of CD200R1 on many lung im-
mune cells (Fig. 1). Lung administration of CD200Fc will most likely
bind to alveolar macrophages that express a very high level of CD200R.
The resulting activation of CD200R1 on alveolar macrophages may
potentiate their anti-inflammatory role in limiting dendritic cell acti-
vation and recruitment (Lauzon-Joset et al., 2014). Eosinophils also
express high levels of CD200R1 (Fig. 1), and CD200Fc may down-
regulate the inflammatory functions of eosinophils, but it does not alter
their recruitment (Lauzon-Joset et al., 2015). Given the presence of
CD200R1 on mast cells and dendritic cells, CD200Fc can also directly
inhibit mast cell degranulation and dampen the ability of dendritic cells
to capture and present allergens (Akkaya et al., 2013). Thus, local ad-
ministration of CD200Fc or other CD200R1 agonists may be a new
therapeutic avenue in asthma since it could act simultaneously on
multiple inflammatory pathways.

4. Conclusion

Immune regulation in the airways is a fine balance between pro-
inflammatory anti-microbial defense and homeostatic anti-in-
flammatory responses. High level expression of CD200 and CD200R1
on epithelial cells and alveolar macrophages respectively is an im-
portant feature of lung unique microenvironment. This regulation
seems to be lost during asthma pathogenesis, although it is not clear at
this stage whether the CD200 pathway is deficient in asthmatic patient
or whether asthma inflammatory response dysregulates CD200
pathway. Further studies are needed to understand the function of
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sCD200, as well as the role (and ligands) of the activating CD200 re-
ceptor (CD200R2) in lung immune response and asthma pathology.

Current pre-clinical/animal models support the benefit of targeting
CD200/CD200R pathway to restore lung homeostasis/reduce airway
inflammation in asthma. Yet, we have to confirm that CD200Fc and
aptamers targeting CD200R1 would not impair lung anti-microbial
defenses while dampening the excessive inflammatory response ob-
served in asthma.
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