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ARTICLE INFO ABSTRACT

Keywords: Nucleophosmin (NPM), one of the most abundant nucleolar proteins, has crucial functions in ribosome bio-
Nucleophosmin genesis, cell cycle control, and DNA-damage repair. In human cells, NPM occurs mainly in oligomers. It functions
Mutation as a chaperone, undergoes numerous interactions and forms part of many protein complexes. Although NPM role
Le“kem?a in carcinogenesis is not fully elucidated, a variety of tumor suppressor as well as oncogenic activities were
Interaction described. NPM is overexpressed, fused with other proteins, or mutated in various tumor types. In the acute
Immunotherapy

myeloid leukemia (AML), characteristic mutations in NPM1 gene, leading to modification of NPM C-terminus,
are the most frequent genetic aberration. Although multiple mutation types of NPM are found in AML, they are
all characterized by aberrant cytoplasmic localization of the mutated protein. In this review, current knowledge
of the structure and function of NPM is presented in relation to its interaction network, in particular to the
interaction with other nucleolar proteins and with proteins active in apoptosis. Possible molecular mechanisms
of NPM mutation-driven leukemogenesis and NPM therapeutic targeting are discussed. Finally, recent findings
concerning the immunogenicity of the mutated NPM and specific immunological features of AML patients with
NPM mutation are summarized.

1. Introduction excellent reviews recapitulated current knowledge of nucleophosmin
aberrations in cancer (Grisendi et al., 2006; Meani and Alcalay, 2009),
others focused on specific mutations of NPM occuring in the acute

myeloid leukemia (AML) (Falini et al., 2011; Heath et al., 2017) or to

Nucleophosmin (NPM, B23) was identified as one of the major nu-
cleolar silver-stained proteins (Lischwe et al., 1979) with an important

role in ribosome biogenesis (Yung et al., 1985; Li et al., 1996; Liu and
Yung, 1999). It was found to be associated with the chromosomes
during mitosis (Ochs et al., 1983; Zatsepina et al., 1999) and its role in
the cell cycle progression was later confirmed (Amin et al., 2008b).
Additionally, participation of NPM in DNA-damage repair processes
(Poletto et al.,, 2014; Ziv et al., 2014), chromatin remodeling
(Swaminathan et al., 2005; De Koning et al., 2007; Hisaoka et al.,
2014), or apoptosis (Kerr et al., 2007; Li et al., 2007; Dhar and St Clair,
2009) was also reported.

Nucleophosmin structure and function was previously reviewed
(Federici and Falini, 2013; Lindstrom, 2011), several papers compiled
its particular role in centrosome duplication (Lim and Wang, 2006) or
DNA repair function (Box et al., 2016; Scott and Oeffinger, 2016). Some

novel possibilities for AML therapy (Di Matteo et al., 2016). This review
aims to complete the previous articles with the summary of the known
consequences of the AML-specific NPM mutations on the interaction
network, and to outline the potential of immunotherapeutic strategies
for treatment of AML with mutated NPM.

2. NPM structure

Nucleophosmin is a member of the nucleophosmin/nucleoplasmin
family (Eirin-Lépez et al., 2006), which encompasses four major protein
types: NPM1 (Nucleophosmin), NPM2 (Nucleoplasmin-2, NP), NPM3
(Nucleoplasmin-3) and drosophila NP-like protein (dNPL). Gene ex-
pression, intracellular localization, and function of individual members
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of the nucleophosmin/nucleoplasmin group vary substantially, but
there is a high sequence similarity in their Nterminal regions (Frehlick
et al., 2007). Five Nterminal domains associate to form a pentamer, and
were found to assemble in a decamer structure using X-ray crystal-
lography (Dutta et al., 2001; Lee et al., 2019; Namboodiri et al., 2003,
2004).

2.1. NPM protein variants

The human NPM1 gene, located on the chromosome locus 5q35, is
composed of 12 exons. Owing to alternative mRNA splicing, it encodes
several protein isoforms, three of which being more closely described.
The most common transcription variant 1 (NCBI Reference Sequence:
NM_002520.6) lacks the exon 10 and corresponds to the longest mRNA
transcript, coding for a 294-amino acid (AA) polypeptide. The calcu-
lated molecular weight (MW) of the resulting protein is 32.6 kDa, its
specific band on SDS-PAGE is observed at 37 kDa (Chan et al., 1989;
Frehlick et al., 2007; Lim and Wang, 2006). This isoform is usually
denoted as NPM1 or NPM. The latter term will be used from now on in
this review. The second protein isoform (product of the transcription
variant 2, NCBI Reference Sequence NM_199185.3), has 265 A A, as a
result of missing exon 8 (Lim and Wang, 2006). The function and ex-
pression of this isoform has not been evaluated so far. The third known
variant (transcription variant 3, NCBI Reference Sequence:
NM_1037738.2) is composed of 259 A A (Dalenc et al., 2002). Whereas
NPM localizes mainly in the nucleoli (Cordell et al., 1999; Spector et al.,
1984), the NPM isoform 3 has also been observed in the nucleoplasm
(Okuwaki et al., 2002), likely due to a loss of 35A A in the C-terminal
region.

