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ARTICLE INFO ABSTRACT

Keywords: Animals require different types of muscle for survival, for example for circulation, motility, reproduction and
Alternative splicing digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation
Muscle generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA
De"elo}’m_e“t . regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle
Ellt:;l}r:glang proteins disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been

functionally characterized. We present a cross-species view summarizing what is known about RNA-binding
protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on
alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic
nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF
and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function

and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.

1. Introduction

Across the animal kingdom, muscles are necessary for essential processes
from feeding and digestion to motility, reproduction, circulation and respira-
tion. Comparing vulval versus body muscle in C. elegans, flight versus leg
muscle in D. melanogaster or heart versus skeletal muscle in vertebrates suggests
that morphological and structural differences support functional diversity.
Muscles have evolved many specialized morphologies, extracellular attach-
ments, cytoskeletal architectures and contractile properties for different func-
tions (Schnorrer and Dickson, 2004). One of the major challenges in the muscle
field is deciphering how this vast array of functional specialization arises de-
velopmentally through transcriptional and post-transcriptional regulation of
gene expression. Here we review what is known about the contribution of RNA-
binding proteins and post-transcriptional regulation to myogenesis.

1.1. Muscle structure is evolutionarily conserved

Muscles are formed from repetitive arrays of the same basic, structural unit:

the sarcomere. Sarcomeres are the motors that drive muscle contraction and thus
movement. They are cytoskeletal elements consisting of interleaved thin fila-
ments (Actin and actin binding proteins) and thick filaments (Myosin and myosin
binding proteins) organized in a series of parallel arrays extending from one end
of the muscle cell to the other (Lemke and Schnorrer, 2017). Actin filaments are
anchored in the Z-discs, while myosin filaments are anchored in the M-lines
(Squire et al., 2017), leading to a “ribbed” appearance in striated muscle. A third
filament system, consisting of the Titin connecting filaments, provides stability,
contributes to stiffness and may help regulate overall sarcomere length
(Tskhovrebova and Trinick, 2017). In addition, there are many sarcomere asso-
ciated regulatory and structural proteins, for example the Troponin complex
regulating actomyosin contractility (Lin et al., 2017) or a-Actinin ensuring sta-
bility of the Z-disc (Sanger et al., 2017). Detailed reviews of muscle structure are
available for further reference (i.e. (Gautel and Djinovi¢-Carugo, 2016; Lemke
and Schnorrer, 2017; Lin et al., 2017; Sanger et al., 2017). These associated
proteins are essential for structural integrity of the sarcomere and influence
contractile ability through the accessibility of myosin-binding sites on actin, the
affinity of myosin for actin and the generation of tension.
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Basic sarcomere structure and components, as well as their mechanisms of
development, are evolutionarily conserved (Buckingham, 2017; Fukushige et al.,
2006; Schnorrer and Dickson, 2004; Spletter and Schnorrer, 2014). Cnidarians, in
particular free-swimming medusa such as Aglantha digitale, have a striated, cir-
cular muscle in the medusa bell containing 30-50 sarcomeres (Singla, 1978).
These sarcomeres consist of ordered arrays of Actin thin filaments and Myosin II
thick filaments separated by Z-discs and M-lines (Leclére and Réttinger, 2016).
Cephalopod mollusks contain striated body muscle with Z-disc delimited sarco-
meres built of conserved Actin, Myosin heavy chain and Tropomyosin proteins
(N&dl et al., 2015), although their contraction control kinetics are likely different
than vertebrates (Zullo et al., 2017). Tunicates such as Ciona intestinalis and Di-
plosoma macdonaldi have body and heart muscle with highly organized Z-discs
and M-lines built of Actin, Myosin, Troponin and other conserved structural
proteins (Cavey, 1983; Cavey and Cloney, 1976; Miyakawa and Konishi, 1984;
Ohtsuka and Okamura, 2007) that share many developmental characteristics
with vertebrate muscles (Buckingham, 2017; Diogo et al., 2015; Kaplan et al.,
2015). C. elegans contain striated body wall muscle with clearly defined Z-discs
and M-lines and built of highly conserved structural proteins including Actin,
Myosin, Paramyosin, Troponin, Tropomyosin, a-actinin, etc. (Gieseler et al.,
2017; Krause and Liu, 2012). Drosophila muscles also show conservation of
structure and protein composition, with the flight muscle even displaying a
3.2 um sarcomere length as compared to the 3.0-3.4 um length observed in re-
laxed human skeletal muscle (Lemke and Schnorrer, 2017). Adult muscles in the
fly also reflect the functional specialization observed in vertebrates, with distinct
muscle morphologies, cytoskeletal structures and connectivity to allow for flight,
locomotion, mating and feeding (Schnorrer and Dickson, 2004). These examples
illustrate that striated muscles in animal models, even primitive organisms, share
the same basic structure observed in humans.

Although all muscles share the same basic sarcomere structure, different
muscle types display different contractile properties. These differences can be
achieved by muscle-type specific protein or protein isoform expression (Narici
et al., 2016). For example, heart muscle is stiffer than skeletal muscle. This high
passive tension is essential to proper function, as the Frank-Starling mechanism
describes how the stretching induced when the ventricles fill with blood in-
creases cardiomyocyte contractility (Shiels and White, 2008). This stiffness in
the heart is provided by alternatively-spliced isoforms of Titin with short PEVK
domains, while skeletal muscle with a lower passive tension generates Titin
isoforms with long PEVK domains (Gautel and Goulding, 1996; Guo et al.,
2010; Li et al., 2013; Linke et al., 2002, 1999). A similar situation is observed in
Drosophila flight muscle, which requires a high passive stiffness for stretch-ac-
tivation (Peckham et al., 1990). Alternatively spliced short-PEVK containing
Titin (Projectin) isoforms are found in flight muscle, while isoforms with long
PEVK regions are found in more pliable body muscles (Moore et al., 1999).
These examples suggest that muscles can “tune” their contractile properties and
cytoskeletal architectures through muscle-type specific transcription or alter-
native splicing programs. Mechanisms of muscle-type specific transcription
have been discussed elsewhere (de Joussineau et al., 2012; Dong et al., 2017;
Estrella and Naya, 2014; Imbriano and Molinari, 2018; Spletter and Schnorrer,
2014), so below we focus on the role of alternative splicing and more broadly
RNA-binding proteins in muscle.

1.2. Expression of RNA-binding proteins in muscle

RNA is regulated at each step of its life within the cell. mRNAs are transcribed,
spliced, edited, capped, poly-adenylated, exported from the nucleus, trafficked and
translated (Bock et al., 2015). RNA stability and quality are controlled through
nonsense mediated decay (NMD) and targeted degradation (Nasif et al., 2018). All
of these processes are controlled by RNA-binding proteins (RBPs). Multiple protein
domains have been biochemically shown to bind RNA, for example the canonical
RNA-recognition motif (RRM), double-stranded RNA-binding domain (dsRBD), K-
homology domain (KH), DEAD/DEAH box, Zn-fingers (CCCH-type, RanBP2-type,
etc.) and the Pumilio (Pum) domain (Font and Mackay, 2010; Glisovic et al., 2008;
Nakka et al., 2018). The recent RNA interactome capture approach, where mass-
spectrometry is used to identify proteins cross-linked to oligo-dT isolated mRNAs,
has also identified many new RBPs with no previous link to RNA regulation, no-
tably intermediary metabolic and mitochondrial enzymes (Hentze et al., 2018;
Liao et al., 2016). These proteins likely have important regulatory functions in
muscle, as for example aldolase A and GAPDH were previously identified to bind
the 3’-UTR region of myosin heavy chain (Kiri and Goldspink, 2002). In general, a
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wide variety of proteins can be identified that bind RNA or “moonlight” as RBPs
under specific conditions.

Estimates of the total number of RBPs in a given genome are challenging to
obtain and can be quite variable (Gerstberger et al., 2014). The RNA-binding gene
ontology category in AmiGO identifies 1649, 1020, 865, 579 and 552 RPBs in the
genomes of human, mouse, zebrafish, fruit fly and the nematode C. elegans, re-
spectively (Fig. 1A) (Ashburner et al., 2000; The Gene Ontology Consortium,
2017). RNA interactome capture (RIC) identified 1393, 1914, 227, 777 and 594
RBPs in the same organisms (Hentze et al., 2018). However, as nearly 50% of the
RIC RBPs were novel binders, the number of RBPs may be significantly higher. For
example, in Drosophila of the 579 RBPs in AmiGO, the 577 RBPs in GLAD (Gene
List Annotation for Drosophila) (Hu et al., 2015) and the 777 RBPs identified from
RIC in embryos, only 188 RBPs overlap in all three datasets and 517 overlap in at
least two datasets (Fig. 1B). If all these proteins do in fact bind RNA, the fly
genome may encode 1229 RBPs, which constitutes 11% of all coding genes! These
numbers indicate that somewhere between 3-10% of a given genome likely en-
codes RBPs.

