

International Journal of Biochemistry and Cell Biology

journal homepage: www.elsevier.com/locate/biocel

STAT3beta, a distinct isoform from STAT3

Hui-Xiang Zhang^{a,b}, Ping-Lian Yang^{a,b}, En-Min Li^{a,c,*,**}, Li-Yan Xu^{a,b,*}

^a The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China

^b Institute of Oncological Pathology, Shantou University Medical College, Shantou, Guangdong, PR China

^c Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China

ARTICLE INFO

Keywords:

STAT3
STAT3 β
JAK/STAT3 pathway
Cancer suppressor
Prognostic factor

ABSTRACT

STAT3 β is an isoform of STAT3 (signal transducer and activator of transcription 3) that differs from the STAT3 α isoform by the replacement of the C-terminal 55 amino acid residues with 7 specific residues. The constitutive activation of STAT3 α plays a pivotal role in the activation of oncogenic pathways, such as cell proliferation, maturation and survival, while STAT3 β is often referred to as a dominant-negative regulator of cancer. STAT3 β reveals a “spongy cushion” effect through its cooperation with STAT3 α or forms a ternary complex with other co-activators. Especially in tumour cells, relatively high levels of STAT3 β lead to some favourable changes. However, there are still many mechanisms that have not been clearly explained in contrast to STAT3 α , such as STAT3 β nuclear retention, more stable heterodimers and the prolonged Y705 phosphorylation. In addition to its transcriptional activities, STAT3 β may also function in the cytosol with respect to the mitochondria, cytoskeleton rearrangements and metastasis of cancer cells. In this review, we summarize the mechanisms that underlie the unique roles of STAT3 β combined with total STAT3 to enlighten and draw the attention of researchers studying STAT3 and discuss some interesting questions that warrant answers.

1. Introduction

STAT3 (signal transducer and activator of transcription 3) is one of seven STAT proteins (STATs 1, 2, 3, 4, 5A, 5B and 6) and is a highly pleiotropic protein that is activated downstream of multiple cytokine and growth factor receptors by tyrosine 705 phosphorylation (Akira

et al., 1994; Luttkien et al., 1994; Zhong et al., 1994; Copeland et al., 1995) (Fig. 1). STAT1, STAT3 and STAT5 encode multiple forms and are structurally similar. However, these proteins have divergent and opposing effects on gene expression and cellular phenotypes (STAT1 is generally considered as a tumor suppressor (Zhang and Liu, 2017), and STAT3 and STAT5 are generally oncogenes (Desrivieres et al., 2006;

Abbreviations: STAT3, signal transducer and activator of transcription 3; TAD, transactivation domain; APFR, acute phase response factor; IL, interleukin; EGF, epidermal growth factor; PDGF, platelet derived growth factor; TNF, tumour necrosis factor; JAK, Janus kinase; SH2, Src homology 2; Y705, tyrosine 705; GAS, γ -activated sequence; pSTAT3 α ^{Y705}, phosphorylated STAT3 α ^{Y705}; ESCC, oesophageal squamous-cell carcinoma; pSTAT3, phosphorylated STAT3; HNSCC, head and neck squamous cell carcinoma; IFNs, interferons; G-CSF, granulocyte colony-stimulating factor; HGF, hepatocyte growth factor; LIF, leukaemia inhibitory factor; Src, protein tyrosine kinase; gp130, glycoprotein 130; S727, serine 727; p300, E1A-binding protein; CBP, cyclic adenosine monophosphate responsive element binding protein-binding protein; Bcl-2, B cell lymphoma-2; Loxl3, lysyl oxidase like 3; c-Myc, termed MYC henceforth; PLK-1, polo-like kinase 1; Pim, proviral integration site for Moloney murine leukaemia virus; FAS, tumour necrosis factor receptor superfamily member 6; VEGF, vascular endothelial growth factor; HIF1 α , hypoxia inducible factor-1 alpha; bFGF, basic fibroblast growth factor; EMT, epithelial to mesenchymal transition; Twist-1, the basic helix-loop-helix transcription factor 1; ZEB-1, zinc finger E-box binding homeobox 1; MMPs, matrix metalloproteinases; LPS, lipopolysaccharide; SOCS, suppressor of cytokine signalling; PTPs, protein-tyrosine phosphatases; unph-STAT3, unphosphorylated STAT3; NF κ B, nuclear factor kappa light chain enhancer of activated B cells; RANTES, normal T cell expressed and secreted; MET, mesenchymal-epithelial transition factor; MRAS, mineralocorticoid receptor antagonists; DNMT1, DNA methyltransferase 1; HDAC1, histone deacetylase 1; SHP-1, Src homology 2 domain-containing protein tyrosine phosphatase 1; TP53, tumour protein 53; CDKN2A, cyclin-dependent kinase inhibitor 2 A; ETC, electron transport chain; ATP, active adenosine triphosphate; mPTP, mitochondrial permeability transition pore; mtDNA, mitochondrial DNA; ROS, reactive oxygen species; Ctn, COOH terminal tensin-like; FAK, focal adhesion kinase; Crip, cysteine-rich intestinal protein; Tfpi, tissue factor pathway inhibitor; Ptn, pleiotrophin; scya2, small inducible cytokine A2; Sdf1, stromal cell-derived factor 1; Igfbp5, insulin-like growth factor binding protein 5; WT, wild-types; TC45, the nuclear form of TC-PTP; MHC, major histocompatibility complex; 5-FU, 5-fluorouracil; cFLIP, cellular FLICE-like inhibitory protein; ErbB2, human epidermal growth factor receptor; ICAM-1, intercellular adhesion molecule-1

* Corresponding author at: Institute of Oncological Pathology, Shantou University Medical College, No. 22, Xinling Road, Shantou 515041, Guangdong, PR China.

** Corresponding author at: Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.

E-mail addresses: nml@stu.edu.cn (E.-M. Li), lyxu@stu.edu.cn (L.-Y. Xu).

<https://doi.org/10.1016/j.biocel.2019.02.006>

Received 11 November 2018; Received in revised form 8 February 2019; Accepted 20 February 2019

Available online 26 February 2019

1357-2725/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (<http://creativecommons.org/licenses/BY/4.0/>).

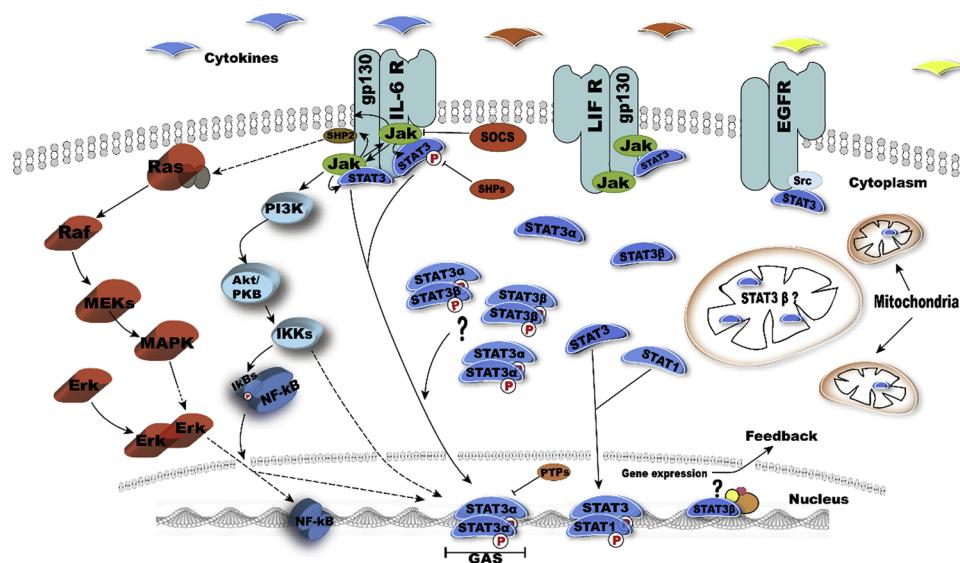
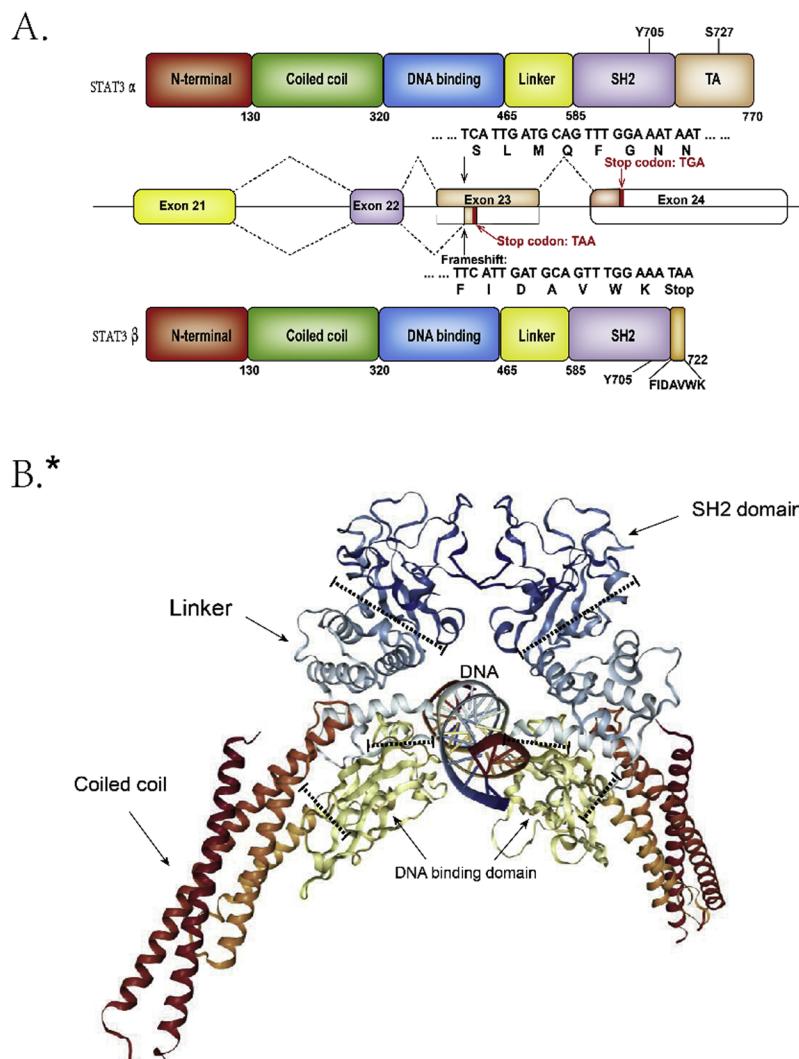