2.2. Primary and secondary structure

NPM consists of three regions with diverse properties regarding the
structure, function and biochemical activities. An Nterminal core do-
main, which is involved in oligomerization and in chaperone activity,
has high stability due to a belt of hydrophobic contacts between sub-
units (Herrera et al., 1996; Hingorani et al., 2000). The N-terminal
domain of the folded NPM molecule is organized into eight antiparallel
beta-strands. Five NPM molecules are associated in a complex with
highly asymmetric distribution of charge, resulting in negative-charge
accumulation on one side of the pentamer (Lee et al., 2019). The
Cterminal domain is relatively rich in basic residues providing a posi-
tive charge to this region, which is implicated in binding to nucleic
acids, ribonuclease activity and ATP binding (Chan et al., 1989; Chang
et al., 1998; Hingorani et al., 2000). At the end of this domain, there is a
stretch of aromatic AA including two conserved Tryptophan residues,
W288 and W290, which are necessary for nucleolar localization of NPM
(Grummitt et al., 2008). The DNA-binding domain including the Cter-
minus is formed by an intrinsically disordered part followed by three
helical fragments (H1-H3). The two NPM (terminal) globular domains
are separated by a central region (linker) harboring two acidic seg-
ments, which are required for NPM chaperone activity. The linker do-
main is crucial for histone binding (Hingorani et al., 2000; Okuwaki
et al., 2001b) and mediates formation of nucleosome (Okuwaki et al.,
2001b). The region between the two acidic patches contributes to ri-
bonuclease activity of NPM (Hingorani et al., 2000). A binding site for
G-quadruplex DNA-structures was mapped to 70 residues at C-terminal
region, specifically to AA 225-242, with principal importance of Ly-
sines K229 and K230 (Federici et al., 2010).

2.3. Oligomerization

The major native NPM form is probably pentameric, with individual
molecules interacting through the Nterminal globular domains
(Hingorani et al., 2000). Truncation of the first 24 A A induced loss of
NPM ability to form oligomers (Enomoto et al., 2006), whereas a
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deletion mutant lacking 192 A A from C-terminus formed higher order
multimers (Hingorani et al., 2000). Later on, the region with several
extremely conserved residues, including a GSGP sequence (Glycine 105
— Proline 108), was identified to be necessary for the oligomerization.
Mutations of AA 1102, G105, S106 and G107 in this region were shown
to destabilize NPM oligomers and to inhibit the nucleosome assembly
(Enomoto et al., 2006). The nucleic acid-binding activity, which is
mapped to the Cterminal 70 residues, is required for NPM nucleolar
localization (Okuwaki et al., 2002). As NPM mutated in the GSGP se-
quence was localized in the nucleoplasm, its ability to bind RNA was
also examined. However, the RNA-binding activity of these mutants
was not altered (Lin et al., 2016).

Point mutations of Cysteine 21 (C21) were reported to impair
pentamer formation detected by biochemical methods (Prinos et al.,
2011). On the other hand, in vivo monitoring by fluorescence methods
showed that C21 F mutant retained the ability to associate with NPMwt
(Holoubek et al., 2018). The importance of Tyrosine 67 (Y67), in the
oligomerization domain, for the pentamer stability was also docu-
mented (Duan-Porter et al., 2014).

Moreover, NPM oligomerization is tightly related to its conforma-
tional state, which is regulated by a high number of conserved phos-
phorylation sites within the oligomerization domain (Mitrea et al.,
2014). Phosphorylation of these sites leads to the destabilization of
NPM folding, whereas dephosphorylated NPM molecules fold into an
ordered structure allowing for pentamer formation. The accessibility of
various Serine and Threonine residues regulates the extent of their
phosphorylation and thereby the oligomer/monomer ratio. The NPM
oligomerization was also shown to depend on the cellular ionic
strength: whereas NPM forms pentamers in the presence of mono- and
divalent cations, it tends to dissociate in a ,low-salt “buffer (Mitrea
et al., 2014). Furthermore, the interaction of NPM with other proteins
was proved to regulate NPM folding and assembly. Specifically, the
presence of binding peptides derived from an NPM interaction partner,
pl4Arf, locked NPM in pentamers and inhibited its transition from the
folded state to disordered monomers (Banerjee et al., 2016).

2.4. Localization

NPM is mainly localized in nucleoli, but it undergoes nucleocyto-
plasmic shuttling, which is mediated by motifs for nuclear localization
and nuclear export. The Nterminus of NPM contains two predicted
Leucine-rich nuclear export signals (NES) (Wang et al., 2005; Yu et al.,
2006) putatively recognized by the nuclear export receptor CRM1.
However, neither of them have been proven to be active as real NESs,
possibly due to inconvenient structure of these motifs consisting in
particular of (-strands (Arregi et al., 2015; Bolli et al., 2007; Lee et al.,
2019). A bipartite nuclear localization signal (NLS) promoting nuclear
localization has been discovered between the two acidic stretches of the
NPM central region (Hingorani et al., 2000). The two Tryptophan re-
sidues located in the Cterminal domain have been long considered as
the NPM nucleolus localization signal (NoLS), essential for nucleolar
docking of NPM. As we will see later, its absence is critical for the
aberrant localization of AML-associated NPM mutants (NPMmut)
(Falini et al., 2005; Nishimura et al., 2002). However, the nucleolar
attachment has recently been ascribed also to the affinity of the C-
terminal region for G-rich nucleic acids (Mitrea et al., 2016). In addi-
tion, another putative, probably unfunctional, NES has recently been
reported within the Cterminus (Arregi et al., 2015).

3. NPM function

NPM participates in numerous cellular processes. It controls rDNA
transcription (Murano et al., 2008), serves as an endoribonuclease for
the maturing rRNA transcript (Herrera et al., 1995; Savkur and Olson,
1998), and takes part in the export of pre-ribosomal particles (Borer
et al., 1989). These findings pointed to an essential role of NPM in the
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ribosome biogenesis. More detailed insight into this particular NPM
function specified that NPM directs the nuclear export of both 40S and
60S ribosomal subunits, and that it serves as a rate limiting factor in
protein synthesis (Maggi et al., 2008). NPM also contributes to the
maintenance of the genomic stability. This function is mediated by
participation in DNA-repair processes (Poletto et al., 2014; Wu et al.,
2002), centrosome duplication (Okuda et al., 2000; Wang et al., 2005),
DNA replication (Okuwaki et al., 2001b; Takemura et al., 1994, 1999),
and RNA pol I and II transcription (Bergstralh et al., 2007; Gurumurthy
et al., 2008; Lessard et al., 2010; Li et al., 2008; Liu et al., 2007a;
Murano et al., 2008; Swaminathan et al., 2005). NPM ability to function
as a molecular chaperone is related to the prevention of protein ag-
gregation (Szebeni and Olson, 1999), to histone and nucleosome as-
sembly (Okuwaki et al., 2001b), to chromatin condensation and de-
condensation events (Okuwaki et al., 2001b, a), and to promotion of
acetylation-dependent chromatin transcription (Swaminathan et al.,
2005). Furthermore, NPM is involved in the apoptotic response to a
variety of stress stimuli, such as UV irradiation (Wu et al., 2002) and
hypoxia (Li et al., 2004), and it can modulate p53 stability and activity
(Colombo et al., 2002).