Using published mRNA-Seq datasets from muscle (see Methods), we esti-
mated how many of the above RBPs are expressed in muscle tissue. 66% of
AmiGO RBPs are expressed in muscle in mouse, 80% in Drosophila and 65% in
C. elegans (Fig. 1C). If we take all possible RBPs predicted in Drosophila, 84%
(1038 genes) are expressed in muscle (Fig. 1B). These numbers may be higher,
as existing mRNA-Seq datasets do not account for all muscle-type specific and
temporal expression. It is clear, however, that hundreds of RBPs are expressed
in muscle. Using data from a genome-wide RNAi screen (Schnorrer et al., 2010),
nearly 40% of AmiGO RBPs have a phenotype in Drosophila muscle. We
manually curated RBPs with a published function in muscle from the mouse,
zebrafish, fruit fly, and C. elegans literature (Table 1). Strikingly, only a small
proportion (2-4%) of muscle-expressed RBPs have been studied (Fig. 1C). Given
the large number of RBPs expressed and with potential phenotypes in muscle,
this clearly illustrates a need for further studies examining the function of RBPs
in myogenesis.

Our curated list of RBPs contains 51 genes from mouse, 15 from zebrafish,
28 from Drosophila and 17 RBPs from C. elegans (Table 1). Most major classes of
RBPs are represented, such as DEAD/DEAH-box helicases, KH domain proteins,
dsRBD proteins, RNA-binding Zn-fingers and many RRM domain proteins. We
noted homology/orthology relationships between species, and in many cases
found a function for the same protein across species. For example, Quaking,
which is also known for functions in neuronal (Shu et al., 2017) and macro-
phage (de Bruin et al., 2016) development, functions in muscle development in
all model species we curated, controlling splicing and translation during mouse
myoblast differentiation (Fagg et al., 2017; Hall et al., 2013), myofibril as-
sembly in zebrafish (Bonnet et al., 2017), myotube migration and attachment
and tendon development in Drosophila (Baehrecke, 1997; Nabel-Rosen et al.,
2002; Zaffran et al., 1997) and muscle-specific unc-60 splicing in C. elegans
(Ohno et al., 2012). We will discuss several additional examples below, in-
cluding functions of CELF, MBNL and FOX family RBPs. We also note that after
accounting for sequence conservation, our list includes 82 distinct RBPs, which
falls far short of attributing a function to the several hundred (or perhaps
thousand) RBPs expressed in muscle.

1.3. RNA-binding protein function in muscle

As RNA is regulated at many steps of its life cycle in the cell, it perhaps is
not surprising that muscle RBPs we found in the literature have diverse func-
tions such as alternative splicing, mRNA editing, mRNA decapping, nuclear
export, cytoplasmic trafficking and localization, P-granule formation and
translational regulation (Table 1). This indicates the general importance of RNA
regulation to muscle development and function, and moreover suggests many of
these functions may be evolutionarily conserved. It also suggests that there is no
single phenotype that may be expected when screening to identify novel RBPs
that regulate myogenesis.

To support this interpretation, we performed UAS-RNAi knockdown of dif-
ferent types of RBPs in Drosophila muscle. Here we present five examples (Rm62,
Sf3b2, Sf3a2, noi and Sbr), all of which displayed lethal or flightless phenotypes
in a muscle-specific genome-wide RNAi screen (Schnorrer et al., 2010), to il-
lustrate different myofibrillar phenotypes. We confirmed that all five genes result
in lethality or flightlessness when knocked-down in all muscles using Mef2-Gal4
or specifically in flight muscle using Act88F-Gal4 (Fig. 2A). Rm62 is a DEAD-box
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Fig. 1. Numbers of expressed RBPs with a function in muscle.

A. Numbers of RBPs encoded in the genome of Homo sapiens (human, Hs), Mus musculus (mouse, Mm), Danio rerio (zebrafish, Dr), Drosophila melanogaster (fruit fly,
Dm) and Caenorhabditis elegans (nematode, Ce) as predicted by RNA-binding gene ontology terms in AmiGO (Ashburner et al., 2000; The Gene Ontology Consortium,
2017) (orange) or from RNA interactome capture (Hentze et al., 2018) (blue). Genome sizes from Ensembl. B. Venn diagram of the overlap of Dm RBP predictions
from GLAD (Hu et al., 2015) (green, n = 577), RNA interaction capture (magenta, n = 777) and AmiGO (blue, n = 579) with RBPs expressed in mRNA-seq data from
Dm muscle (red, n = 7941) (Spletter et al., 2018, 2015). Bold highlights the 1038 putative RBPs expressed in muscle. C. Circle diagrams of the number of published
RBPs compared to total RBPs expressed in muscle in mouse, Drosophila and C. elegans.

helicase previously shown to control a wide variety of alternative splicing events
in Drosophila S2 cells (Brooks et al., 2011) and promote persistent larval muscle
survival in pupae (Kuleesha et al., 2016). Another DEAD-box helicase Smg-2, an
essential component of the nonsense mediated decay (NMD) pathway, has been
shown to mediate CUG- and CAG-repeat toxicity in muscle in C. elegans (Garcia
et al., 2014). Loss of the zebrafish DEAD-box helicase Ddx39ab results in cardiac
and skeletal muscle dystrophy and mis-splicing (Linlin Zhang et al., 2018), while
loss of the Ddx27 helicase affects rRNA maturation resulting in translation defects
in myogenesis (Bennett et al., 2018). We find that loss of Rm62 in flight muscle
results in too thick myofibrils that split (Fig. 2C), indicating Rm62 influences
myofibril formation and stability.

Sf3b2 (Splicing factor 3b, subunit 2), Sf3a2 (Splicing factor 3a, subunit 2) and noi
(noisette) encode components of the U2 snRNP, which is essential for spliceo-
somal assembly and U2-dependent alternative splicing (Will and Liihrmann,
2011). Drosophila Hoip (Hoi Polloi) as well as its zebrafish homologue Snu13b,
conserved components of the U4/5/6 snRNP complex, have previously been
reported to control myotube extension, sarcomere protein expression and skeletal
muscle myogenesis (Johnson et al., 2013). We observe that knockdown of Sf3b2
results in strong actin inclusions at Z-discs (so called Zebra bodies) and long
filamentous actin extensions (Fig. 2D). Knockdown of Sf3a2 results in complete
loss of muscle fibers with severely disrupted myofibrillar structure including
splitting, too short sarcomeres, fraying and Zebra bodies (Fig. 2E). Too short
sarcomeres can reflect mis-regulation of myosin activity and hypercontraction
(Nongthomba et al., 2003). Knockdown of noi results in myofibrillar fraying,
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breaking and Zebra bodies (Fig. 2F). Due to the nature of RNAi knockdown ex-
periments these are likely hypermorphic phenotypes, as one would predict that a
complete loss of splicing would result in muscle loss as observed for Sb3a2, but
they illustrate variability in observed morphological defects.

Last we examined Sbr (Small bristles), homolog of human TAP/NXF-1, a
nuclear export factor reported to be responsible for developmental export of all
mRNAs (Wilkie et al., 2001). Another Drosophila nuclear transport factor 2-like
family protein Rin (Rasputin) is associated with the formation of hypoxic stress
granules in larval muscle (van der Laan et al., 2012), while in C. elegans the
Nup62 homolog Npp-4, a structural component of the nuclear pore, modulates
CUG toxicity in muscle (Garcia et al., 2014). Myofibrils of sbr knockdown an-
imals are too thick, display periodic zebra bodies, break and are wavy. This may
indicate a defect in export of specific mRNAs involved in myofibrillogenesis,
but this remains to be determined in future studies.

Taken together, these data show that different RBPs and indeed different
components of the same RBP complex can cause distinct myofibrillar phenotypes.
This suggests there is no “general” RNA regulation or splicing morphological
phenotype. These examples also illustrate how genes of the same functional type,
in particular direct homologs, have functions in muscle across species.

1.4. Functional conservation of RBPs across species

RBPs can display high levels of sequence conservation between species,
particularly in their functional RNA-binding domains, indicating they may be
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Drosophila fibrillar flight muscle and tubular leg or jump muscle (Schénbauer
etal., 2011; Spletter et al., 2015) or by different patterns of AS in mouse heart and
skeletal muscle (Guo et al., 2012; Li et al., 2013; Sollner et al., 2017).