Fig. 1. IL-6-STAT3 pathway and its associated networks.

Groner and von Manstein, 2017)) (Gouilleux-Gruart et al., 1996; Lai and Johnson, 2010; Quesnelle et al., 2007). STAT3 was initially identified as APFR (Acute Phase Response Factor), which is responsible for activating the promoters of acute phase genes in response to IL-6 (Wegenka et al., 1993). The canonical mechanism of STAT3 signalling is that it exists as a latent, un-phosphorylated monomer in the cytosol until cytokines or growth factors [e.g., IL-6, IL-10, EGF, PDGF, and TNF] engage their cognate receptors. The ligand/receptor interaction causes a change in the confirmation and concurrent activation of the receptor associated JAK (Janus Kinase) proteins. Activated JAKs transphosphorylate each other and the cytoplasmic tail of the receptor on the tyrosine residues, which provides docking sites for STAT3 to be recruited via its SH2 domain. Once recruited, STAT3 is phosphorylated on a single C-terminal tyrosine residue (Y705) by JAKs. This Y705 phosphorylation provides the possibility for STAT3 dimerization, which translocates into the nucleus, which is assisted by importin- α 3 (Liu et al., 2005), and bind to consensus DNA sequences (γ -activated sequence (GAS) TTCNNNGAA (Becker et al., 1998)) and initiates transcription (Fig. 1). This pathway is tightly regulated in normal cells and transient (Heim et al., 1995; Stahl et al., 1995; Garama et al., 2016). However, a plenty of studies have provided evidence of nearly 70% tumor cell lines and patient samples for the incidence of constitutive STAT3 activity, such as breast (Bharadwaj et al., 2015), pancreas (Desrivieres et al., 2006; Gouilleux-Gruart et al., 1996), head and neck squamous cell carcinoma (HNSCC) (Lai and Johnson, 2010) and leukaemia and lymphoma (Quesnelle et al., 2007; Wegenka et al., 1993).

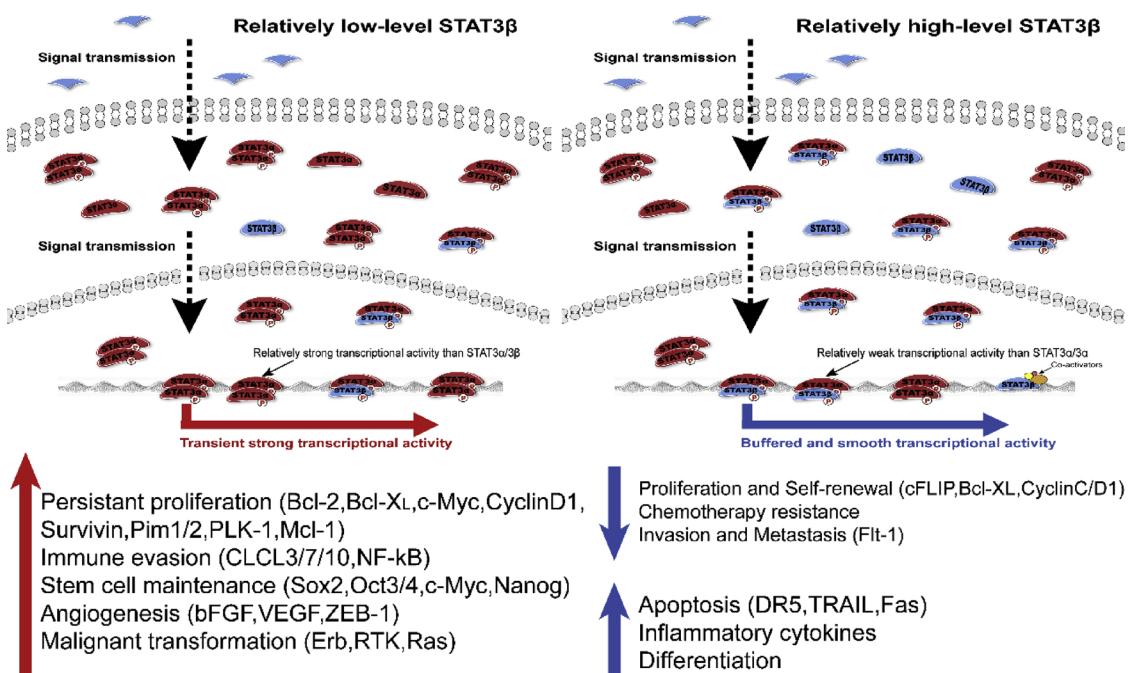

Recently, a growing number of studies have indicated that STAT3 β , a splice variant of STAT3, may play a suppressive effect, since it lacks the TAD (transactivation domain), which is in contrast to STAT3 α (Schaefer et al., 1997; Maritano et al., 2004; Dewilde et al., 2008) (Fig. 2). Experimental data dating back to 1996 support this concept. Caldenhoven E. et al. found that the co-expression of STAT3 β inhibited the transactivation potential of STAT3 α and suggested that STAT3 β functioned as a negative regulator of transcription (Caldenhoven et al., 1996). Conversely, STAT3 β appears to regulate inflammatory factors, affect the tumour microenvironment and attract immune cells to play a role in tumour inhibition (Zammarchi et al., 2011; Wang et al., 2004; Dang et al., 2015). Importantly, increasing numbers of studies demonstrate that a relatively high-STAT3 β (compared with STAT3 α) level exerts a tumour suppressive effect in several tumour cell lines, acting as a dominant negative regulator (Yu et al., 2009; Couto et al., 2012; Musteanu et al., 2010). Our lab demonstrated that high STAT3 β expression converts the prognostic value of pSTAT3 α ^{Y705} from

unfavourable to favourable in patients with ESCC (oesophageal squamous-cell carcinoma) (Zhang and Lai, 2014). Moreover, the induction of a splicing switch towards the beta isoform leads to apoptosis and cell-cycle arrest in STAT3-dependent cell lines via the activation of a unique gene expression signature (Musteanu et al., 2010). Overall, the balance between the two isoforms of STAT3 is apparently crucial to determining the occurrence and development of cancers, which can be depicted as a “spongy cushion” effect (Fig. 3).