Together with other nucleolar proteins, in particular with Ki-67,
nucleolin (NCL), and fibrillarin, NPM is found in the perichromosomal
layer of mitotic cells, as a part of peripheral chromosome scaffold
(Sheval and Polyakov, 2008). However, NPM depletion, in contrast to
depletion of Ki-67 or of NCL, does not impair the mitotic processes
(Booth et al., 2014; Booth and Earnshaw, 2017).

3.1. Posttranslational modifications

The structure and function of NPM are influenced by numerous
posttranslational modifications, especially by phosphorylation. Various
kinases have been shown to phosphorylate NPM at multiple sites. These
modifications may induce conformational changes and modulate di-
verse NPM functions. The best explored phosphorylation, which occurs
at Threonine 199 (pT199), is mediated by Cyclin E/Cdk2, promotes
NPM dissociation from the centriole, and controls proper centrosome
duplication (Tokuyama et al., 2001). Phospho-T95, which is located in
one of the putative NES regions, also participates in centrosome du-
plication control: it is phosphorylated at the G2/M phase boundary and
is rapidly dephosphorylated during mitosis (Zhao et al., 2015). A Cdk1-
mediated NPM phosphorylation (T199, T219, T234 and T237) is re-
quired to inactivate its RNA-binding activity (Hisaoka et al., 2014). This
correlates with the observed phosphorylation of Serine 4 (S4), T95,
T199, and T234/T237 during G2/M transition (Zhao et al., 2015). A
stepwise dephosphorylation of T199, T234/237 and S4 was also found
to mediate the stress response to irradiation (Wiesmann et al., 2019).
Phosphorylation of T199 by v-cyclin/Cdké regulates latency of Kaposi’s
sarcoma herpesvirus (Sarek et al., 2010). Substitution of multiple NPM
phosphorylation sites mimicking hypoxia stress conditions increased
cell death mediated by association of monomeric NPM with BAX in
mitochondria after ischemic injury (Wang et al., 2019). In metastatic
hepatocellular carcinoma, decreased binding of NPM to ROCK2 was
associated with a high level of T234/237-phosphorylation mediated by
Cyclin B/Cdkl (Ching et al., 2015). DNA damage-induced phosphor-
ylation at Serine 48, mediated by Akt, disrupted NPM interaction with
pl4Arf and induced p53-dependent apoptosis (Hamilton et al., 2014).

Numerous Lysines within the whole NPM protein can be deacety-
lated by sirtuins (Sirt). The acetylation of NPM significantly affects its
histone-chaperone and nucleosome assembly functions. Acetylated
NPM shows an increased affinity towards acetylated histones and in-
creases transcription activity (Swaminathan et al., 2005). Through the
Sirtl-mediated deacetylation, NPM transcriptionally regulates genes
involved in the cell survival and proliferation during carcinogenesis of
oral tumors (Shandilya et al., 2009). Recently, Sirt6 and Sirt7 were
confirmed to directly interact with NPM, and to decrease by deacety-
lation its transcription activity in senescent cells (Lee et al., 2014). The
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Lysines K230 and K263 can also be subjected to sumoylation. K263
sumoylation enhances NPM association with pRb during the cell cycle
(Liu et al.,, 2007b). During oxidative stress, NPM undergoes S-glu-
tathionylation on Cysteine 275, which triggers the dissociation of NPM
from the nucleolar nucleic acids (Yang et al., 2016).

4. NPM interactions

Thanks to the variability of individual domain functions and prob-
ably under modulation by posttranslational modifications, NPM inter-
acts with nucleic acids as well as with numerous proteins. Its RNA-
binding and endonuclease activity helps rRNA processing (Dumbar
et al.,, 1989), and the oligomeric structure allows for core histone
binding (Dutta et al., 2001). The histone-binding domain regulates
chromatin remodeling (Okuwaki et al., 2012), enhances the acetyla-
tion-dependent chromatin transcription (Swaminathan et al., 2005),
and mediates nucleosome assembly (Okuwaki et al., 2001b) suggesting
that NPM serves as a histone chaperone (Frehlick et al., 2007). How-
ever, NPM chaperone activity is not limited to histones. During ribo-
some biogenesis, NPM interacts with many ribosomal proteins
(Lindstrom, 2011). Through direct interaction, it cooperates also with
non-ribosomal nucleolar proteins, in particular with NCL (Liu and
Yung, 1999), and likely also with fibrillarin, although the latter inter-
action is documented only on the basis of colocalization experiments
(Amin et al., 2008a). Moreover, NPM Nterminal domain mediates nu-
cleolar localization of human immunodeficiency virus proteins Tat and
Rev (Fankhauser et al., 1991; Li, 1997; Nouri et al., 2015). In the mi-
totic phase, a phosphorylated form of NPM interacts with proteins re-
sponsible for the centrosome duplication, Aurora A and B (Reboutier
et al., 2012; Shandilya et al., 2014).

The role of NPM in the DNA-damage repair is mediated mainly by
its interaction with apurinic/apyrimidinic endonuclease (APE1), which
is involved in the base excision repair (BER). As a consequence of APE1
interaction with the oligomerization domain of NPM, APE1l en-
donuclease activity on abasic double-stranded DNA is stimulated
(Vascotto et al., 2009). Phosphorylated NPM (pT199-NPM) has a role in
the formation of repair complexes after ionizing radiation-induced DNA
double-strand breaks (Koike et al., 2010).