Alternative splicing in muscle controls fiber-type specific and temporal ex-
pression profiles of myofibrillar proteins, allowing for differential contractile
properties of individual muscle-fiber types (Andreadis et al., 1987; Schiaffino and
Reggiani, 1996). One of the first such examples is the alternative splicing of rat
fast troponin-T (Tnnt3) giving rise to 64 isoforms (Breitbart et al., 1985). Cardiac
troponin T exon 5 is included in embryonic heart muscle but is skipped in the
adult heart, promoting a change in myofibrillar sensitivity to calcium that de-
termines the contractile properties of maturing heart muscle (Godt et al., 1993;
McAuliffe et al., 1990). Misregulation of cardiac troponin-T (TNNT2) splicing in
zebrafish has been shown to lead to misregulation of other thin-filament proteins
including Tpma and Tnni3, leading to severe sarcomere defects and heart failure
(Sehnert et al., 2002). Drosophila Troponin-T (upheld, up) also displays distinct
isoform expression in flight and body muscle (Benoist et al., 1998), and incorrect
splicing in flight muscle causes sarcomere defects and flightlessness (Fyrberg
et al., 1990; Nongthomba et al., 2007). These examples illustrate the cross-spe-
cies importance of proper muscle-type specific splicing of Troponin-T.

A second example of alternative splicing affecting myofibrillar properties is
the regulation of Myosin Heavy Chain (MHC). Vertebrate genomes encode
multiple MHC genes expressed in muscle-fiber type specific patterns (Bloemberg
and Quadrilatero, 2012). Beyond transcription, alternative splicing generates
over 30 distinct transcripts from the 8 MHC loci in mouse (Dennehey et al.,
2006). MYHS is associated with congenital heart defects (CHD) in humans and
different functional variants differentially inhibit or enhance myofibril formation
(Granados-Riveron et al., 2010). Loss of smooth muscle myosin exon 5B results in
an isoform switch that decreases maximum force generation and shortening

A =
| | | | B
w1118]] 228
I
Rm62-IR (TRiP.JF01385) [lethal
Rm62-IR (KK110102) |lethal
9 Sf3b2-IR (GD26250) lethal
< Sf3b2-IR (KK105639) |lethal
8 Sf3a2-IR (TRiP.HMC03799) [lethal
§ Sf3a2-IR (GD31347) 47
noi-IR (TRiP.HMS00163) 62
noi-IR (GD20943) |lethal
Shr-IR (KK103715) 89
Sbr-IR (GD32691) | lethal
w1118 147
Rm62-IR (TRiP.JF01385) 205
Rm62-IR (KK110102) |lethal
” Sf3b2-IR (GD26250) 4*
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0 20 40 60 80 100
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Fig. 2. Diverse RBP morphological phenotypes in muscle.

noi (Sf3a3)-IR  Sf3a2-IR S3b2-IR Rmé62-IR control

sbr-IR

International Journal of Biochemistry and Cell Biology 110 (2019) 29-49

velocity during contraction (Babu et al., 2001). The most systematic studies of
myosin isoform function have been performed in Drosophila, which has a single
MHC gene with distinct isoform expression in flight, leg, jump and larval body
wall muscles (Bernstein et al., 1986; Falkenthal et al., 1987). Flies provide a
useful model to examine tissue-specific MHC mutants and evaluate morphology
and biophysical properties after rescue with different MHC isoforms or chimeras
(Swank et al., 2000). For example, while embryonic MHC versions support
myofibril assembly in flight muscle lacking endogenous MHC, flies are flightless
and myofibrils progressively deteriorate (Wells et al., 1996), possibly because
variations in MHC exon 7 between embryonic and flight muscle myosin impact
ATPase activity and affect myofibril structural stability (Miller et al., 2005). The
slow myosin hinge region encoded by MHC exon 15b is stiffer than the fast hinge
region encoded by MHC exon 15a, and swapping exon 15a and 15b impairs flight
ability, increases sarcomere length and disrupts sarcomere structure (Suggs et al.,
2007). Differences in force generation, ATPase activity and rate-limiting cross-
bridge steps between embryonic and flight muscle MHC isoforms can be attrib-
uted to the relay (exon 9) and converter (exon 11) domains, which also differ-
entially impact myofibril ultrastructure (Kronert et al., 2012; Yang et al., 2010,
2008). These studies illustrate that from flies to mammals, different MHC iso-
forms confer distinct biophysical properties on the sarcomere and differentially
affect myofibril development.

Beyond Troponin-T and MHC, muscle-type specific AS and isoform function
has been demonstrated in multiple sarcomere genes. Tropomyosin I (Tm1/lev-
11) has been demonstrated to have isoform-specific expression and function in
Drosophila (Basi et al., 1984) and C. elegans (Barnes et al., 2018; Kagawa et al.,
1995). Titin, Tropomyosin 1 (TPM1) and Myosin alkali light chain (MLC) have
all been demonstrated to have isoform-specific expression and possibly function
in vertebrates (Venables et al., 2011; Weeland et al., 2015; Yin et al., 2015). In

o
e

A. Flight test results for UAS-RNAI lines as labeled when driven in all muscles with Mef2-Gal4 or specifically in flight muscles from about 20 h after puparium
formation (APF) with Act88F-Gal4. Number of flies tested as labeled. * denotes high rates of pupal lethality. B-G. Flight muscle fiber (B-G) and myofibril (B’-G’)
phenotypes in 90 h APF in Mef2-Gal4 crossed to control w8 (B) and driving Rm62-IR (TRiP.JF01385) (C), Act88F-Gal4 driving Sf3b2-IR (GD26250) (D), and Mef2-
Gal4 driving Sf3a2-IR (TRiP.HMC03799) (E), noi(Sf3a3)-IR (TRiP.HMS00163) (F) and sbr-IR (GD32691) (G). Phalloidin stained actin in greyscale. Scale bars in

B-G = 100 uM; B’-G’ = 10 uM.
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fact, mRNA-Seq data from Drosophila flight, leg and jump muscle suggests the
majority of sarcomeric genes are alternatively spliced between muscle-types
(Spletter et al., 2015), suggesting there is a wide genetic space available
through AS to fine-tune sarcomere function. Disruption of the flight-muscle
specific splicing program in CELF1 homolog brul mutant flies leads to defects in
sarcomere growth and myosin function (Oas et al., 2014; Spletter et al., 2015).
Such tissue-level splicing regulators are also found in vertebrates, where mu-
tations in Rbm20 lead to dilated cardiomyopathy by disrupting conserved heart-
specific splicing patterns of more than 30 genes in humans and rats (Guo et al.,
2012; Rexiati et al., 2018). In addition to components of the myofibril, myo-
genic transcription factors and metabolic enzymes as well as RBPs themselves
are also regulated by AS in muscle (Ladd et al., 2001; Sebastian et al., 2013).
The above discussion highlights the diversity of RBP targets, and suggest that
AS may be a general, conserved principle used to fine-tune muscle-type specific
development and function.

In addition to muscle-type specific splicing, developmental shifts in splicing
have been characterized in muscle. In C2C12 mouse myoblast cells, at least 95
strong differentiation-linked splice events were confirmed and shown to in-
crease exon inclusion or skipping in proteins enriched for cytoskeletal, actin
binding, integrin signaling and cell junction gene ontology terms (Bland et al.,
2010). Human muscle also displays developmental-associated shifts between
the muscle precursor cell and fetal AS patterns. Important structural and reg-
ulatory proteins, such as tropopmyosinl (TPM1) exon 6, muscleblindl (MBNL1)
exon 7 and integrin subunit a7 (ITGA7) exon 25, which undergoes a striking 70%
shift in prenatal inclusion, show developmental splicing transitions and are mis-
spliced in congenital myotonic dystrophy type 1 (Thomas et al., 2017). During
heart development in mouse three distinct temporal splicing patterns in 63
distinct AS events are observed affecting mostly exon inclusion in intact reading
frames, increasing the functional diversity of proteins involved in cardiomyo-
cyte remodeling, cytoskeletal rearrangement, nucleic acid binding and sig-
naling (Kalsotra et al., 2008). More than 40% of examined events are conserved
in birds in the alternatively spliced region, direction of AS and timing of
transition (Kalsotra and Cooper, 2011). Mouse gastrocnemius muscle undergoes
a large shift in AS during the 2 weeks after birth as it transitions from fetal to
adult AS patterns, with 50% of tested events conserved between mouse and
human. These shifts in AS were demonstrated to change contractile properties
and calcium handling dynamics, and gain of CELF1 (normally downregulated)
or loss of MBNL1 (normally translocated to nucleus) caused reversion of AS
events to the fetal pattern (Brinegar et al., 2017). These examples suggest shifts
in patterns of AS during muscle differentiation and normal skeletal muscle
maturation are general mechanisms to fine-tune functional properties.