2. STAT3 overview

2.1. STAT3 canonical activities

In the 1980s, the Darnell laboratory was investigating interferon-induced gene expression and found the existence of some transducers (Lerner et al., 1984; Decker et al., 1989). The STAT proteins were eventually biochemically identified as the key signalling molecules in the interferon pathway in the early 1990s (Schindler et al., 1992). STAT3 was initially identified as APRF, a DNA-binding activity appearing in IL-6-treated hepatocytes and interacting with a *cis*-acting element on the promoter of acute-phase genes (Wegenka et al., 1993). STAT3 is a multifunctional factor protein that is involved in a striking number of functions and activates distinct repertoires of genes in different contexts via the stimulation of many factors (e.g., IL-6 family members, leptin, IL-12, IL-2, IFNs, IL-10, G-CSF, growth hormone, EGF, HGF, LIF, and v-Src (Zhong et al., 1994; Ruff-Jamison et al., 1994; Tian et al., 1994; Ihle and Kerr, 1995; Seto et al., 2015; Ram and Iyengar, 2001). Taking IL-6 for example (Fig. 1), receptor-associated JAKs are phosphorylated through gp130 when IL-6 combines with the IL-6 receptor. Subsequently, phosphorylated JAKs, in turn, cause multiple phosphorylation events at tyrosine residues within the cytoplasmic domain of the cytokine receptor, thereby providing a docking site for the SH2 domain (Src homology 2) of STAT3. By combining with the docking site, STAT3 becomes phosphorylated at Y705, a critical tyrosine on the C-terminal domain of STAT3, and it gains the ability to dimerize with another monomer through the reciprocal interaction of the SH2 domain (Akira et al., 1994; Yu et al., 1995; Sasse et al., 1997; Shuai et al., 1994). Dimeric STAT3 complexes translocate to the nucleus, where they bind to response elements in the promoters of target genes to stimulate transcription. In addition to the phosphorylation of Y705, which is seen as a key activating mechanism of STAT3, S727 (serine 727) phosphorylation, in the C-terminal domain, promotes the association of STAT3 with transcription co-activators (including p68,


Fig. 2. A. Schematic representation of STAT3 alternative splicing originated from frameshift and their functional domains. B.* 3D structure of STAT3 β heterodimer. (This diagram is excerpted from the RCSB PDB (www.rcsb.org) of PDB ID: 1BG1, and the original article is "Three-dimensional structure of the Stat3 β homodimer bound to DNA. Nature. 1998 Jul 9;394(6689):145–51.".

p300/CBP), providing the maximal activation of particular target genes (Schuringa et al., 2001; Heinrich et al., 2003; Frank, 2007). For instance, in prostate cancer and chronic lymphocytic leukaemia, the phosphorylation of S727, rather than Y705, was found to be crucial for the nuclear translocation, DNA binding, and tumour-promoting function of STAT3 (Hazan-Halevy et al., 2010).

The JAK-STAT3 signalling pathway is engaged by many cytokines and growth factor stimuli to control diverse biological processes in a both cell- and tissue-specific manner. Remarkably, STAT3 is the only family member that is early embryonic lethal on inactivation, which indicates the biological importance of STAT3 (Takeda et al., 1997). Many STAT3 targets, such as Survivin, Cyclins and the Bcl-2 family proteins, promote cell proliferation and survival (Yu et al., 2007; Yue and Turkson, 2009). Studies using conditional STAT3 knockout mice provide evidence that STAT3 is required for the development and differentiation of various tissue types, such as the skin, immune system, liver, mammary gland, thymus and nervous system (Levy and Lee, 2002). For example, the deletion of STAT3 in the mammary glands suppresses apoptosis in glandular epithelial cells and leads to a delayed glandular involution (Wegenka et al., 1993). In another study, the ablation of STAT3 in keratinocytes was found to impair the migration of keratinocytes and skin remodelling (Sano et al., 1999). In addition, STAT3 is critical to the development and biology of immune cells. In

one study in which STAT3 was conditionally ablated in all stratified epithelia, including the thymic epithelia, there was a dramatic increase in apoptosis in thymocytes. In addition, the STAT3-depleted thymocytes were more susceptible to apoptosis induced by dexamethasone and γ -irradiation (Sano et al., 2001). In another study, CD4 $^+$ T cell differentiation in inflammatory responses was shown to be regulated by STAT3 through Loxl3's deacetylation (Ma et al., 2017), and even in tumour cell lines, its inactivation triggers growth arrest and cell death (Bowman et al., 2000). These proliferative gene targets include Cyclin D1, c-Myc, PLK-1 and Pim1/2 (Avalle et al., 2012). Accumulating evidence suggests that STAT3 plays a critical role in promoting the self-renewal of cancer stem cells (Sherry et al., 2009; Guryanova et al., 2011; Marotta et al., 2011; Kim et al., 2013).

In addition to STAT3's proliferative and survival features, this protein also functions in resistance to apoptosis and the induction of angiogenesis. In one study, STAT3 was shown to be important in mediating the anti-apoptotic effect of IL-6 in the presence of a low-serum culture environment (Takeda et al., 1998). Among many cancer cell types, STAT3 transcriptionally increases the expression of various anti-apoptotic proteins, such as survivin and the Bcl-2 family members (e.g., Bcl-X $_L$, Bcl-2 and Mcl-1) (Yu et al., 2007; Regis et al., 2008). Moreover, STAT3 negatively controls the manifestation of p53, which helps in the induction of apoptosis, as well as inhibiting cellular proliferation (Niu

Fig. 3. The "spongy cushion" effect of STAT3 β occurs through the formation of a STAT3 α /STAT3 β heterodimer in contrast to a STAT3 α /STAT3 α homodimer in cancer. STAT3 β mitigates the continuously oncogenic role of STAT3 α and amplifies its unique role when STAT3 β keep a relatively high-level. In contrast to STAT3 α , STAT3 β reduces proliferation and self-renewal, weakens invasion and movement, lessens chemotherapy resistance and induces apoptosis in cancer.

et al., 2005). STAT3 is shown to cooperate with c-Jun to suppress the expression of FAS, a crucial mediator of the extrinsic apoptotic pathway. Multiple studies demonstrate that activated STAT3 protects cancer cells from FAS ligand-induced apoptosis and p53-dependent apoptosis (Niu et al., 2005; Ivanov et al., 2001, 2002; Kunigal et al., 2009). It must be noted, however, that under physiological conditions, STAT3 may act as an inducer of cell death. In particular, STAT3 is required for lysosome-mediated epithelial cell death during mammary gland involution, where LIF functions as an activator of STAT3 (Kreuzaler et al., 2011). Increased VEGF expression in cultured cell lines, animal models and patient cancer specimens, as well as tumour angiogenesis *in vivo*, is also induced via the STAT3 pathway in diverse human cancers, such as head and neck squamous cell carcinoma, melanoma, pancreatic cancer, cervical cancer, colorectal cancer, and renal carcinoma (Wei et al., 2003a, b; Niu et al., 2002; Xu et al., 2005; Kujawski et al., 2008; Jung et al., 2007). STAT3 directly mediates the pro-angiogenic activity of VEGF in microvascular endothelial cells (Bartoli et al., 2003). Researchers reveal that STAT3 directly binds to the promoter region of the VEGF gene (sometimes combined with HIF1 α (Oh et al., 2011)) and promotes its transcription, and using an inducible STAT3 knockout mouse model, it is revealed that STAT3 promotes the production of angiogenic factors (including VEGF and bFGF) in myeloid-derived suppressor cells and macrophages present in the tumour microenvironment, thereby stimulating endothelial cell migration and tumour angiogenesis (Wei et al., 2003a, b; Niu et al., 2002; Kujawski et al., 2008).

Cellular movement and migration have long been an area of interest and importance to scientists. Especially for tumour cells, cellular invasion and metastasis are critical steps for the tumour prognosis. Many studies show that STAT3 promotes invasiveness and the metastatic potential of cancer cells by triggering EMT (epithelial to mesenchymal transition) via the upregulation of several key EMT regulators, such as Twist-1, Snail and ZEB-1 (Yadav et al., 2011; Lo et al., 2007; Guo et al., 2013; Xiong et al., 2012). In one study in SKOV3 cells, STAT3 signalling was revealed to be important for cell motility, and the exhaustion of STAT3 using siRNA reversed the situation; thus, the cellular migration rate was reduced (Silver et al., 2004). In another study, the loss of Stat3

expression in mouse embryonic fibroblasts led to an elevation in Rac1 activity, which promoted a random mode of migration by reducing the directional persistence and formation of actin stress fibres (Teng et al., 2009). STAT3 increases the expression of various MMPs (matrix metalloproteinases), which facilitate cancer cell invasiveness by degrading various extracellular matrix proteins. In mice, STAT3 reduces pancreatic cancer cell invasiveness and MMP-7 using an shRNA (Li et al., 2011). STAT3 protein expression is upregulated by activated STAT3, which directly binds to the promoter of the MMP-2 gene in melanoma (Li et al., 2011). Likewise, MMP-1 and MMP-9 is also regulated by STAT3 (Dechow et al., 2004; Itoh et al., 2006). As depicted in some studies, inflammation also plays a role in immune evasion. In 1999, Takeda et al. shows that STAT3 inhibited TH1-type inflammation after LPS stimulation by suppressing the production of specific cytokines and nitric oxide (Takeda et al., 1999). In another study, the activities of STAT3 in tumour cells enhanced the expression of several immune-suppressing soluble factors, such as IL-6, IL-10 and VEGF, all of which are known to prevent the maturation of dendritic cells (Sun et al., 2006).