NPM was also reported to interact with many proteins operating in
the apoptosis. A region near the NPM Cterminus was identified to ac-
count for its interaction with the tumor suppressor p53 (Colombo et al.,
2002; Lambert and Buckle, 2006). Overexpression of NPM in hypoxia or
UV-irradiated cells led to suppression of p53 activity through several
mechanisms: inhibition of p53 phosphorylation on Serl5, direct inter-
action with the p53 Nterminus, and binding of the transcription factor
HIF-1a to HIF-1-responsive element in the NPM promoter (Li et al.,
2004; Maiguel et al., 2004). In epithelial cells, NPM overexpression
enhanced the level of p53 in the nuclei, but it reduced p53 association
with mitochondria and thereby blocked the apoptosis induced by 12-O-
tetradecanoylphorbol 13-acetate (TPA) (Dhar and St Clair, 2009). Be-
sides the direct interaction, the expression and stability of p53 is also
regulated through NPM interaction with MDM2, an E3ubiquitin ligase
promoting p53 degradation (Kurki et al., 2004), or with the tumor
suppressor pl4Arf (p19Arf in mouse (Bertwistle et al., 2004)), another
player in this regulation loop. The pool of pl14Arf is bound to NPM in
nucleoli, where it is sequestered from interaction with nucleoplasmic
proteins. When it is released from the complex, pl14Arf interacts with
MDM2 and regulates p53 degradation/activity (Lee et al., 2005). De-
tailed studies of NPM-p14Arf complex revealed the importance of the
Nterminal NPM domain for this interaction (Itahana et al., 2003;
Enomoto et al., 2006; Luchinat et al., 2018). NPM also directly interacts
with several p53-target proteins, in particular with BAX (Kerr et al.,
2007; Thompson et al., 2008) and p21WAF1 (Xiao et al., 2009).

Furthermore, association with NPM is documented for several
transcription factors. In particular, through the interaction with NPM,
the oncoprotein c-myc is directed into the nucleoli, where it stimulates
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transcription of rDNA and other cmyc-target genes (Li et al., 2008; Li
and Hann, 2013). Moreover, NPM regulates turnover of the c-myc by
coupling with the F-box protein Fbw7y, which is involved in the ubi-
quitination and proteasome degradation of cmyc (Bonetti et al., 2008).
NPM interaction with another transcription factor, NFkB, was detected
by affinity chromatography followed by mass spectrometry and further
confirmed by immunoprecipitation. An assay analyzing the transcrip-
tion of the NF-kB target gene, MnSOD, showed enhanced MnSOD
mRNA expression after NPM overexpression, proving functionality of
this interaction (Dhar et al., 2004). Recently, it was documented that
NPM association with the DNA-binding domain of an NF-kB subunit,
p65, enhances its DNA-binding activity and, subsequently, the tran-
scription of its target genes (Lin et al., 2017). On the other hand, an
inhibitory effect of interaction with the Nterminal domain of NPM was
reported for the regulatory function of the myeloid ELF1-like factor
(MEF/ELF4) on the MDM2 promoter (Ando et al., 2013). Direct inter-
action of NPM with two transcription factors of IFNy signalling
pathway, STAT1 and IRF1, enhancing their transcription activity, was
also recently described (Abe et al., 2018). In this work, the NPM oli-
gomerization domain was shown to be required for the interaction with
IRF1. Interaction of NPM with the transcription factor PU.1, which
regulates the terminal differentiation of myeloid cells to granulocytes
and monocytes, was also described (Gu et al., 2018).

5. NPM in cancer

NPM is frequently overexpressed, fused or mutated in tumors
(Grisendi et al., 2006). As it was recently reviewed in (Chen et al.,
2018), overexpression of NPM in solid tumors usually correlates with
poor prognosis. Lower NPM expression in comparison with the non-
tumor tissue has been recently documented for gastric tumor, but the
impact of NPM level on the prognosis was not investigated (Leal et al.,
2014). Interestingly, inverse correlation between mRNA and protein
expression and its dependence on histological subtype was shown in
this study. Several fusion products with other genes resulting from
chromosomal translocations were described, in particular in hemato-
logical malignancies. The fusion proteins contain the NPM N-terminal
domain, which serves mostly as an oligomerization interface promoting
the oncogenic potential of the fusion partner. Specifically, NPM-RARaq,
NPM-MLF1, or NPM-ALK fusions can be detected in the acute pro-
myelocytic leukemia (APL, AML-M3), myelodysplastic syndrome
(MDS), or nonHodgkins lymphoma, respectively (Morris et al., 1994;
Redner et al., 1996; Yoneda-Kato et al., 1996). Interstitial deletion of
the chromosome 5 (del(5q)) is widely detected in both de novo and
therapy-related MDS (Tasaka et al., 2008)), in AML, and in T-cell acute
lymphoblastic leukemia (T-ALL, (Ebert, 2010; La Starza et al., 2016)).
Although the deletion is not exactly at 5935 locus, it is associated with
marked downregulation of NPM in advanced MDS (Pellagatti et al.,
2011). Moreover, monosomy 5 leading to NPM haploinsufficiency oc-
curs in about 38% of MDS cases (Tasaka et al., 2008).

6. AML-associated NPM mutation

A short (usually 4 base pairs) frameshift insertion in the exon 12 of
Npm1 gene is detected in about 30% of patients with AML. The protein
NPMmut resulting from the altered gene, with the use of an alternative
stop codon, is four aminoacids longer and has an altered Cterminus. In
the mutated protein, the NoLS from NPM wild-type (NPMwt) sequence
is lost and it is replaced with a newly acquired NES, which can be re-
cognized by the exporting protein Crm1 (Bolli et al., 2007; Falini et al.,
2006). The affinity of the acquired NES for the Crm1 depends on the
type of NPM mutation (Arregi et al., 2015; Bolli et al., 2007). Basic
characteristics of the AML-related mutations were described in 2005
(Falini et al., 2005; Grisendi and Pandolfi, 2005): besides the NPM
cytoplasmic localization, which was detected immunohistochemically,
the patients with NPMmut usually had normal karyotype, high white
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blood cell count, CD34 and CD133 negativity, and a good response to
the induction therapy, in particular in the absence of internal tandem
duplications in Flt3 gene (F1t3-ITD). On the other hand, the incidence of
F1t3-ITD, which is associated with worse prognosis in AML, was twice
higher in NPMmut cases. A screen in neoplasms other than AML showed
that the mutations were unique for AML. Subsequent analyses led to
more precise specifications including CD33 positivity (De Propris et al.,
2011), association with cup-like nuclear morphology (Chen et al.,
2009), specificity for adult leukemia, and co-occurrence of other mu-
tations, in particular in DNMT3A. Besides FIt3 and DNMT3A, higher
frequency of mutations in IDH1, IDH2, and TET2 were also documented
(Patel et al., 2017) in NPMmut AML.