1.6. Regulation by CELF, MBNL and FOX family RBPs

Among the most heavily studied RBPs in the literature are members of the
CELF (CUG-BP and ETR-3 like) (Goo and Cooper, 2009; Ladd et al., 2001),
Muscleblind-like (MBNL) (Pascual et al., 2006) and FOX (Kuroyanagi, 2009)
families. These RBPs are frequently referenced for controlling muscle-specific
splice events, for their cross-regulatory interactions and for their roles in muscle
diseases. We examine them in more detail below.

1.6.1. Functions of Rbfox family members

The highly conserved RNA-binding fox (Rbfox) proteins (Fig. 3B) contain a
single RRM that recognizes intronic (U)GCAUG motifs (Auweter et al., 2006; Jin
et al., 2003; Kuroyanagi, 2009; Lambert et al., 2014), but can recognize other
motifs in the context of the large assembly of splicing regulators (LASR) complex
consisting of hnRNP M, hnRNPH, hnRNPC, Matrin3, NF110/NFAR-2 and DDX5
in mouse and HEK293 T cells (Damianov et al., 2016). Rbfox proteins typically
promote exon skipping (repress exon expression) when they target an upstream
intronic flanking sequence and enhance exon inclusion when they bind in
downstream intronic flanking sequences (Jin et al., 2003; Tang et al., 2009).
Rbfox is also found as cytosolic regulator that binds the 3-UTR (Lee et al., 2016)
to regulate mRNA stability (Kim et al., 2014). The cytosolic isoform of Rbfox is
observed from Drosophila (Carreira-Rosario et al., 2016) to mouse (Weyn-
Vanhentenryck et al., 2014), suggesting its multifunctional conservation.

Rbfox is characterized to play an important role in muscle development.
Rbfox1 and Rbfox2 are expressed in heart and skeletal muscle in mouse (Jin et al.,
2003; Kalsotra et al., 2008), zebrafish (Frese et al., 2015) and C. elegans
(Kuroyanagi et al., 2007). Rbfox recognition elements are abundant in muscle-
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specific alternatively spliced exons (Bland et al., 2010; Das et al., 2007; Wang
et al., 2008a, 2008b) and in a human embryonic muscle cell line form a co-reg-
ulatory splicing network with MBNL1 (Klinck et al., 2014). Knockdown of Rbfox1
and Rbfox2 in C2C12 mouse myoblasts impairs myoblast fusion during differ-
entiation and changes AS of Mef2D and ROCK2 (Runfola et al., 2015; Singh et al.,
2014). RbfoxI mutant mice show muscle weakness, defective calcium handling,
irregular sarcomere structure and loss of skeletal muscle fibers accompanied by
mis-splicing of cytoskeletal, calcium signaling and skeletal muscle development
genes (Pedrotti et al., 2015). Further, Rbfox1 protein levels are decreased in
failing heart, regulate global cardiac mRNA splicing and knock down of both
Rbfox1 and Rbfox 2 result in pressure overload in mouse heart (Gao et al., 2016;
Wei et al., 2015). Loss of Rbfox family members Fox-1 and Asd-1 cause aberrant
splicing in the body wall muscles of C. elegans (Kuroyanagi et al., 2006) and to-
gether with Sup-12 regulate AS of egl-15 exon 4 and 5 (Kuroyanagi et al., 2007).
Knockdown of the Rbfox homolog A2BP1 in Drosophila in muscle is lethal
(Schnorrer et al., 2010) or results in flightlessness (Fig. 3D). Myofibrils in a flight-
muscle specific A2BP1 knockdown show severe fraying and too short sarcomeres
(Fig. 3H), likely a sign of hypercontraction (Nongthomba et al., 2003). Sarcomeric
components including wupA (troponin I) and Mhc (myosin heavy chain) are
aberrantly spliced in Rbfox-IR IFM (Fig. 3I-K). These examples illustrate that
Rbfox is involved in muscle development across the animal kingdom.

Rbfox proteins are also implicated in several human diseases. Rbfox1 and
Rbfox2 are implicated in heart disease and congenital heart defects (Homsy et al.,
2015; Lale et al., 2011), and decreased expression of Rbfox1l in mouse heart
results in pressure overload and the same aberrant splicing events observed in
heart samples from dilated cardiomyopathy (DCM) human patients (Gao et al.,
2016). In a mouse model of facioscapulohumeral muscular dystrophy (FSHD)
that overexpresses FRG1, Rbfox expression is decreased and Rbfox-dependent
alternative splice events are misregulated (Pistoni et al., 2013). Beyond the
musculature, Rbfox1 dysregulation causes epilepsy in human patients (Bhalla
et al., 2004; Lal et al., 2013) and is associated with autism spectrum disorders
(Bill et al., 2013; Martin et al., 2007). It also regulates ataxin2, the gene affected
in spinocerebellar ataxia type 2 patients (Gehman et al., 2011; Shibata et al.,
2000). These likely represent conserved functions, as knockdown of Rbfox2 in
mouse causes cerebellar defects, abnormal Purkinje cell function, ataxia and mis-
splicing (Gehman et al., 2012; Kim et al., 2011). Rbfox11 and Rbfox2 are similarly
expressed in the cerebellum and Purkinje cells in zebrafish brain (Ma et al.,
2019). However, as a muscle-specific Rbfox isoform is unable to promote neu-
ronal-specific splicing, tissue-specific functions may be mediated by tissue-spe-
cific isoform expression (Nakahata and Kawamoto, 2005). These disease asso-
ciations suggest that the Rbfox family plays a key role in the regulation of AS and
cell function in both muscle and neurons.

1.6.2. Functions of CELF family members

CUG-BP and ETR-3 like factors (CELF) are a highly conserved protein family
(Fig. 3A) with a characteristic 3 RRM domain structure where RRM2 and RRM3
are separated by a 160-230 residue “divergent domain” important for target
binding specificity and regulation of alternative splicing (Han, 2005; Ladd
et al., 2001; Mori et al., 2007; Singh, 2004). RRM crystal structures imply that
RRM1 and RRM2 bind mRNA in a similar fashion distinct from that of the
RRM3 (Sugnet et al., 2006; Tazi et al., 2009). Indeed, RRM1 and RRM2 alone
are able to bind and activate alternative splicing despite RRM3having the
highest sequence conservation (Good, 2000; Singh, 2004), suggesting that dif-
ferent RRMs may have distinct substrate specificity. CELF1 and CELF2 were
identified as proteins that bind to CUG repeats and UG-repeat elements typi-
cally located within introns adjacent to the regulated exon (Blech-Hermoni
et al., 2016; Lu et al., 1999; Timchenko et al., 1996), but a recent study using
CLIP tags on embryonic chicken hearts suggests that CELF proteins can also
regulate splicing via exonic binding sites (Blech-Hermoni et al., 2016). In
general, CUG repeats located within the first 250 bp of the downstream intron
are associated with exon inclusion, while those located in the last 250 bp are
associated with exon exclusion (Ule et al., 2006; Wang et al., 2006). In addition
to demonstrated roles in alternative splicing (Blech-Hermoni et al., 2016),
CELF1 has been show to regulate polyadenylation status, transcript stability
(Lee et al., 2010a, 2010b; Masuda, 2012; Zhang et al., 2008a, 2008b) and
translation of target transcripts in the cytoplasm (Dasgupta and Ladd, 2011;
Louis et al., 2013; Timchenko et al., 2001).

CELF family proteins have important roles in muscle development. Muscle
expression is observed for CELF1 and CELF2 proteins in mouse and rat (Blech-
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Hermoni et al., 2013; Good, 2000; Ladd et al., 2001, 2004), Bru-1 (Oas et al.,
2014; Spletter et al., 2015) and Bru-3 (Picchio et al., 2018) in Drosophila and
Etr-1 in C. elegans (Milne and Hodgkin, 1999). CELF protein levels are elevated
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in heart and skeletal muscle during neonatal stages and decrease throughout
development via a protein kinase C-dependent pathway (Dasgupta and Ladd,
2011; Kuyumcu-Martinez et al., 2007; Roberts et al., 1997). The decline in
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Fig. 3. Functional conservation of CELF, Rbfox and MBNL family proteins.