As indicated above, the canonical STAT3 pathway regulates many genes, the expression of which is required for cancer initiation, development and progression, including uncontrollable proliferation, anti-apoptosis, invasion, angiogenesis and immune evasion. Once the negative regulatory loop of STAT3 is lost (mainly SOCS, PTPs and STAT1) (Zhang and Lai, 2014; Avalle et al., 2012; Wang et al., 2012; Croker et al., 2003), STAT3 becomes constitutive activated and provides the possibility of oncogenesis. In addition, some pre-clinical studies demonstrate that constitutively phosphorylated-STAT3 (pSTAT3) is a common characteristic of many cancers (Yang et al., 2013; Macha et al., 2011; Huang et al., 2012; Li et al., 2015a; Shi et al., 2015). However, to date, no STAT3 gene mutation has been detected in any cancer.

2.2. STAT3 non-canonical activities

In addition to the canonical activities regulated by the phosphorylation of Y705 and the transcriptional function of STAT3, unph-STAT3 (un-phosphorylated STAT3) is recognized as an important

transcriptional regulator (Yang et al., 2005, 2007; Yang and Stark, 2008). For example, Yu et al. (2002) found that unph-STAT3, through a direct physical interaction with p65, served as a dominant-negative inhibitor that suppressed the ability of ph-NF κ B to induce the cytokine-dependent activation of the iNOS promoter in mesangial cells. In contrast, some studies show that unph-STAT3 interacts with NF κ B in the nucleus to drive the expression of multiple cancer-related genes, such as RANTES, IL-6, IL-8, MET and MRAS (Yang et al., 2005, 2007). Another research group found that unph-STAT3 binds to similar DNA sites as the Y705 phosphorylated and dimerized STAT3 (e.g., GAS elements), but unph-STAT3 works in collaboration with transcriptional regulators, such as NF κ B, to control a series of genes not normally affected by tyrosine-phosphorylated STAT3 (Timofeeva et al., 2012). With respect to modification, one group discovered that STAT3 interacted with DNMT1 (DNA methyltransferase1) and HDAC1 (histone deacetylase 1), by which STAT3 facilitated the gene methylation and silencing of SHP-1 in malignant T lymphocytes (Zhang et al., 2005). In another group, it was revealed that K685-acetylated STAT3 cooperated with DNMT1 to silence several tumour suppressor genes, including TP53, SHP-1, SOCS3 and CDKN2A, in melanomas (Lee et al., 2012).

Intriguingly, in 2009, STAT3 was also identified in the mitochondria (Gough et al., 2009), and its import was dependent on the phosphorylation at S727 (Tammimeli et al., 2013). This mitochondrial STAT3 supports the activity of the Electron Transport Chain (ETC), which is required for ATP production and the opening of the mitochondrial permeability transition pore (mPTP). The loss of STAT3 reduces the activity of the ETC, especially complex I, II and V (Gough et al., 2009; Wegrzyn et al., 2009), which is restored by reconstituting these cells with a mitochondrially restricted form of STAT3. These mitochondrial activities of STAT3 have consequences both in normal tissue homeostasis (e.g., neurite outgrowth and cardiac function) and in pathological conditions (e.g., tumour growth and tissue damage in response to ischaemia/reperfusion injury) (Wegrzyn et al., 2009). However, the deletion of STAT3 from keratinocytes results in the increased expression of mtDNA encoded genes, implying that STAT3 represses the transcription of the mitochondrial genome. Through an unknown mechanism STAT3 traverses two mitochondrial membranes to reside in the mitochondrial inner membrane or the matrix where it augments the activity of the electron transport chain and impedes the opening of the mPTP. This has consequences on cellular ATP production, ROS concentration, calcium homeostasis, and cell survival (Garama et al., 2016; Yang and Rincon, 2016; Meier et al., 2017). The mitochondrial pool of STAT3 is an emerging and exciting area of STAT biology. However, the mechanisms, especially in tumours, by which STAT3 is imported into the mitochondria and its activities within the mitochondrion still need to be illustrated.

It is obvious that STAT3 exists in the cytosol, since mitochondrial STAT3 is imported from the cytosol. Importantly, some research groups also found that STAT3 functions in regulating the cytoskeleton. In one study, tumour-derived cell lines displayed higher migration, invasion, and metastatic abilities and showed a disrupted distribution of cell-cell junction markers, which was mediated by the STAT3-dependent over-expression of the COOH terminal tensin-like (Cten) focal adhesion protein and was also significantly upregulated in STAT3C (a continuously activated STAT3 mutant construct with two cysteine substitutions at the residues A661 and N663) mammary tumours (Barbieri et al., 2010). Consistent with this concept, another study indicates that STAT3 modulates the microtubule network by binding to the COOH-terminal tubulin-interacting domain of stathmin and antagonizing its microtubule destabilization activity (Ng et al., 2006). Moreover, Debra L.S. et al. (Silver et al., 2004) found that activated STAT3 coimmunoprecipitated with phosphorylated paxillin and focal adhesion kinase (FAK) and required paxillin and Src for its localization to focal adhesions in ovarian cancer. Recently, one study also showed that the depletion of STAT3 in gastric cancer cells impaired microtubule polymerization, due to the disruption of the interaction between STAT3 and

stathmin, and as a result, cell migration and invasion were decreased (Wei et al., 2013).

3. STAT3 β (A many-sided splice form)

3.1. STAT3 β forms a more stable dimer accompanied by prolonged tyrosine 705 phosphorylation and nuclear retention

Protein structure is characterized by a hydrophobic/hydrophilic equilibrium, and structural stability depends largely on the hydrophobic nature of the molecule. The terminal of STAT3 β is approximated as a truncated form of STAT3 α , but the hydrophobicity of STAT3 β is better than STAT3 α . Moreover, in a physical chemistry study, Asn466 is conserved in STAT1 to STAT4 and is critical for the sequence-specific recognition in STAT3 (Fig. 2), and the classic SH2 domain interactions are strongly conserved in both STAT3 isoforms (Becker et al., 1998). Because of the complexity of the STAT3 structure, there are many differences between STAT3 α and STAT3 β in biochemistry, and the related issues are discussed below.

After identifying that STAT3 β cooperated with c-Jun, Schaefer et al. employed COS-7 cells transfected with STAT3 expression plasmids to exploit the functional differences between STAT3 α and STAT3 β . These researchers found that activated STAT3 β , in transfected COS cells, was more stable and had a greater DNA-binding activity than activated STAT3 α . However, STAT3 α exhibited a stronger transcriptional activity than STAT3 β (Schaefer et al., 1997). Considering that STAT3 α^{448} (a mutant of STAT3 α lacking its highly acidic C-terminal 48 amino acids) had properties similar to STAT3 β , they concluded that this was due to the presence or absence of the acidic C-terminal tail of STAT3 α rather than the STAT3 β 's 7 specific terminal sequence, and the acidic tail of STAT3 α may destabilize the active dimeric form of STAT3 α , resulting in a lower DNA-binding activity and a more rapid dephosphorylation (Schaefer et al., 1997). Subsequent reports also confirm these phenomena. Another group measured the DNA binding strength and dimer stability in COS-7 cells and revealed that the C-terminal deletions of STAT3 α increased both the DNA binding activity and dimer stability of STAT3 α , suggesting that STAT3 α and STAT3 β have similar binding strengths via an EMSA assay (Park et al., 2000).