The majority of patients harbor mutation type A. Type D mutation
differs only in one base and is phenotypically identical with the type A.
Type B has one likely nonessential substitution (1289 M) in comparison
with the type A. Altogether, the mutation types A, D and B represent
more than 90% of all NPMmut cases. Nevertheless, more than fifty
mutation types in the most frequently affected specific locus of the exon
12 were found till now (Kawaguchi-Thara et al., 2016). Although they
generally consist of four base-pair insertions, several longer indel mu-
tations were also reported (Jeziskova et al., 2017). Moreover, rare
mutations in other exons (exons 5, 6, 9 or 11) also occur (Albiero et al.,
2007; Mariano et al., 2006). Recently, internal tandem repetition in the
exon 12 leading to the creation of a longer (by about 40 A A) protein
was found in a patient with relapsed AML (Duployez et al., 2018).
Despite this heterogeneity, all the mutations cause cytoplasmic locali-
zation of the resulting protein. Therefore, although routinely analyzed
by PCR followed by sequencing to determine the mutation type, the
presence of the mutation can be effectively detected also by immuno-
fluorescence using combination of specific antibodies recognizing ei-
ther NPMwt or NPMmut (Saginkova et al, 2018).

Specific characteristics associated with NPM mutation led to the
definition of ,,AML with mutated NPM1 “as a distinct entity in WHO
classification of myeloid neoplasm and acute leukemia (WHO edition
2016, (Arber et al., 2016)). In the majority of cases, the mutation is
recurrent and can be used to monitor the minimal residual disease
(MRD). The persistence of the mutation was shown in about 15% of
patients after second chemotherapy cycle (Ivey et al., 2016) and in 30%
of samples after allogeneic stem cell transplantation (Delsing Malmberg
et al., 2018). In both cases, MRD positivity significantly correlated with
higher risk of relapse and with shorter overall survival. Hence, until
recently, NPM mutation was supposed to be a founder genetic lesion (Di
Matteo et al., 2016; Falini et al., 2011; Federici and Falini, 2013).
However, several exceptions documenting the loss or a change of the
mutation have been reported (Kronke et al, 2013; Ivey et al., 2016;
Hollein et al, 2018). In a cohort of 104 AML patients with NPMmut, ten
percent relapsed as NPMwt, concurrently retaining other mutations
from diagnosis suggesting the existence of a premalignant leukemic
clone without NPMmut (Héllein et al, 2018). Persistence of NPM mu-
tation at relapse positively correlated with FIt3-ITD co-mutation,
whereas loss of NPM mutation was frequently observed together with
recurrent DNMT3A mutation (Hollein et al, 2018; Kronke et al, 2013).
Importantly, a switch from TCGC insertion at diagnosis to mutation
type A (i.e. TCTG insertion) at relapse has been documented pointing to
the fact, that the loss of a mutation may be accompanied by manifes-
tation of another mutation (Webersinke et al., 2014). Moreover, the
screening of variant allele fractions (VAF) of coexisting mutations
showed that median VAFs were higher for frequent co-mutations in
genes regulating DNA methylation (DNMT3A, IDH1, IDH2 or TET2)
than the VAFs for NPM mutations. This suggests that NPM mutations
might be a secondary or later event in the pathogenesis of AML (Patel
et al., 2017). On the other hand, F1t3 mutations had relatively low VAF
and are thus assumed to occur later than NPM mutations (Metzeler
et al., 2016), in agreement with the conclusions from the statistics of
mutation recurrence reviewed above. In summary, mutations in epi-
genetic regulators occur early during clonal evolution, but they are
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usually not sufficient to cause leukemia, which is manifested later due
to additional subsequent mutations, typically that in NPM (Wang et al.,
2017).

Several genetically engineered mouse models of the NPM mutation,
including transgenic and knock-in alleles, showed that NPM mutation
cooperated with other mutations in AML induction (Sportoletti et al.,
2015). Recently, a mouse model of human AML was created using
human hematopoietic stem/progenitor cells transduced with lentivirus
expressing NPMmut. Immunodeficient mice engrafted with these cells
rapidly developed myeloid leukemia of human origin. Interestingly, the
untransduced engrafted cells gave rise to development of human-de-
rived immune cells and the leukemia was thus targetable by im-
munotherapy (Kaur et al., 2019).

Although NPM mutations are usually reported as exclusive for AML,
they can rarely be found also in other hematologic neoplasms. In MDS,
occurrence of NPM mutation (4,4%) was restricted to intermediate- and
high-risk disease (Bains et al., 2011). In the chronic myelomonocytic
leukemia (CMML, < 5%), the mutation was associated with unfavor-
able prognosis with early blastic transformation (Vallapureddy et al.,
2017). Moreover, NPM function is associated with BCR-ABL pathways
and with ribosomal protein networks in the chronic myeloid leukemia
(Chan et al., 2015).