International Journal of Biochemistry and Cell Biology 110 (2019) 29-49

A-C. Dendrogram drawn to scale showing sequence conservation of RRM3 from CELF family proteins (A), RRM1 from Rbfox family proteins (B) and the zinc fingers
from MBNL family proteins (C) from Homo sapiens (human, Hs), Mus musculus (mouse, Mm), Danio rerio (zebrafish, Dr), Drosophila melanogaster (fruit fly, Dm) and
Caenorhabditis elegans (Ce). D. Flight test results performed as in Fig. 2 for Dm homologs of the CELF, Rbfox and MBNL families. brul™” is a CRISPR-mediated deletion
allele and Df(2 L)BSC407 is a characterized deficiency covering brul. E-H. Myofiber (E-H) and myofibril (E-H’) phenotypes in 1 d adults for Mef2-Gal4 crossed to
control w8 (E), brul™’ homozygous mutants (F), Mef2-Gal4 driving mbl-IR (KK105486) (G) and Mef2-Gal4 driving RbfoxI-IR (GD27286) (H). Phalloidin stained
actin in greyscale. Scale bars in E-H = 100 uM; E’-H’ = 10 uM. I-J. Gene models of AS events in wupA (wings up A, DmTnl) (I) and Mhc (myosin heavy chain) (J).
Coding exons in magenta, UTR regions in yellow. Black arrowhead denotes direction of transcription. Small arrows mark positions of RT-PCR primers. K. RT-PCR
results for selected events in wupA, Mhc and Rp49 as a control. Note muscle-type specific splice events in flight muscle (IFM) and leg that are misregulated in IFM

from both brul™? and Rbfox1-IR, but not mbl-IR.

CELF1 expression after birth is thought to drive fetal-to-adult transitions in AS
(Kalsotra et al., 2008; Ladd et al., 2005a), and upregulation of CELF1 in post-
natal tissues recapitulates fetal splicing patterns that are also observed in
myotonic dystrophy (DM) patients and mouse models (Ladd et al., 2001; Philips
et al., 1998; Wang et al., 2007).

MHC-ACELF mice, where a dominant-negative CELF1 is targeted to the
nucleus in muscle tissue (Charlet-B et al., 2002a), have severe cardiomyopathy
leading to premature lethality, variable fiber size in skeletal muscle, altered AS
and display an increase in the slow-fiber type (Berger et al., 2011; Ladd et al.,
2005b; Wang et al., 2015). At least 45 AS events, many of which are also ob-
served in C2C12 cells and correlate with normal development shifts in AS in
genes related to chromatin organization, cytoskeleton functions and cell-cell
contact, are directly regulated by CELF in neonatal mouse heart (Dujardin et al.,
2010; Giudice et al., 2016; Wang et al., 2015). Similar AS events including
troponin T (cTNT) exon 5, human insulin receptor IR1, human muscle-specific
chloride channel CIC-2 intron 2, rat NMDA receptor exons 5 and 11 and rat
alpha-actinin are regulated by CELF1 in human and chicken heart (Charlet-B
et al., 2002a; 2002b; Ladd et al., 2001; Philips et al., 1998; Savkur et al., 2001;
Suzuki et al., 2002; Zhang et al., 2002). As the heart and skeletal muscles de-
velop, they undergo structural reorganization, accumulation of contractile
proteins and changes in Ca®" sensitivity (Siedner et al., 2003), suggesting shifts
in AS events regulated by CELF are necessary for proper function.

CELF1 homologs in model organisms also regulate muscle development. In
C. elegans knockdown of Etr-1 results in developmental arrest at the 2-fold
embryonic stage with a prominent muscle detachment defect (Milne and
Hodgkin, 1999). Overexpression of Drosophila Bru-3 in muscle causes defects in
larval motility and myofibril structure by potentially regulating both release of
sarcomeric protein mRNAs from P-granules and co-translational mRNA decay
(Picchio et al., 2018). Loss of Bru-1, the second CELF1 homolog in Drosophila, in
indirect flight muscle (IFM) results in defects in sarcomere growth, hollow
myofibrils and hypercontraction (Oas et al., 2014; Spletter et al., 2015)
(Fig. 3D, F). Bru-1 regulates hundreds of IFM-specific AS events (Spletter et al.,
2015), for example in cytoskeletal genes, including wupA and Mhc (Fig. 31, J,
K). This suggests that CELF homologs have conserved functions in muscle de-
velopment across evolution.

1.6.3. Functions of MBNL family members

The highly conserved MBNL family encodes RNA-binding zinc-finger pro-
teins of type CCCH (Fig. 3C). Vertebrate genomes encode three MBNL homologs
while Drosophila and C. elegans have a single, albeit less sequence conserved,
family member (Oddo et al., 2016; Pascual et al., 2006). MBNL proteins bind in
a sequence specific manner (Worthington et al., 1996), with both human and
Drosophila MBNL preferring (C/U)GC(C/U) containing RNA motifs (Goers et al.,
2008; Ho et al., 2004), although binding to suboptimal sites including GCUU
and UGCU has been observed (Lambert et al., 2014; Wang et al., 2012). Across
species, intronic motifs downstream of the target exon are associated with
MBNL-dependent exon inclusion, while motifs in upstream introns or the target
exon itself are associated with exon exclusion (Du et al., 2010; Goers et al.,
2010; Oddo et al., 2016). MBNL is also involved in the regulation of gene ex-
pression (Du et al., 2010; Osborne et al., 2009), mRNA stability (Masuda et al.,
2012), mRNA localization (Adereth et al., 2005; Wang et al., 2012) and mi-
croRNA processing (Rau et al., 2011).

MBNL family proteins play essential roles in the development of muscle.
MBNL1 and MBNL2 are expressed in skeletal muscle and heart in vertebrates
(Fardaei et al., 2002; Kanadia et al., 2003b; Miller et al., 2000; Pascual et al.,
2006; Squillace et al., 2002) and in differentiated mouse C2C12 cells (Miller
et al., 2000), while MBNL3 is expressed in muscle satellite cells (Poulos et al.,
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2013) and C2C12 myoblasts (Squillace et al., 2002). Consistent with this ex-
pression pattern, MBNL1 promotes while MBNL3 inhibits muscle differentiation
(Adereth et al., 2005; Miller et al., 2000; Squillace et al., 2002). MBNL mutant
mice develop myotonia and cataracts and display aberrant AS of transcripts such
as Clenl, ¢TNT and Tnnt3 (Kanadia et al., 2003a). These phenotypes are similar
to symptoms observed in myotonic dystrophy (DM) patients, and about 80% of
AS events changed in DM mouse models expressing expanded CUG repeats
(discussed below) are also observed in MBNL1 mutant mice (Du et al., 2010).
Mbnll, Mbnl2 double mutant mice display spontaneous arrhythmias and con-
duction defects as well as disrupted myofibrillar arrangement (Choi et al., 2017),
and Mbnll mutant mice display loss of developmentally regulated AS changes in
heart, with a reversion to embryonic splicing patterns (Kalsotra et al., 2008).
Morpholino knock-down of MBNL2 in zebrafish results in abnormal somite
shape, Z-band disruption, reduction of fast and slow fibers and aberrant AS of
c¢TNT and clcl in heart with a shift to early developmental isoforms (Machuca-
Tzili et al.,, 2011), indicating that MBNL, like CELF1, also regulates develop-
mental shifts in AS in vertebrate muscle.

Invertebrates display a similar requirement for MBNL in muscle develop-
ment. Drosophila and C. elegans express Mbl in muscle throughout larval and
adult stages (Monferrer and Artero, 2006; Wang et al., 2008a, 2008b) and Mbl
regulates splicing of sarcomere components including Troponin T (Vicente-
Crespo et al., 2008). Drosophila Mbl is expressed during myoblast differentia-
tion, similar to mammalian MBNL1 (Pascual et al., 2006). RNAi mediated
knockdown of Mbl in C. elegans results in severe defects in motility and dis-
ruption of myofiber structure (Wang et al., 2008a). Mbl mutant flies are lethal
at the first instar larvae stage and show paralysis due to hypercontracted
muscles and Z-disc disruption (Artero et al., 1998; Ludatscher et al., 1978).
RNAi knockdown of Mbl in all muscle is lethal (Schnorrer et al., 2010), but
flight-muscle specific (IFM) knockdown is flightless (Fig. 3D). Similar to mutant
larval muscle, IFM sarcomeres appear short and likely hypercontracted
(Nongthomba et al., 2003) in mbl-IR (Fig. 3G). These data show a conserved
function for MBNL in muscle development.

Beyond muscle, MBNL family members play important roles in nervous
system development. MBNL is expressed in neurons in mouse (Kanadia et al.,
2003b), zebrafish (Machuca-Tzili et al., 2011), Drosophila (Prokopenko et al.,
2000) and C. elegans (Spilker et al., 2012). In mouse, the differential localiza-
tion of alternative mRNA isoforms to neurites versus the soma is dependent
upon MBNL binding (Taliaferro et al., 2016). Morpholinos targeting mbnl2 in
zebrafish result in loss of normal midbrain morphology and enlargement of the
hindbrain ventricles as well as splicing defects, which can be rescued by in-
jection of human MBNL2 (Machuca-Tzili et al., 2011). In C. elegans, Mbl mu-
tants exhibit loss of distal synapses of the DA9 motor neuron (Spilker et al.,
2012). In Drosophila, Mbl is required during development of the embryonic
peripheral nervous system and is essential for final steps of neuron differ-
entiation and morphogenesis (Kania et al., 1995; Prokopenko et al., 2000) as
well as differentiation of photoreceptor cells (Begemann et al., 1997). These
data demonstrate that MBNL family members play important roles in devel-
opmental regulation of RNA in multiple tissues across animal evolution.