Interestingly, STAT3 β tends to be constitutively phosphorylated at tyrosine 705 and binds to DNA and promotes transcription in the absence of cytokine treatment, whereas STAT3 α does not, indicating the increased half-life of the tyrosine phosphorylated STAT3 β (Caldenhoven et al., 1996; Schaefer et al., 1995). Related studies were reported by two other groups. Firstly, U. Bharadwaj et al. revealed STAT3 β 's contribution to constitutive STAT3 phosphorylation in breast cancer (Bharadwaj et al., 2014). Secondly, Ivan H.W.NG et al. showed the sustained nuclear translocation and phosphorylation of STAT3 β following cytokine exposure, which was in contrast with the transient nuclear translocation and phosphorylation of STAT3 α in AD293 cells (a variant of HEK-293 cell), and they also revealed that STAT3 β enhanced and prolonged the phosphorylation and nuclear retention of STAT3 α . However, a STAT3 β R609L mutant (with a disrupted SH2 domain) did not show similar phenomena (Ng et al., 2012), indicating that STAT3 β 's effects need Y705 phosphorylation and dimerization. Our lab's findings, in ESCC cell lines (EC109 and KYSE150), also revealed the same phenomena (Zhang et al., 2016). In addition, the unique 7 amino acid tail (FIDAVWK) may also contribute to STAT3 β 's features, since it is reported to prolong the nuclear retention of phosphorylated STAT3 β (Huang et al., 2007). One possible reason that might account for these phenomena is that the STAT3 β 's hydrophobic tail protects STAT3 β from dephosphorylation or keeps it from degradation by proteasome (STAT1 β protects STAT1 α from degradation (Zhang et al., 2017; Baran-Marszak et al., 2004)), and thus keeps the STAT3 β dimers (e.g., STAT3 α/β , STAT3 β/β) constitutively phosphorylated and exhibiting a stable DNA binding ability by combining with other co-activators. For the phosphatase of STAT3, TC45 (the nuclear form of TC-PTP), SHP1,

and SHP2 are involved in the rapid dephosphorylation of STAT3 (Yamamoto et al., 2002; Kim et al., 2010; Sharma et al., 2016; Lee et al., 2017). Initially, researchers thought that the absence of the interaction of the phosphatase (e.g., TC45) with STAT3 β , due to its different STAT3 β C-terminal sequence, might contribute to the prolonged Y705 phosphorylation and nuclear retention of STAT3 β . However, subsequent studies suggested otherwise, because either isoform interacted with TC45 (Ng et al., 2012). Another point of view is that STAT3 β may have to cooperate with other activators (Schaefer et al., 1995; Ivanova et al., 2004), thereby showing a diverse transcriptional pattern in contrast to STAT3 α , since STAT3 β lacks the transactivation domain (especially the S727 site, which is shown to enhance transcriptional activities (Schuringa et al., 2001)). Moreover, one paradoxical phenomenon is that the enforced expression of STAT3 β substantially increases the level of pSTAT3 α ^{Y705}, which is considered an oncogenic signal. However, STAT3 α is retarded in the presence of sufficient STAT3 β , which indicates that whether pSTAT3 α ^{Y705} level is oncogenic or carcinostatic is largely dictated by the expression status of STAT3 β (Ng et al., 2012; Zhang et al., 2016). All in all, further exploration in this field has implications for relevant issues.

3.2. STAT3 β -specific genes and their roles in regulating inflammation, immune, stemness and cytoskeleton rearrangement

3.2.1. STAT3 β -specific genes

Considering that STAT3 β lacks the transactivation domain (TAD), it may be short of transcriptional activities in contrast to STAT3 α . In 1995, however, Schaefer et al. identified that STAT3 β (but not STAT3 α) and c-Jun were capable of cooperatively activating a certain promoter containing an IL-6 responsive element in the absence of added cytokines or growth factors (Ivanov et al., 2001). Another group also identified that STAT3 β associates with the HLH and the C-terminal regions of STRA13, co-expression of STRA13 with STAT3 α or STAT3 β modulated the transcriptional outcome indicating a repressing rather than activating potential for the STAT3 β complexes (Ivanova et al., 2004). These may indicate that the transcriptional activity of STAT3 β is quite similar to the different transcriptional activities of the two STAT1 isoforms (known as STAT1 α and STAT1 β) (Shuai et al., 1993). In another study, the activities of three promoters (2-macroglobulin, c-fos, and p53) in Stat3 β -deficient MEFs (mouse embryonic fibroblasts) was tested using a transient reporter assay, and their activities were substantially reduced. Furthermore, they explored the effects of Stat3 β -deficiency on the expression of endogenous transcripts using an oligonucleotide array (283 genes exhibiting differential expression, with 36 genes showing a greater than 2-fold differential expression) and an in-depth identification by RT-PCR (Crip, Tfpi, Ptn, and Scya2 RNA were elevated in Stat3-deficient MEFs, while the Sdf1 and Igfbp5 transcripts were elevated in the WTs) (Yoo et al., 2002). Similarly, Ng et al. examined the impact of the reconstitution of the STAT3 $^{-/-}$ MEFs with either isoform on gene expression and found 651 genes unique for the re-expression of STAT3 α , 1331 genes unique for STAT3 β and 506 genes shared between STAT3 α and STAT3 β , with statistical significance (Ng et al., 2012). Recently, morpholinos (one alternative splicing modulator) were applied to specifically promote a physiological α -to- β splicing shift in one type of breast cancer cell line, revealing a unique STAT3 β signature, with the downregulation of specific targets (including lens epithelium-derived growth factor, p300/CBP-associated factor, CyclinC, peroxisomal biogenesis factor 1, and STAT1 β), which are distinct from that canonical STAT3 targets that are typically associated with total STAT3 knock-down (Zamarchi et al., 2011). Moreover, mice specifically lacking STAT3 α but still expressing STAT3 β (STAT3 α - $/$) do not die during embryogenesis, which indicates the transcriptional compensatory role of STAT3 β (Maritano et al., 2004). All of these findings reveal that STAT3 β functions as a transcriptional regulator and specifically regulates genes by cooperating with other factors (e.g., c-Jun, STRA13), since it lacks the transactivation domain.

3.2.2. STAT3 β in inflammation and immunity

Continuous inflammation is a common feature of the tumour microenvironment and plays a crucial role in both the occurrence and development of many malignancies (Balkwill and Mantovani, 2012; Mantovani, 2010; Hanahan and Weinberg, 2011; Hainaut and Plymoth, 2013). STAT3 was initially identified as acute-phase response factor (APRF) (Wegenka et al., 1993) and was considered as a key player in mediating inflammation-related tumourigenesis via constitutively activating and participating in a positive feedback loop with IL-6 and NF κ B (a pro-oncogenic transcription factor) (Yu et al., 2009; Grivennikov and Karin, 2010). For STAT3 α , it acts both as a pro- and anti-inflammatory factor depending on the activating signal (Hutchins et al., 2013; Hodge et al., 2005). For STAT3 β , on the one hand, it appears to be a suppressor of systemic inflammation. Two Stat3 $^{-/-}$ mice studies show a hyper-responsiveness to endotoxic shock and a diminished recovery from that (Maritano et al., 2004; Yoo et al., 2002). Stat3 $^{-/-}$ mice develop exacerbated atherosclerosis in the absence of ApoE (Lee et al., 2013a). Peritoneal macrophages from Stat3 $^{-/-}$ mice produce significantly more TNF and IL-6 than Stat3 $^{+/+}$ control mice and have reduced IL-10 (an anti-inflammatory factor) when treated with LPS (lipopolysaccharide) (Maritano et al., 2004), indicating that STAT3 β may directly or indirectly participate in the regulation of IL-10 expression to function as an inflammatory regulator. On the other hand, STAT3 β upregulates the expression of pro-inflammatory cytokines in B16 melanoma cells, and in supernatants from STAT3 β -transfected B16 melanoma cells, it induces the activation of macrophages, granulocytes and dendritic cells, indicating the antitumoural aspect of STAT3 β (Wang et al., 2004). Additionally, in an animal model, restoring STAT3 β re-induces acute phase response genes in hepatocytes (Alonzi et al., 2001). The same protein gives rise to two apparently opposite results, and this may also indicate the diversity of STAT3 β 's co-activators. In addition, the cell-specific expression of STAT3 β in macrophages also exhibits antitumour effects in mouse breast cancer, indicating that STAT3 β may also play an important role in the cells from the tumour microenvironment (Dang et al., 2015). In addition to regulating the expression of inflammatory factors, STAT3 β may attenuate the secretion of factors that suppress the activity of immune cells, thereby indirectly activating dendritic cell maturation (Wang et al., 2004), which is a process that involves MHC class II and co-stimulatory molecule expression (Park et al., 2004; Kitamura et al., 2005).

3.2.3. STAT3 β and stemness

A major role of STAT3 is self-renewal. Recently, increasing studies reveal that STAT3 also plays a critical role in the regulation of the stemness of cancer stem cells (Sherry et al., 2009; Guryanova et al., 2011; Marotta et al., 2011; Kim et al., 2013; Liu et al., 2013; Tu et al., 2012). For example, STAT3 isoforms have distinct roles in myeloid cell proliferation, survival and differentiation, indicating that STAT3 β may not act as a dominant negative regulator in these processes. STAT3 β has a strong cell and tissue specificity, and the ratio of the STAT3 α :STAT3 β mRNA and protein levels ranges from 4:1 to 10:1 and 1:3 to 10:1 (Bharadwaj et al., 2014). According to these studies, the ratio of STAT3 α :STAT3 β is highly regulated in myeloid cells and is consistently decreased during cell maturation and activation (Biethahn et al., 1999; Hevehan et al., 2002; Chakraborty et al., 1996). In another study, in normal human CD34 $+$ bone marrow cells and HL60 cells, both reported to differentiate upon G-CSF stimulation, G-CSF does not activate STAT3 α but only an 83 kD form of STAT3 (STAT3 β) (Chakraborty et al., 1996). However, only STAT3 α (but not STAT3 β) generates a markedly higher number of neutrophils in response to G-CSF when it is over-expressed in the 32Dcl3 myeloid cell line (Redell et al., 2007). Our research showed that STAT3 β overexpression significantly decreased the clonogenic capacity and increased the sensitivity to 5-FU and cisplatin in a STAT3 β dose-dependent manner (Zhang et al., 2016). Similar to the above, STAT3 also plays a role in the stemness of other cells (Lomada et al., 2016; Sherry-Lynes et al., 2017; Ma et al., 2015; Lee

et al., 2013b), however, whether STAT3 β plays a regulatory role in these process remain to be explained.