The NPM nucleolar insufficiency leads to partial inhibition of ri-
bosomal synthesis, which may cause slower cell proliferation.
Concurrently, the nucleoli of NPMmut-containing cells are more fragile
and these cells are thus more prone to p53-induced apoptosis. These
facts may be the main reason for the better response of AML patients
with NPM mutation to intensive chemotherapy (Derenzini et al., 2018).
Interestingly, cells with NPMmut showed increased phosphorylation of
T199 and, concurrently, delayed progression into mitosis. Therefore, a
higher cytoplasmic level of NPM may be related to a better suppression
of aberrant centrosome duplication (Chan and Lim, 2015). Recently,
Brunetti et al (Brunetti et al., 2018) showed that clearance of NPMmut
from the cytoplasm was associated with downregulation of homeobox
(HOX) genes, induced differentiation of AML cells and prolonged sur-
vival of mice with NPMmut leukemia. Although CD34 + subpopulation
can also be found in NPMmut patients, the frequency of these cells was
significantly lower than that in NPMwt patients (Schneider et al.,
2014). Moreover, several genes involved in Tcell immunity were found
to be overexpressed in leukemia stem cell (LSC) subpopulation
(CD34 +CD38-) of AML patients with NPMmut compared to AML pa-
tients with NPMwt or to healthy donors. This analysis suggests an im-
portant role of the immune system in AML with NPMmut (Schneider
et al., 2014). The known consequences of NPM mutation in leukemo-
genesis and therapy effectiveness are summarized in Fig. 1 and Table 1.

The latest European LeukemiaNet (ELN) Recommendations assign
patients with NPM mutations and with positive-but-low allele ratio
(low AR, < 0.5) FIt3-ITD into favorable risk group (Dohner et al, 2017).
However, there are indications of unfavorable prognosis in NPMmut-
positive AML with FLT3-ITD low AR when allogeneic hematopoietic
stem cell transplantation was not carried out in the first complete re-
mission (Sakaguchi et al., 2018).

7. NPMmut oligomerization and interactions

As homozygote NPM mutation is lethal (Grisendi et al., 2005), cells
with NPM mutation always co-express the wild-type form. NPMmut
retains the ability to form oligomers and the localization of NPMwt and
NPMmut is mutually affected by heterodimer formation (Bolli et al.,
2009; Brodska et al., 2017). Hence, a fraction of NPMwt is localized in
the cytoplasm and, conversely, a part of NPMmut can be found in the
nucleoli, despite the NoLS loss (Brodska et al., 2016a, b). The precise
localization of the mutated NPM further depends on the mutation type
(Brodska et al., 2017) and is influenced by drugs causing NPM delo-
calization (actinomycin D, (Brodska et al., 2016a, b)) or stabilization of
NPM oligomers (all-trans retinoic acid (ATRA) (Sasinkova et al, 2018)).
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Besides the oligomerization, which is in fact a self-interaction, many
NPM-interacting partners were found to interact also with NPMmut.
Aberrant cytoplasmic localization, associated with a loss of function or
with degradation of the partner proteins, was then observed as a con-
sequence of NPM mutation (Colombo et al., 2006; Vascotto et al.,
2014).

The presence of NPMmut perturbs the activity of the tumor sup-
pressor pl4Arf (den Besten et al., 2005). As pl4Arf interacts with the
NPM Nterminus, it is reasonable to conclude that the interaction is
preserved in NPMmut and that delocalization of p14Arf into the cyto-
plasm accounts for the inhibition of p14Arf activity. Indeed, the p14Arf
was detected in the cytoplasm of NPMmut expressing cells and its
overall cellular level was lowered in comparison with NPMwt-only
expressing cells, likely due to an enhanced degradation (Colombo et al.,
2006). NPMmut-induced cytoplasmic localization of APE1 was asso-
ciated with impaired BER activity and with higher cell sensitivity to
DNA-damaging agents (Vascotto et al., 2014). Cytoplasmic delocaliza-
tion of the transcription factor PU.1 and concurrent upregulation of
HOX genes was observed in cells with NPMmut (Brunetti et al., 2018;
Gu et al., 2018). It is broadly assumed, that Nterminal oligomerization
domain is also the domain through which NPM interactions occur
(Meani and Alcalay, 2009; Di Matteo et al., 2017) and that NPMmut
thus generally interacts with NPMwt partners. However, numerous
observations indicate that the interactome of NPMmut is not identical
with that of NPMwt.

In our recent work, we have shown that NPM interaction with NCL
is compromised by the Cterminal NPM mutation (Sasinkova et al.,
2018). Loss of interaction with G-quadruplex structures in ribosomal
DNA due to the mutation was also reported (Chiarella et al., 2013). As
the RNA-binding domain is located near the mutated part of NPMmut,
the interaction between NPM and RNAs is likely to be influenced by the
mutation, too. Indeed, RNA binding to NPM, detected by co-im-
munoprecipitation, was significantly reduced in cells with NPM muta-
tion (Sakashita et al., 2018).

Interestingly, the presence of NPM mutation was associated with
enhanced MEF/ELF4-mediated MDM2 transcription and with increased
MDM2 mRNA level in malignant cells. However, although the MEF/
ELF4 was proved to interact with the Nterminal domain of NPMwt, the
interaction was lost for the NPMmut. In this case, the increased MEF/
ELF4 activity is likely caused by lower amount of the inhibitory NPMwt
in the nucleolus due to the mutation (Ando et al., 2013).

The NPM region within the residues 187-259 binds cmyc (Li et al.,
2008). By similarity with NCL, one could expect that the association is
disrupted by the NPM mutation. On the other hand, the tumor sup-
pressor Fbw7y, regulating c-myc, interacts with the NPM Nterminus
and has been demonstrated to be displaced to the cytoplasm and de-
graded due to interaction with NPMmut (Bonetti et al., 2008; Di Matteo
et al., 2017). As a consequence, stabilization and enhanced activity of
cmyc occurred in cells harboring NPMmut (Bonetti et al., 2008).

8. Potential NPM targeting in AML therapy

AML patients with NPMmut without concomitant mutations belong
to the category with good prognosis after intensive chemotherapy. This
may be due to fragile nucleolar structures, which may be more effi-
ciently targeted by cytotoxic drugs. However, as the risk of relapse is
still considerable, targeting of NPM, either wt or mut, remains worth
exploring. Various small molecules were tested for the ability to po-
tentiate the apoptosis and dampen the leukemic burden. These include
inhibitors of the oligomerization, causing depletion of NPMwt pool, or
inhibitors of the nuclear export, targeting NPMmut back to the nucleus
(Di Matteo et al., 2016).