1.6.4. CELF — MBNL — FOX cross-regulatory interactions

As Rbfox, CELF and MBNL proteins all regulate AS during muscle devel-
opment, multiple studies have begun characterizing the intersections in their
regulatory networks. Analysis of mRNA-seq datasets indicates an often evolu-
tionarily conserved preferential enrichment of binding motifs around groups of
exons, for example MBNL and RBFOX motifs (Merkin et al., 2012). In mouse
heart, developmentally included exons are highly enriched in downstream in-
tronic FOX and CELF binding motifs, while skipped exons are enriched in
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upstream intronic MBNL motifs (Bland et al., 2010; Kalsotra et al., 2008),
suggestive of antagonistic regulation. CELF1 promotes whereas MBNL1 inhibits
inclusion of ¢cTNT exon 5 in chicken and mouse heart, while CELF1 promotes
skipping whereas MBNL1 promotes inclusion of human insulin receptor exon 11
(Charlet-B et al., 2002b; Ladd et al., 2001; Philips et al., 1998; Savkur et al.,
2001). Other examples include antagonistic regulation of MBNL2 exon 8 and
Actn4 exon 5 (Kalsotra et al., 2008). Such antagonism is also observed in ske-
letal muscle, where 65% of exons responsive to CELF1 and MBNL1 are regu-
lated antagonistically and moreover, those exons affected by CELF1 or CELF2
induction are often responsive to MBNL1 depletion and tend to additionally be
developmentally regulated (Wang et al., 2015). This antagonism is thought to
be functional and not direct competition, as cis-regulatory elements for MBNL1
and CELF1 are distinct and minigenes with mutated MBNL1 motifs are still
sensitive to CELF1, and vice versa (Ho et al., 2004). In addition to antagonism of
AS, the extent of CELF1 and MBNL co-binding to mRNA 3’UTRs in mouse heart
correlates to the degree of transcript repression (CELF1 enriched) or stabiliza-
tion (MBNL1 enriched) (Wang et al., 2015).

A similar antagonistic relationship between CELF2 and Rbfox has been char-
acterized in mouse heart and skeletal muscle. Significant overlap is observed be-
tween AS events co-regulated by CELF2 and RBFOX2 as compared to other UG-rich
RBPs such as HNRNPU and RBM24 (Gazzara et al., 2017). Overexpression of
CELF1/2 or depletion of Rbfox2 causes splice events to change in the same di-
rection, suggestion one factor promotes and the other inhibits distinct events. 85%
of AS events that exhibit antagonistic CELF and RBFOX regulation also change
during heart development, myogenesis and/or in hearts from diabetic patients
(Gazzara et al., 2017). This form of antagonism with upstream CELF and down-
stream Rbfox binding is also observed in chicken cardiomyocytes, Drosophila IFM
(Brul/A2BP1) and in C. elegans (Unc-75/Fox-1) (Gazzara et al., 2017). Taken to-
gether, these data suggest that antagonistic cross-regulatory interactions between
the CELF, FOX and MBNL networks define the activity of these RBP families.

1.7. RBP associated muscle disease

Current estimates suggest that 15-60% of human disease mutations arise
from cis splicing mutations (Wang and Cooper, 2007). Certain muscle diseases
fall into this category, such as cis mutations that disrupt the splicing of dystrophin
complex members and cause Duchennes and Becker muscular dystrophy
(Pagliarini et al., 2017) or a ¢.-32-13T > G variant that weakens the splice ac-
ceptor of alpha-glucosidase (GAA) exon 2 resulting in Pompe disease (van der Wal
et al., 2017). These types of genetic lesions are potentially amenable to antisense
oligonucleotide therapies, and following the success of SPINRAZA™ (Nusinersen)
for modifying SMN2 splicing to improve function in spinal muscular atrophy
(Gidaro and Servais, 2018; Zanetta et al., 2014), many such drugs will likely be
developed in the coming years (Li et al., 2018a, 2018b). However, many muscle
diseases arise from mutation or sequestration of the RBPs themselves rather than
lesions affecting a single splice event.

Lesions in RBPs or sequestration of an RBP resulting in loss of normal
function result in phenotypically complex disorders that molecularly can be
traced to pleiotropisms in RBP function. For example, mouse models have
shown the pleiotropic effects of mutations leading to myotonic dystrophy (DM)
in alternative splicing, transcription, translation, intracellular RNA localization,
polyadenylation, miRNA metabolism and phosphorylation of disease inter-
mediates (Braz et al., 2018). RNA regulation beyond AS plays important roles in
muscle, for example higher levels of utrophin expression in slow muscle are
controlled by increased mRNA stability in slow muscle through 3’-UTR binding
(Gramolini et al., 2001). Moreover, RBP lesions typically have a multi-faceted
impact affecting multiple tissues, as well as the complete life history of muscle —
development, growth, regeneration and ageing (André et al., 2018). There is the
additional challenge when analyzing vertebrate mRNA-Seq data of determining
which splicing patterns are clearly associated with the disease, and which are
associated with the dedifferentiation necessary for muscle regeneration
(Orengo et al., 2011). Although multiple examples demonstrating the complex
molecular pathology of RBP disease exist, including for example dilated car-
diomyopathy (DCM) resulting from mutation of Rbm20 (McNally and Mestroni,
2017; Rexiati et al., 2018) or oculopharyngeal muscular dystrophy (OPMD)
resulting from expansion of a GCN repeat found in PABPN1 (Luigetti et al.,
2015; Raz and Raz, 2014), below we discuss myotonic dystrophy (DM) as an
example of pleiotropic function and systemic nature in RBP disease.
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1.7.1. Disease mechanisms underlying myotonic dystrophy

Myotonic dystrophy (DM) is a microsatellite expansion disorder affecting 1
in 8000 people worldwide (Faustino and Cooper, 2003; Wheeler, 2008). DM
can be divided into two types based on the affected muscle fiber: type 1 (DM1,
OMIM #160900) results from a CTG repeat expansion in the DMPK gene and
affects the distal musculature while type 2 (DM2, OMIM #602668) results from
a CCTG repeat expansion in the CNBP gene and affects mainly the proximal
musculature (Liquori et al., 2003; Mahadevan et al., 1992). DM1 is character-
ized by myotonia, progressive muscle weakness and wasting in distal muscles,
but often affects multiple tissues additionally causing cardiac dysfunction, in-
sulin resistance, excessive sleepiness, intellectual disability and cognitive defi-
cits (André et al., 2018; Emery, 2002; Mahadevan et al., 1992; Tawil, 2008;
Wheeler, 2008). DM2 is phenotypically milder and typically diagnosed in adult
patients, affecting the proximal muscles and resulting in a milder myotonia
than DM1 (Meola and Cardani, 2015a). Repeat copy number is a major de-
terminant of DM disease severity, with expansions that range from 75-11,000
repeats in human patients (Meola and Cardani, 2015b). Across metazoans,
MBNL paralogues are able to bind (CUG)4go-expanded repeats and co-localize in
nuclear foci (Oddo et al., 2016), thus effectively promoting sequestration of
MBNL and driving trans effects resulting in disruption of the processing of many
RNAs (Rohilla and Gagnon, 2017).

Genomic integration and expression of (CUG)y repeats has allowed the de-
velopment of DM animal models. (CUG)ge0 repeats in Drosophila result in severe
muscle disruption and nuclear RNA foci (Picchio et al., 2013). (CUG);25.213 Te-
peats in C. elegans result in embryonic lethality, uncoordinated muscle function
and abnormal muscle morphology (Chen et al., 2007). (CUG)ggo repeats in mice
result in muscle wasting accompanied by central nuclear localization, reduced
fiber cross-sectional area, nuclear RNA foci and increased CELF1 expression
(Morriss et al., 2018). Direct injection of (CUG)y; repeats in zebrafish results in
lethality associated with abnormal development of both forebrain and muscle
(Todd et al., 2014). In all models, MBNL1 strongly binds to the repeat expansions
and is sequestered to nuclear foci, decreasing nucleoplasmic levels of the active
protein and leading to aberrant splicing in adult tissues (Fardaei et al., 2002;
Mankodi et al., 2003; Miller et al., 2000; Ranum and Cooper, 2006). In addition
hnRNP F, hnRNP H, DDX5, DDX6, DDX17 and Staufen have all been shown to
anomalously localize with DM RNA foci (Bondy-Chorney et al., 2016; Pettersson
et al., 2015). Loss of RBP function is in turn exacerbated by concomitant up
regulation of CELF1 through PKC phosphorylation-mediated protein stabilization
(Kuyumcu-Martinez et al., 2007; Mahadevan et al., 2006; Nezu et al., 2007,
Orengo et al., 2008). All together this results in a general imbalance in cellular
proteostasis and changes to alternative splicing, alternative polyadenylation and
nucleocytoplasmic transport (André et al., 2018).