3.2.4. STAT3 β and the cytoskeleton rearrangement

The cytoskeleton and focal adhesions are two main aspects of cancer metastasis, a multiple process in which tumour cells leave their original location and go to new tissues through the blood vessels. Various reports have shown that increased STAT3 activity can enhance intercellular contact and up-regulate the expression of genes related to tumor cell invasion and metastasis, suggesting that STAT3 may be a sensor for tumor cell contact. (Tu et al., 2012; Gatsios et al., 1996; Pansky et al., 2000; Peng et al., 2016; Zhou et al., 2015; Lee et al., 2010). Sano et al. first described that STAT3 possessed a pivotal role in cellular movement and wound healing processes in cultured keratinocytes (Sano et al., 1999). STAT3 cooperates with stathmin and modifies microtubule dynamics and the migration of cells, such that microtubule depolymerization starts when an oncoprotein 18-stathmin binds to α/β -tubulin heterodimers (Ng et al., 2006). Additionally, the loss of STAT3 displays some changes in randomized cellular migration, while STAT3 indirectly controls Rac-1 activity to sustain migration (Teng et al., 2009). Interestingly, in an *in vitro* study using SKOV3 cells, STAT3 is critical for cell motility, and the knock-down of STAT3, using siRNA, reverses the situation, such that cellular migration is repressed, and it was further indicated that ph-STAT3 co-immunoprecipitated with paxillin and focal adhesion kinase and required paxillin and Src for its localization to the focal adhesions (Silver et al., 2004). In other studies, STAT3 activation can reduce the expression of tumor suppressor gene E-cadherin in human skin squamous cell carcinoma (Hillmer et al., 2016) and prostate epithelial cells (Azare et al., 2007), activate ErbB2/integrin β 4 signaling pathway in breast cancer (Guo et al., 2006), and increase the level of ICAM-1/CD54 in human glioma cells (Kesanakurti et al., 2013), so that cell invasion and metastasis ability enhanced.

However, STAT3 β does exactly the opposite role compared to STAT3 (STAT3 α) (Niu et al., 2001; Xu et al., 2009). This is an interesting area indicating that STAT3 β may participate in these regulations, considering that STAT3 β antagonizes STAT3 α by inducing or inhibiting the expression of genes associated with cell motility. Additionally, our group indeed found that STAT3 β disrupted the rhythm of ESCC movement (unpublished data).

3.3. Relatively high-level STAT3 β protein levels corroborate to create favourable changes due to the “spongy cushion” effect in cancer

To date, the dominant negative role of STAT3 β has been reported in various types of cancer, including melanoma, breast cancer, oesophageal cancer, lung cancer and colonic cancer (Zammarchi et al., 2011; Ivanov et al., 2001; Zhang et al., 2016; Niu et al., 2001; Xu et al., 2009; Niu et al., 1999; Ivanov et al., 2009; Rivat et al., 2005). One group found that the overexpression of STAT3 β induces cell death in B16 melanoma cells *in vitro* (Niu et al., 1999). Additionally, in U266 myeloma cells, which inherently express elevated Bcl-X_L, STAT3 β also promotes programmed apoptosis (Catlett-Falcone et al., 1999) by inducing soluble necrosis factors (Niu et al., 2001). Similar results are also confirmed in lung cancer, which show the downregulation of Bcl-X_L and Cyclin D1 (Xu et al., 2009). STAT3 β also efficiently upregulates DR5 (the tumour necrosis factor-related apoptosis-inducing ligand receptor) surface expression and downregulates cFLIP (caspase-8 inhibitor) levels in melanoma cells *in vitro* and *in vivo* (Ivanov et al., 2009). Another group revealed that the overexpression of STAT3 β downregulates the VEGF receptor Flt-1, neuropilins 1 and 2, and the inhibitor of DNA binding/differentiation (Id-2) gene product involved in the neoplastic transformation by using DNA microarrays and a gene differential expression analysis (Rivat et al., 2005). Our lab's studies revealed that a moderate/strong expression of STAT3 β significantly was correlated with a longer overall survival and recurrence-free survival and was less likely to have lymph node metastasis in ESCC (Zhang

et al., 2016). These findings indicate that STAT3 β is an independent protective factor for patient survival. STAT3 β can form more stable dimer (STAT3 α /STAT3 β , STAT3 β /STAT3 β), it occupies STAT3 α stably and weakens the transcriptional ability of STAT3 α /STAT3 α thus is suggested to have a promising future in gene therapy, since there are no specific small-molecule inhibitors have entered the clinical stage only targeting STAT3 α (Schust et al., 2006; Hong et al., 2015; Li et al., 2015b; Huang et al., 2018). Altogether, high-level STAT3 β levels in cancer cells indeed lead to favourable results. However, among the published clinical studies, researchers rarely differentiate the relative levels of the two STAT3 isoforms, and its prognostic significance has also rarely been identified. As we can see from the above mechanisms, STAT3 β exerts its negative roles mainly because STAT3 β lacks the TAD domain and forms a transcription complex with STAT3 α or other co-activators, thereby playing its unique role or repressing STAT3 α 's role. Thus, the surveying of STAT3 β independently of STAT3 α is meaningless. This molecular mechanism is depicted as a “spongy cushion” (Fig. 3), which cushions the transient and intense transcriptional role of STAT3 α , thus avoiding the excessive activation of STAT3 α . Meanwhile, the relatively high level STAT3 β amplifies its role in the regulation of inflammation, immunity, apoptosis, etc. Thus, in the exploration of STAT3 that is carried out to this extent, a careful distinction between STAT3 α and STAT3 β in different cell types and cancers is required.

4. Conclusions and perspectives

To date, there are four recognized subtypes of STAT3, including STAT3 α (92 kDa), STAT3 β (83 kDa), STAT3 γ (72 kDa) and STAT3 δ (64 kDa), while STAT3 α and STAT3 β are generated by alternative splicing, and STAT3 γ and STAT3 δ are derived from proteolytic processing and exhibit no transcriptional role (Hevehan et al., 2002; Nakajima et al., 2003; Hendry and John, 2004; Kato et al., 2004). The oncogenic role of STAT3 α has long been recognized, but its spliceform-STAT3 β has not yet been given adequate attention. STAT3 β is mainly distinguished from STAT3 α by its truncated terminus and exhibits unique features by cooperating with STAT3 α or other co-activators. In analyses from reports over the past thirty or forty years, many studies reveal the dominant negative role of STAT3 β (Caldenhoven et al., 1996; Niu et al., 2001; Xu et al., 2009; Niu et al., 1999; Epling-Burnette et al., 2001; Karni et al., 1999; Sinibaldi et al., 2000). However, the concrete reasons for this are unknown and are only combined with surface gene expression differences. A STAT3 β /3 β homodimer may exist, and a few reports also confirm that STAT3 β directly functions with other co-activators (Schaefer et al., 1995; Ivanova et al., 2004). In addition to the interactions between STAT3 α and STAT3 β , STAT3 also interacts with STAT1, which is quite similar in homology but exerts diametric effects. In addition, no one can deny the existence of STAT1 β /3 β and STAT1 α /3 β heterodimers, and their functions are even less known. All of these areas increase the complexity of STAT3's function. Moreover, recently, some groups have concentrated on mitochondrial STAT3 and found that STAT3 enhances the activity of the electron transport chain (Garama et al., 2016; Yang and Rincon, 2016; Meier et al., 2017; Huang et al., 2016). However, whether STAT3 β binds to mtDNA and such functions as its multiple nuclear roles need further verification. Finally, several studies have revealed the possibility of STAT3, especially STAT3 β , as a regulator of tumour cell invasion and migration, but the exact mechanism needs further study.