One of the first putative oligomer inhibitors, NSC348884, exhibited
promising activity in NPMmut-harboring cells, sensitizing them to
ATRA- or cytarabine-induced apoptosis (Qi et al., 2008; Balusu et al.,
2011). However, the effect on NPM oligomerization was hard to detect
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Fig. 1. Schematic illustration of possible consequences of NPM mutation in AML.

due to massive p53-dependent apoptosis induced in cells irrespectively
of their NPM status (Holoubek et al., 2018). An alternative inhibitory
compound, the small synthetic peptide N6L, was originally designed to
target cellsurface NCL (Destouches et al., 2011). Later on, it was found
to interact also with the Nterminal domain of NPM and to interfere with
NPM association with partner proteins (De Cola et al., 2018). Therefore,
it was presumed to initiate apoptosis preferentially in cells containing
NPMmut, owing to the expected nuclear relocalization of the released
pro-apoptotic proteins. However, the inversed effect was observed: N6L
launched p53-dependent apoptosis in NPMwt, but not in NPMmut cells.
We speculate that in this case, N6L induced disruption of NPMwt oli-
gomers rather than NPMmut uncoupling from its interacting partners.
Importantly, N6L sensitized NPMmut-harboring cells to doxorubicin
and/or cytarabine treatment in the above-mentioned study. Another
approach using RNA aptamers to target the NPM oligomerization also
showed promising results (Jian et al., 2009).

The nuclear exporter Crm1 (also denoted as XPO1) is known to

Table 1
Possible consequences of NPM mutation.

export most of the crucial tumor suppressors, including p53, p21, p73,
and also NPM (Turner et al., 2012). Enhanced Crm1 expression was
associated with worse prognosis in AML patients (Kojima et al., 2013).
Therefore, numerous selective inhibitors of nuclear export (SINE) were
analysed for their ability to reduce leukemic burden (Talati and Sweet,
2018). The most promising Crm1 inhibitor, selinexor (KPT-330), in-
duced p53-dependent apoptosis and differentiation in leukemic cell
lines (Ranganathan et al., 2012) and prolonged the survival in leukemia
mouse model (Ranganathan et al., 2016). A Phase I clinical trial showed
its safety and effectivity as monotherapy for relapsed or refractory AML
(Garzon et al., 2017). Synergistic effect in AML therapy was observed
when selinexor was combined with Topoisomerase II inhibitors
(Ranganathan et al., 2016) or other DNA-damaging agents (Kashyap
et al., 2016), fludarabine and cytarabine (Alexander et al., 2016), or
HiDAC/Mito regimen (Amy et al., 2018). Recently, Gu et al (Gu et al.,
2018) demonstrated, that selinexor treatment of patient-derived xeno-
transplant model of AML with NPMmut caused nuclear retention of

manifestation of the mutation consequence in cellular processes

reference(s)

insufficient NPM level in nucleoli lower ribogenesis — slower proliferation
fragile nucleoli — p53-mediated apoptosis

NPM in cytoplasm delocalization of APE1 - reduced DDR

delocalization of p14Arf — dysregulation of p53/mdm2/Arf apoptotic

pathway

delocalization of Fbw7g — enhanced activity of c-MYC
delocalization of PU.1 — upregulation of HOX genes

lower aberrant centrosome duplication

higher immunogenicity due to better NPM accessibility for proteasome

altered AA sequence at the C-terminus  generation of a novel NES
loss of interaction with NCL

loss of association with rRNA

loss of interaction with MEF/ELF4 — enhanced MDM2

loss of interaction with p53?
loss of interaction with c-myc?
misfolding of the C-terminus
neoantigen production

(Derenzini et al., 2018)
(Derenzini et al., 2018)
(Vascotto et al., 2014)
(Colombo et al., 2006)

(Bonetti et al., 2008)

(Brunetti et al., 2018; Gu et al., 2018)

(Chan and Lim, 2015)

(Kuzelova et al., 2015; Kuzelova et al., 2018b)
(Bolli et al., 2007; Falini et al., 2006)
(Sasinkova et al, 2018)

(Sakashita et al., 2018)

(Ando et al., 2013)

(Di Natale et al., 2015)
(Forghieri et al., 2018; Greiner et al., 2012; van der Lee et al.,
2019)
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NPM and of the transcription factor PU.1. In parallel, it reverted
monocyte and granulocyte terminal differentiation, which had been
originally disrupted due to NPMmut/PU.1 complex delocalization.

Other approaches employed higher susceptibility of cells with de-
creased nuclear NPM content to undergo apoptosis induced by DNA-
damaging agents (Falini et al., 2011; Federici and Falini, 2013, 2013).
For example, dactinomycin was successfully used to treat one NPMmut-
patient, ineligible for intensive chemotherapy due to cardiologic rea-
sons (Falini et al., 2015). On the other hand, DNA damage was shown to
induce NPMmut relocalization to the nucleoli (Bailey et al., 2019), and
the effects of NPM-targeting strategies are thus not easily predictable.
Inhibitors of APE1/NPM interaction suppressed cell proliferation and
synergized with therapeutically relevant DNA damaging agents (Poletto
et al., 2016). The three-helical conformation of the NPM C-terminal
domain also undergoes several changes following the mutation. Sig-
nificant propensity to the aggregation due to aberrant folding was ob-
served for the isolated Cterminal domain of the mutated NPM, inducing
potential structure-related toxic properties of NPMmut (Di Natale et al.,
2015). Compounds stabilizing the C-terminal domain also displayed
moderate effect in relocalizing NPMmut into nucleoli (Urbaneja et al.,
2017). Moreover, demethylating drugs or histonedeacetylase inhibitors
are currently tested in various clinical trials and their effectivity should
be investigated also in correlation with NPM mutation.