Given that CELF1/2 proteins are normally downregulated more than 10-
fold and MBNLI1 is upregulated nearly 4-fold during heart and skeletal muscle
development (Kalsotra et al., 2008; Ladd et al., 2005a), the upregulation of
CELF1 and downregulation of MBNL observed in DM leads to a reversion to
embryonic splicing patterns and mis-splicing. Decreased insulin sensitivity in
DM is associated with expression of the embryonic isoform of Insulin receptor
(IR1) (Savkur et al., 2001, 2004). Cardiac troponin T (¢cTNT, TNNT2) and fast
skeletal muscle troponin T (TNNT3) shift to their embryonic splicing patterns
(Philips et al., 1998). In addition to AS, MBNL-regulated polyadenylation status
of for example Pdlim5 and Dnajb6 are disrupted in DM, resulting in activation of
polyadenylation sites normally expressed during embryogenesis (Batra et al.,
2014). Mis-splicing of Myotubularin related 1 (MTRM1) results in abnormal
isoforms at the expense of muscle isoforms (Buj-Bello et al., 2002), while
DM1 myotonia symptoms in part arise from loss of chloride channel (CLCN1)
activity due to inclusion of premature stop codons (Charlet-B et al., 2002a;
Mankodi et al., 2002). Ryanodine receptor (RyR1), sarcoplasmic/endoplasmic
reticulum Ca?* ATPase (SERCA) (Kimura et al., 2005), alpha-actinin (Suzuki
et al., 2002), Myh14 (Rinaldi et al., 2012) and Tau (Dhaenens et al., 2011)
transcripts are also mis-spliced in DM skeletal muscle. Abnormal splicing of
ZASP/LDB3 (Z-band alternatively spliced protein/ LIM domain-binding protein
3) cytoskeletal protein is observed in DM patients, and mis-splicing of Droso-
phila homolog Zasp52 in MBNL deficient flies leads to sarcomeric Z-disc dis-
ruption (Machuca-Tzili et al., 2006). Z-disc disruption is also observed in heart
and skeletal muscles of zebrafish MBNL mutants (Klinkerfuss, 1967; Ludatscher
et al., 1978) and in Mbl RNAi in C. elegans (Wang et al., 2008a, 2008b). These
studies illustrate the pleiotropic effects on cellular differentiation, RNA pro-
cessing, cation homeostasis, cytoskeletal architecture and muscle contractility
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observed in DM and the conservation of (CUG), toxicity mechanisms.

DM phenotypes are well characterized in muscle, but DM also leads to
cardiac, endocrine and central nervous system defects (André et al., 2018). DM
can result in sleep abnormalities, anxiety, apathy and memory deficits
(Charizanis et al., 2012; Matynia et al., 2010; Suenaga et al., 2012) and mouse
models display impairment of NMDAR-mediated responses and pattern-induced
long-term potentiation (Vuong et al., 2016). This suggests an important func-
tion for MBNL in neurons. MBNL knockout mice show transcript expression
changes in heart and muscle as well as brain (Wang et al., 2012). MBNL binding
sites are found enriched around developmentally regulated exons in neurons
(Weyn-Vanhentenryck et al., 2018), and MBNL binds directly to these sites
(Wang et al., 2012) to regulate neuronal specific alternative splicing of for
example NF1 exon 23a (Fleming et al., 2012). The hundreds of exons mis-
spliced in MBNL2 mutant mouse brain overlap significantly with genes mis-
spliced in DM, leading to expression of fetal isoforms of Kcnmal, Cacnald and
Grinl (Vuong et al., 2016). MBNL sites are enriched in differential alternative
exons and MBNL shows strong binding to 3’-UTR regions in neurons, resulting
in MBNL-dependent subcellular localization of mRNA transcripts, for example
to the neurites (Taliaferro et al., 2016; Wang et al., 2012). MBNL2 has also been
shown to directly bind (CUG), repeat expansions in the brain in DM mice, re-
sulting in downstream RNA processing defects such as dysregulation of Camk2d
and Grin splicing and fetal tau isoform expression. Similar patterns of dysre-
gulation and MBNL2 binding in both intronic and 3’ UTR regions are also found
in DM1 and DM2 patient samples (Goodwin et al., 2015). Thus, the changes to
AS and RNA regulation observed in DM also likely underlie cognitive deficits in
human patients and brain defects observed in animal models, and illustrate the
neuromuscular or systemic nature of DM.

1.7.2. Systemic nature of neuromuscular disease

It is also interesting to note the growing appreciation for the systemic
nature of neuromuscular disorders in the literature. Spinal muscular atrophy
(SMA), characterized by selective degeneration of a-motor neurons in the
anterior horn of the spinal cord causing myotonia and muscle atrophy
(Pagliarini et al., 2017), is caused by loss of function lesions in SMN1. SMN1 has
basic housekeeping function in the assembly of snRNPs (Lanfranco et al., 2017)
resulting in dysregulation of both gene expression and splicing (Bdumer et al.,
2009; Zhang et al., 2008a, 2008b, 2013) and high rates of intron retention
(Jangi et al., 2017) in SMA. While classically considered a neuronal disease
(Gavrilina et al., 2008), more recent studies suggest depletion of SMN1 function
is deleterious in muscle and bone and negatively impacts endocrine, lymphatic
and reproductive function (Nash et al., 2016). Knockdown of SMN protein in
C2C12 mouse myoblasts results in defects in myoblast fusion and malformed
myotubes (Shafey et al., 2005), and deletion of SMN exon 7 specifically in
mouse skeletal muscle leads to necrosis and dystrophic phenotypes, resulting in
muscle paralysis and death (Cifuentes-Diaz et al., 2001). SMN1 in Drosophila
also appears to have muscle-specific functions, resulting in abnormal thin fi-
lament structures and loss of flight-muscle specific Act88F expression
(Rajendra et al., 2007). This suggests that perhaps defects on the muscle side
also contribute to SMA pathogenesis.

Another example of an RBP-related systemic disease is amyotrophic lateral
sclerosis (ALS). ALS is characterized by progressive muscular atrophy and motor
neuron loss (Tortarolo et al., 2017). ALS-associated genes include multiple RBPs
such as TAR DNA-binding protein 43 (TDP-43), fused in sarcoma (FUS)
(Kwiatkowski et al., 2009), C9orf72 (DeJesus-Hernandez et al., 2011; Renton
et al., 2011), matrin 3, hnRNP A1, hnRNP A2B1 and TIA1 (Johnson et al., 2014).
These RBPs are often found in pathological inclusions and thought to contribute
to ALS (Purice and Taylor, 2018). Interestingly, several of these RBPs have also
been characterized to have function specifically in muscle (Table 1). Recent in-
terpretations have started to consider that muscle may indeed have a cell-au-
tonomous ALS phenotype, as beyond the classical denervation atrophy, ALS
muscle has been described to have distinct myopathic features (Iwasaki et al.,
1991), inflammation (Al-Sarraj et al., 2014) and hallmarks of apoptosis (Tews
et al., 1997). A phenotypic pattern of combined features of ALS and myopathy is
observed with ALS-causing genes such as CHCHD10, VCP, hnRNPA1l and
hnRNPA2B1 (Ajroud-Driss et al., 2015; Bannwarth et al., 2014; Johnson et al.,
2010; Kim et al., 2013; Palmio et al., 2016; Watts et al., 2004). MATR3 speci-
fically is linked to myopathy via its interaction with Lamin A (LMNA) and TDP-
43 (Depreux et al., 2015) and regulates muscle-specific polyadenylation, intron
retention and paraspeckle function through an interaction with PABPN1
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(Banerjee et al., 2017). Patients with a p.S85C mutation in MATR3 can show
muscle pathology without observable neuronal affects (Miiller et al., 2014), al-
though this may be a slow progressive form of ALS with neuronal defects ap-
pearing later (Eisen and Kuwabara, 2012). By contrast, patients with a p.F115C
mutation in MATR3 have ALS and dementia symptoms (Johnson et al., 2014).
TDP-43 inclusion pathology, most often co-localized with p62, is found specifi-
cally in muscle in a subset of human ALS patients (Cykowski et al., 2018). In the
mouse mSOD1 ALS model, muscle autonomous phenotypes such as muscle-spe-
cific SOD1 aggregates (Atkin et al., 2005), dysregulated calcium homeostasis
(Chin et al., 2014), mitochondrial dysfunction, endoplasmic reticulum stress re-
sponse and heat shock protein expression (Bhattacharya et al., 2014; Chen et al.,
2015) are observed. Strikingly, mice expressing mutant hSOD1 only in muscle
develop muscle weakness, motor deficits, NMJ abnormalities, myopathy and
motor neuron axonopathy and degeneration (Wong and Martin, 2010), sug-
gesting muscle disease or injury can trigger MN degeneration. This illustrates that
muscle likely plays an active role in ALS pathology and moreover illustrates the
multi-tissue, systemic nature of RBP-associated disease.