The adversity that we are faced with is the relative protein levels of STAT3 α :STAT3 β at approximately 4:1 (Bharadwaj et al., 2014). It is precisely because of this ratio that many current studies directly ignore the role of STAT3 β and choose STAT3 α as the major object. However, growing evidence demonstrates that STAT3 β does play an irreplaceable role accompanied by STAT3 α , and its “spongy cushion” effect is notable. The past cognition does not affect STAT3 β , and it might be a good drug target and independent prognostic marker in cancer. Interestingly, U.Bharadwaj et al. (Bharadwaj et al., 2014) developed monoclonal

antibodies that specifically recognize the unique CT7 epitope and do not cross-react with Stat3 α and “STAT3 β -deg” (proteolytic cleavage forms of Stat3 α), which brings many conveniences to the in-depth study of STAT3 β . Overall, we believe the exploration of STAT3 β will yield new insights into cancer therapy and provide new directions for STAT3 studying.

Conflict of interest

No conflicts of interest.

Acknowledgement

This work was supported by grants from the National Natural Science Foundation of China (No. 81772532).

References

Akira, S., et al., 1994. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. *Cell* 77 (1), 63–71.

Alonzi, T., et al., 2001. Essential role of STAT3 in the control of the acute-phase response as revealed by inducible gene inactivation [correction of activation] in the liver. *Mol. Cell. Biol.* 21 (5), 1621–1632.

Avalle, L., et al., 2012. STAT1 and STAT3 in tumorigenesis: a matter of balance. *JAKSTAT* 1 (2), 65–72.

Azare, J., et al., 2007. Constitutively activated Stat3 induces tumorigenesis and enhances cell motility of prostate epithelial cells through integrin beta 6. *Mol. Cell. Biol.* 27 (12), 4444–4453.

Balkwill, F.R., Mantovani, A., 2012. Cancer-related inflammation: common themes and therapeutic opportunities. *Semin. Cancer Biol.* 22 (1), 33–40.

Baran-Marszak, F., et al., 2004. Differential roles of STAT1alpha and STAT1beta in fludarabine-induced cell cycle arrest and apoptosis in human B cells. *Blood* 104 (8), 2475–2483.

Barbieri, I., et al., 2010. Constitutively active Stat3 enhances neu-mediated migration and metastasis in mammary tumors via upregulation of Ctn. *Cancer Res.* 70 (6), 2558–2567.

Bartoli, M., et al., 2003. VEGF differentially activates STAT3 in microvascular endothelial cells. *FASEB J.* 17 (11), 1562–1564.

Becker, S., Groner, B., Muller, C.W., 1998. Three-dimensional structure of the Stat3beta homodimer bound to DNA. *Nature* 394 (6689), 145–151.

Bharadwaj, U., et al., 2014. Monoclonal antibodies specific for STAT3beta reveal its contribution to constitutive STAT3 phosphorylation in breast Cancer. *Cancers (Basel)* 6 (4), 2012–2034.

Bharadwaj, U., et al., 2015. Drug-repositioning screening identified piperlongumine as a direct STAT3 inhibitor with potent activity against breast cancer. *Oncogene* 34 (11), 1341–1353.

Biethahn, S., et al., 1999. Expression of granulocyte colony-stimulating factor- and granulocyte-macrophage colony-stimulating factor-associated signal transduction proteins of the JAK/STAT pathway in normal granulopoiesis and in blast cells of acute myelogenous leukemia. *Exp. Hematol.* 27 (5), 885–894.

Bowman, T., et al., 2000. STATs in oncogenesis. *Oncogene* 19 (21), 2474–2488.

Caldenhoven, E., et al., 1996. STAT3beta, a splice variant of transcription factor STAT3, is a dominant negative regulator of transcription. *J. Biol. Chem.* 271 (22), 13221–13227.

Catlett-Falcone, R., et al., 1999. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. *Immunity* 10 (1), 105–115.

Chakraborty, A., et al., 1996. Granulocyte colony-stimulating factor activation of Stat3 alpha and Stat3 beta in immature normal and leukemic human myeloid cells. *Blood* 88 (7), 2442–2449.

Copeland, N.G., et al., 1995. Distribution of the mammalian Stat gene family in mouse chromosomes. *Genomics* 29 (1), 225–228.

Couto, J.P., et al., 2012. STAT3 negatively regulates thyroid tumorigenesis. *Proc. Natl. Acad. Sci. U. S. A.* 109 (35), E2361–70.

Croker, B.A., et al., 2003. SOCS3 negatively regulates IL-6 signaling *in vivo*. *Nat. Immunol.* 4 (6), 540–545.

Dang, W., et al., 2015. Strategy of STAT3beta cell-specific expression in macrophages exhibits antitumor effects on mouse breast cancer. *Gene Ther.* 22 (12), 977–983.

Dechow, T.N., et al., 2004. Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by Stat3-C. *Proc. Natl. Acad. Sci. U. S. A.* 101 (29), 10602–10607.

Decker, T., et al., 1989. Interactions of alpha- and gamma-interferon in the transcriptional regulation of the gene encoding a guanylate-binding protein. *EMBO J.* 8 (7), 2009–2014.

Desirivieres, S., et al., 2006. The biological functions of the versatile transcription factors STAT3 and STAT5 and new strategies for their targeted inhibition. *J. Mammary Gland Biol. Neoplasia* 11 (1), 75–87.

Dewilde, S., et al., 2008. Of alphas and betas: distinct and overlapping functions of STAT3 isoforms. *Front. Biosci.* 13, 6501–6514.

Epling-Burnette, P.K., et al., 2001. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. *J. Clin. Invest.* 107 (3), 351–362.

Frank, D.A., 2007. STAT3 as a central mediator of neoplastic cellular transformation. *Cancer Lett.* 251 (2), 199–210.

Garama, D.J., et al., 2016. Mitochondrial STAT3: powering up a potent factor. *Cytokine* 87, 20–25.

Gatsios, P., et al., 1996. Oncostatin M differentially regulates tissue inhibitors of metalloproteinases TIMP-1 and TIMP-3 gene expression in human synovial lining cells. *Eur. J. Biochem.* 241 (1), 56–63.

Gough, D.J., et al., 2009. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. *Science* 324 (5935), 1713–1716.

Gouilleux-Gruart, V., et al., 1996. STAT-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients. *Blood* 87 (5), 1692–1697.

Grivennikov, S.I., Karin, M., 2010. Dangerous liaisons: STAT3 and NF- κ B collaboration and crosstalk in cancer. *Cytokine Growth Factor Rev.* 21 (1), 11–19.

Groner, B., von Manstein, V., 2017. Jak Stat signaling and cancer: opportunities, benefits and side effects of targeted inhibition. *Mol. Cell. Endocrinol.* 451, 1–14.

Guo, W., et al., 2006. Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. *Cell* 126 (3), 489–502.

Guo, L., et al., 2013. Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition. *Oncogene* 32 (45), 5272–5282.

Guryanova, O.A., et al., 2011. Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. *Cancer Cell* 19 (4), 498–511.

Hainaut, P., Plymouth, A., 2013. Targeting the hallmarks of cancer: towards a rational approach to next-generation cancer therapy. *Curr. Opin. Oncol.* 25 (1), 50–51.

Hanahan, D., Weinberg, R.A., 2011. Hallmarks of cancer: the next generation. *Cell* 144 (5), 646–674.

Hazan-Halevy, I., et al., 2010. STAT3 is constitutively phosphorylated on serine 727 residues, binds DNA, and activates transcription in CLL cells. *Blood* 115 (14), 2852–2863.

Heim, M.H., et al., 1995. Contribution of STAT SH2 groups to specific interferon signaling by the Jak-STAT pathway. *Science* 267 (5202), 1347–1349.

Heinrich, P.C., et al., 2003. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. *Biochem. J.* 374 (Pt 1), 1–20.

Hendry, L., John, S., 2004. Regulation of STAT signalling by proteolytic processing. *Eur. J. Biochem.* 271 (23–24), 4613–4620.

Hevene, D.L., Miller, W.M., Papoutsaki, E.T., 2002. Differential expression and phosphorylation of distinct STAT3 proteins during granulocytic differentiation. *Blood* 99 (5), 1627–1637.

Hillmer, E.J., et al., 2016. STAT3 signaling in immunity. *Cytokine Growth Factor Rev.* 31, 1–15.

Hodge, D.R., Hurt, E.M., Farrar, W.L., 2005. The role of IL-6 and STAT3 in inflammation and cancer. *Eur. J. Cancer* 41 (16), 2502–2512.

Hong, D., et al., 2015. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. *Sci. Transl. Med.* 7 (314), 314ra185.

Huang, Y., et al., 2007. Stat3 isoforms, alpha and beta, demonstrate distinct intracellular dynamics with prolonged nuclear retention of Stat3beta mapping to its unique C-terminal end. *J. Biol. Chem.* 282 (48), 34958–34967.

Huang, C., et al., 2012. The expression and clinical significance of pSTAT3, VEGF and VEGF-C in pancreatic adenocarcinoma. *Neoplasia* 59 (1), 52–61.