9. NPM targeting for immunotherapy

From both clinical and molecular point of view, AML is a very
heterogenous disease. It is thus practically impossible to find unique
genetic markers for diagnostics, and patient-specific sets of common
mutations should be used to monitor the minimal residual disease
(MRD). Similarly, specific target antigens for potential im-
munotherapeutic intervention of AML are lacking. Several general
tumor-associated antigens, in particular Wilms” Tumor 1 (WT1), were
more or less successfully tested for vaccination in clinical trials with
various modifications of vaccine length or adjuvans composition
(Hofmann et al., 2015). With regard to the frequency of NPM muta-
tions, the search for immunogenic peptides derived from NPM sequence
is appealing. Indeed, several proofs of immunogenic potential of NPM
were reported, considering either the neoantigens produced from the
mutated NPM part or enhanced processing of both NPM forms due to
their cytoplasmic localization. Two HLA-A*02-binding 9-mer peptides
derived from the border between the unmutated and mutated regions of
NPMmut were shown to induce specific response of CD8 + lymphocytes
in AML NPMmut patients and in healthy donors (Greiner et al., 2012).
Longer peptides from the same region also activated CD4+ lympho-
cytes from healthy donors. Recently, a naturally occurring T-cell re-
ceptor specific for a peptide from the mutated NPM C-terminal domain
in the context of HLA-A*02 was found and cloned into donor CD4 + or
CD8+ lymphocytes. These engineered immune cells were reactive
against HLA-A*02-positive primary cells from AML patients with
NPMmut and markedly reduced the tumor growth in the mouse model
of NPMmut AML (van der Lee et al., 2019). The existence of T-cells
specifically recognizing the mutated NPM Cterminal domain was con-
firmed by another study showing, in addition, that the appearance and
persistence of these immune cells inversely correlate with the course of
the minimal residual disease in NPMmut AML (Forghieri et al., 2018).

As the mutated sequence of NPM is rather short, the repertoire of
HLA alleles with affinity to NPMmut-derived neoantigens is restricted.
However, the increased amount of the mutated protein in the cytoplasm
could facilitate NPM processing and enhance the presentation of pep-
tides from the unmutated parts as well. In a similar way, immunopep-
tides from NPM interaction partners that are delocalized along with
NPMmut might also be more efficiently processed and presented on
HLA molecules. A statistical evaluation of HLA class I distribution re-
vealed several HLA allelic groups with lower frequency in patients with
NPMmut compared to NPMwt patients or to healthy individuals.
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Screening of NPM-derived immunopeptides with high potency to bind
the selected underrepresented HLA alleles (B*40, B*07) uncovered
several candidate peptides from the unmutated part of NPM (Kuzelova
et al., 2015). An effect of patient HLA class I type on the overall survival
was later demonstrated in NPMmut AML (KuZelové et al., 2018b).

Importantly, the anti-cancer immune responses are regulated at
many levels. The inhibitory ligand PD-L1 (Programmed-death ligand of
checkpoint inhibitor PD-1) is one of the most frequent im-
munotherapeutic targets in tumors, including hematologic malig-
nancies. In a small cohort of 30 patients, surface expression of PD-L1 on
leukemia stem cells was reported to be significantly higher in NPMmut
group in comparison with the NPMwt (Greiner et al., 2017). Interest-
ingly, differences observed using flow-cytometry measurements were
not found on the mRNA level. This is in accordance with our previous
findings that in AML patients, the surface expression of PD-L1 does not
simply correlate with its mRNA level but depends on the ratio of in-
dividual PD-L1 transcript variants (Brodska et al., 2016a, b). Our results
also confirm the existence of specific immunological features of
NPMmut AML patients compared to the NPMwt group (Kuzelova et al.,
2018a). Thus, combination of chemotherapy with an immune system
stimulation with the aim to eradicate the residual disease is a promising
treatment strategy for this type of leukemia.

10. Conclusions

Since the discovery of Falini et al that NPM cytoplasmic localization
and specific mutation correlated with distinct features of AML patients,
hundreds of studies have been published about the consequences of this
mutation. AML with NPM mutation received its own category in WHO
molecular classification of AML and new therapy recommendations
were included in ELN risk stratification (Dohner et al, 2017). Many
studies are currently ongoing with the aim to elucidate how NPM
mutation contributes to leukemogenesis and how to take advantage of
specific features of this AML subgroup to improve the therapy. We
provide a summary of the current knowledge in this field, with an
emphasis on the interaction network of the mutated protein and its
possible therapeutic targeting.

In general, two scenarios may occur as a consequence of the mu-
tation. First, the most important characteristic of the mutated NPM is
the displacement from nucleoli to the cytoplasm. Persisting interaction
of other proteins with the unmutated part of NPM may induce their
delocalization. This is usually associated with a loss of function of the
interaction partner, which is physically separated from its site of action.
This mechanism was documented for pl14Arf, APE1 or Fbw7y, for ex-
ample. The second possibility involves reduced capacity of the mutated
NPM to form complex with an interaction partner and thereby induced
deregulation of the expression and/or activity of the interacting pro-
tein, such as NCL or MEF/ELF4. Moreover, the ability of both wild-type
and mutated NPM to form homo- and heterooligomers results in the
presence of a small fraction of NPMmut in the nucleoli as well as of
NPMwt in the cytoplasm, which further enhances the intricacy of NPM
function and interaction network.

Therapies based on the drugs interfering with NPM oligomerization,
interaction capacity, or with its aberrant localization appear promising.
However, it is necessary to be aware of possible side effects associated
with simultaneous targeting of NPMwt, such as abrogation of the ri-
bogenesis in healthy cells.

The immunogenic potential of neoantigens derived from the mu-
tated C-terminus of NPM, as well as an enhanced processing of im-
munopeptides from the unmutated part of NPM due to its cytoplasmic
localization offer the opportunity for immunotherapeutic intervention
in AML with NPMmut. This approach should likely be beneficial espe-
cially in combination of chemotherapy with immunotherapeutic
methods, e.g. with vaccination or immune checkpoint inhibition.
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