1.8. Future prospects

The field of alternative splicing and post-transcriptional regulation is diverse
and challenging, yet offers many opportunities. We are still in the process of
defining what it means to be an RNA-binding protein and identifying a complete
inventory of RBPs. Interactome capture approaches have expanded our concept
of what proteins can bind RNA, but there will likely be marked differences in the
RNA interactome between tissues and across development. The majority of RBPs
await verification and in-depth biological analysis of their physiological function.
There are certainly connections between RNA regulation and metabolism,
chromatin state and mitochondrial status waiting to be explored.

Another open field is RBP regulation and mechanisms of target recognition.
Many RBPs are themselves heavily alternatively spliced, potentially affecting
functional specificity and target recognition. Few post-translational modifica-
tions of RBPs have been characterized, but phosphorylation, ubiquitination,
methylation and other modifications likely modulate RBP activity, localization
and target specificity. For example, phosphorylation of Drosophila How en-
hances AS activity (Nir et al., 2012) and phosphorylation of SRSF1 controls its
subcellular localization and mRNA processing function (Aubol et al., 2018).
Intracellular assemblies of RBPs, such as the LASR complex, can promote
changes in target specificity, but few such RBP complexes have been described.
It is likely that different RBP assemblies with defined functions exist in a
temporal and spatial specific manner.

Finally, the role of RBPs in disease and development will certainly expand
in the coming years. RBPs are causal for muscle diseases such as myotonic
dystrophy or dilated cardiomyopathy, and are disease modifiers in cancer or
muscular dystrophy. There are more disease-related RBPs awaiting discovery,
and novel pathological mechanisms await characterization. The full utility of
RBPs and their targets for novel therapies is just beginning to be explored. We
have just scratched the surface of the proverbial RBP iceberg, and supported by
technological developments stand poised to discover how broadly RBPs impact
muscle development and disease.

2. Methods

2.1. Fly strains

Fly stocks were maintained using standard culture conditions. brul™” is a
deletion allele with breakpoints CCAGTCTCGAAGCTT to CCGCGGAACGAG
AGA generated using CRISPR and inserting a selectable cassette by homologous
recombination (Zhang et al., 2014). RNAi was performed in all muscle using
Mef2-GAL4 (maintained at 27 °C) and specifically in flight muscle after 24 h
APF (after puparium formation) using Act88F-GAL4 (maintained at 25 °C).
Mef2-GAL4 x w8 or Act88F-GAL4 x w'!*® served as control. brul RNAi was
performed with previously characterized GD41568 (referred to as brul-IR)
(Spletter et al., 2015) from VDRC (http://stockcenter.vdrc.at) (Dietzl et al.,
2007). Stocks obtained from Bloomington include the deficiency Df(2 L)BSC407
covering brul and TRiP hairpins Rm62-IR (JF01385), Sf3b2 (CG3605)-IR
(HMS00056), Sf3a2 (CG10754)-IR (HMC03799), noi (Sf3a3)-IR (HMS00163).
Stocks obtained from the VDRC include hairpins mbl-IR (GD29585 and
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KK105486), Rbfox1 (A2BP1)-IR (GD27286 and KK110518), Rm62-IR
(GD46908 and KK110102), Sf3b2 (CG3605)-IR (GD26250, GD26252 and
KK105639), Sf3a2 (CG10754)-IR (GD31346 and GD31347), noi (Sf3a3)-IR
(GD20943, GD20945 and KK105354) and Sbr-IR (GD32691 and KK103715).

2.2. Flight tests

Flight tests were performed by introducing flies into the top of a 1 m long
cylinder as previously described (Schnorrer et al., 2010). Flies that land near the
top are “normal fliers”, in the middle are “weak fliers” and that fell to the bottom
are “flightless.” Adult males were anesthetized during collection and recovered at
least 1 day at 25 °C before testing.

2.3. Immuno-staining

Flight muscles were dissected and stained as described (Weitkunat and
Schnorrer, 2014). Thoraxes were fixed for 20 min. in 4% PFA in 0.5% PBS-
Triton-X100 (PBS-T) and washed in PBS-T. Thoraxes were cut sagittally with a
microtome blade. Samples were stained at least 3h at RT with rhodamine
phalloidin (Molecular Probes, 1:500) in PBS-T. Samples were washed three
times in 0.5% PBS-T and mounted in Vectashield containing DAPI. Samples
were imaged on a Leica SP8X WLL upright confocal with a HC PL APO 63x/1.4
OIL CS2 objective in the Core Facility Bioimaging at the Biomedical Center of
the Ludwig-Maximilians-Universitdt Miinchen.

2.4. RT-PCR

Indirect flight muscles (IFM) or whole legs were dissected in PBS. PBS was
removed and RNA was isolated using Trizol following the manufacturer’s pro-
tocol. Reverse transcription and first strand synthesis was performed with the
SuperScript ™ III First-Strand Synthesis System (Invitrogen) following the man-
ufacturer’s protcol. PCR was performed with previously reported splice-sensi-
tive primers against Mhc or control Rp49 (Orfanos and Sparrow, 2013) or in
wupA (forward-CGCTGAGTTCAACTTCCGCAACC, reverse-ATTGTTTAGGGCGG
GAGTCACGG). PCR products were examined by electrophoresis on a standard
2% agarose gel next to a 100 bp ladder (NEB).

2.5. Calculation of evolutionary distance

Sequences were curated from NCBI (https://www.ncbi.nlm.nih.gov/) for
MBNL and from UniProt (https://www.uniprot.org/) for CELF and Rbfox family
homologs in Homo sapiens (human, Hs), Mus musculus (mouse, Mm), Danio rerio
(zebrafish, Dr), Drosophila melanogaster (fruit fly, Dm) and Caenorhabditis ele-
gans (nematode, Ce) and are provided in Supplemental Materials. Alignments
were performed using the “Align by Muscle” option with a neighbor joining
clustering method in MEGA6 (Tamura et al., 2013) after removing gaps and
missing data. The analysis of the third RRM from CELF proteins involved 21
amino acid sequences for a total of 59 positions. The analysis of the RRM from
Rbfox involved 11 amino acid sequences for a total of 77 positions. The analysis
of the zinc fingers from MBNL involved 11 amino acid sequences for a total of
54 positions. For Rbfox, the evolutionary tree was inferred using a neighbor
joining method with distances computed using the p-distance method with a
final branch length = 0.41736348. For CELF and MBNL, evolutionary trees
were inferred using a maximum likelihood method based on a JTT matrix-based
model and the tree constructed by applying neighbor-join and BioNJ algo-
rithms. The tree with the highest log likelihood (for MBNL = -477.2156 and
CELF = -553.0751) is shown in Fig. 3.

2.6. Bioinformatics

RBPs published to have a function in muscle in mouse, zebrafish, fly or C.
elegans were curated by hand. We required biochemical function or genetic
phenotype either in vivo in muscle or from a muscle-derived cell line (mostly
C2C12). Additional information on each gene was obtained from MouseMine
(http://www.mousemine.org/), ZebrafishMine (http://www.zebrafishmine.
org/), Flybase (http://flybase.org/) or Wormbase (https://www.wormbase.
org/). Protein domains are from SMART (Letunic and Bork, 2018) and PFAM
(https://pfam.xfam.org/). Genome sizes were obtained from Ensembl (https://
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www.ensembl.org/) for human (GRCh38.p12), mouse (GRCm38.6), zebrafish
(GRCz11), fruitfly (BDGP6) and C. elegans (WBcel235). We utilized the fol-
lowing published datasets: AmiGO2 gene ontology database (Munoz-Torres and
Carbon, 2017), compiled lists of RNA interactome capture identified RBPs
(Hentze et al., 2018), Gene List Annotation for Drosophila (GLAD) (Hu et al.,
2015), genome-wide muscle RNAi phenotypes in Drosophila (Schnorrer et al.,
2010), and mRNA-Seq data specifically from muscle in mouse (Pedrotti et al.,
2015; Sollner et al., 2017), Drosophila (Spletter et al., 2015, 2018) and C. elegans
(Blazie et al., 2015; Meissner et al., 2009). Data was analysed and plotted in R
version 3.4.3 using the following packages: plyr (Software, 2011, n.d.), re-
shape2 (Software, 2007, n.d.), VennDiagram (Chen and Boutros, 2011) and
ggplot2 (Wickham, 2011).
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