Huang, Y., et al., 2016. Mitochondrial GRIM-19 as a potential therapeutic target for STAT3-dependent carcinogenesis of gastric cancer. *Oncotarget* 7 (27), 41404–41420.

Huang, M., et al., 2018. AlloFinder: a strategy for allosteric modulator discovery and allosteric analyses. *Nucleic Acids Res.* 46 (W1), W451–W458.

Hutchins, A.P., Diez, D., Miranda-Saavedra, D., 2013. The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges. *Brief. Funct. Genomics* 12 (6), 489–498.

Ihle, J.N., Kerr, I.M., 1995. Jak and Stats in signaling by the cytokine receptor superfamily. *Trends Genet.* 11 (2), 69–74.

Itoh, M., et al., 2006. Requirement of STAT3 activation for maximal collagenase-1 (MMP-1) induction by epidermal growth factor and malignant characteristics in T24 bladder cancer cells. *Oncogene* 25 (8), 1195–1204.

Ivanov, V.N., et al., 2001. Cooperation between STAT3 and c-jun suppresses Fas transcription. *Mol. Cell* 7 (3), 517–528.

Ivanov, V.N., Krasilnikov, M., Ronai, Z., 2002. Regulation of Fas expression by STAT3 and c-Jun is mediated by phosphatidylinositol 3-kinase-AKT signaling. *J. Biol. Chem.* 277 (7), 4932–4944.

Ivanov, V.N., et al., 2009. Inhibition of ataxia telangiectasia mutated kinase activity enhances TRAIL-mediated apoptosis in human melanoma cells. *Cancer Res.* 69 (8), 3510–3519.

Ivanova, A.V., et al., 2004. STRA13 interacts with STAT3 and modulates transcription of STAT3-dependent targets. *J. Mol. Biol.* 340 (4), 641–653.

Jung, J.E., et al., 2007. Caffeic acid and its synthetic derivative CADPE suppress tumor angiogenesis by blocking STAT3-mediated VEGF expression in human renal carcinoma cells. *Carcinogenesis* 28 (8), 1780–1787.

Karni, R., Jove, R., Levitzki, A., 1999. Inhibition of pp60c-Src reduces Bcl-XL expression and reverses the transformed phenotype of cells overexpressing EGF and HER-2 receptors. *Oncogene* 18 (33), 4654–4662.

Kato, T., et al., 2004. Proteolytic conversion of STAT3alpha to STAT3gamma in human neutrophils: role of granule-derived serine proteases. *J. Biol. Chem.* 279 (30), 31076–31080.

Kesanakurti, D., et al., 2013. Essential role of cooperative NF- κ B and Stat3

recruitment to ICAM-1 intronic consensus elements in the regulation of radiation-induced invasion and migration in glioma. *Oncogene* 32 (43), 5144–5155.

Kim, D.J., Tremblay, M.L., DiGiovanni, J., 2010. Protein tyrosine phosphatases, TC-PTP, SHP1, and SHP2, cooperate in rapid dephosphorylation of Stat3 in keratinocytes following UVB irradiation. *PLoS One* 5 (4), e10290.

Kim, E., et al., 2013. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. *Cancer Cell* 23 (6), 839–852.

Kitamura, H., et al., 2005. IL-6-STAT3 controls intracellular MHC class II alphabeta dimer level through cathepsin S activity in dendritic cells. *Immunity* 23 (5), 491–502.

Kreuzaler, P.A., et al., 2011. Stat3 controls lysosomal-mediated cell death in vivo. *Nat. Cell Biol.* 13 (3), 303–309.

Kujawski, M., et al., 2008. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. *J. Clin. Invest.* 118 (10), 3367–3377.

Kunigal, S., et al., 2009. Stat3-siRNA induces Fas-mediated apoptosis in vitro and in vivo in breast cancer. *Int. J. Oncol.* 34 (5), 1209–1220.

Lai, S.Y., Johnson, F.M., 2010. Defining the role of the JAK-STAT pathway in head and neck and thoracic malignancies: implications for future therapeutic approaches. *Drug Resist. Updat.* 13 (3), 67–78.

Lerner, A.C., et al., 1984. Transcriptional induction of two genes in human cells by beta interferon. *Proc. Natl. Acad. Sci. U. S. A.* 81 (21), 6733–6737.

Lee, H., et al., 2010. STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. *Nat. Med.* 16 (12), 1421–1428.

Lee, H., et al., 2012. Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation. *Proc. Natl. Acad. Sci. U. S. A.* 109 (20), 7765–7769.

Lee, J., et al., 2013a. Stat3beta mitigates development of atherosclerosis in apolipoprotein E-deficient mice. *J. Mol. Med.* 91 (8), 965–976.

Lee, J.K., et al., 2013b. Signal transducer and activator of transcription 3 (Stat3) contributes to T-cell homeostasis by regulating pro-survival Bcl-2 family genes. *Immunology* 140 (3), 288–300.

Lee, H., et al., 2017. Targeted disruption of TC-PTP in the proliferative compartment augments STAT3 and AKT signaling and skin tumor development. *Sci. Rep.* 7, 45077.

Levy, D.E., Lee, C.K., 2002. What does Stat3 do? *J. Clin. Invest.* 109 (9), 1143–1148.

Li, H., et al., 2011. STAT3 knockout reduces pancreatic cancer cell invasiveness and matrix metalloproteinase-7 expression in nude mice. *PLoS One* 6 (10), e25941.

Li, M.X., et al., 2015a. Prognostic role of Phospho-STAT3 in patients with cancers of the digestive system: a systematic review and meta-analysis. *PLoS One* 10 (5), e0127356.

Li, Y., et al., 2015b. Suppression of cancer relapse and metastasis by inhibiting cancer stemness. *Proc. Natl. Acad. Sci. U. S. A.* 112 (6), 1839–1844.

Liu, L., McBride, K.M., Reich, N.C., 2005. STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-alpha3. *Proc. Natl. Acad. Sci. U. S. A.* 102 (23), 8150–8155.

Liu, K., et al., 2013. Sox2 cooperates with inflammation-mediated Stat3 activation in the malignant transformation of foregut basal progenitor cells. *Cell Stem Cell* 12 (3), 304–315.

Lo, H.W., et al., 2007. Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. *Cancer Res.* 67 (19), 9066–9076.

Lomada, D., et al., 2016. Stat3 signaling promotes survival and maintenance of medullary thymic epithelial cells. *PLoS Genet.* 12 (1), e1005777.

Luttkinen, C., et al., 1994. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. *Science* 263 (5143), 89–92.

Ma, J., et al., 2015. Over-expression of cyclin D1 promotes NSCs proliferation and induces the differentiation into astrocytes via Jak-STAT3 pathways. *Neurochem. Res.* 40 (8), 1681–1690.

Ma, L., et al., 2017. Lysyl oxidase 3 is a dual-specificity enzyme involved in STAT3 deacetylation and deacetylimination modulation. *Mol. Cell* 65 (2), 296–309.

Macha, M.A., et al., 2011. Prognostic significance of nuclear pSTAT3 in oral cancer. *Head Neck* 33 (4), 482–489.

Mantovani, A., 2010. Molecular pathways linking inflammation and cancer. *Curr. Mol. Med.* 10 (4), 369–373.

Maritano, D., et al., 2004. The STAT3 isoforms alpha and beta have unique and specific functions. *Nat. Immunol.* 5 (4), 401–409.

Marotta, L.L., et al., 2011. The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(−) stem cell-like breast cancer cells in human tumors. *J. Clin. Invest.* 121 (7), 2723–2735.

Meier, J.A., et al., 2017. Stress-induced dynamic regulation of mitochondrial STAT3 and its association with cyclophilin D reduce mitochondrial ROS production. *Sci. Signal.* 10 (472).

Musteanu, M., et al., 2010. Stat3 is a negative regulator of intestinal tumor progression in Apc(Min) mice. *Gastroenterology* 138 (3), 1003–1011 e1–5.

Nakajima, H., Suzuki, K., Iwamoto, I., 2003. Lineage-specific negative regulation of STAT-mediated signaling by proteolytic processing. *Cytokine Growth Factor Rev.* 14 (5), 375–380.

Ng, D.C., et al., 2006. Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin. *J. Cell Biol.* 172 (2), 245–257.

Ng, I.H., et al., 2012. Selective STAT3-alpha or -beta expression reveals spliceform-specific phosphorylation kinetics, nuclear retention and distinct gene expression outcomes. *Biochem. J.* 447 (1), 125–136.

Niu, G., et al., 1999. Gene therapy with dominant-negative Stat3 suppresses growth of the murine melanoma B16 tumor in vivo. *Cancer Res.* 59 (20), 5059–5063.

Niu, G., et al., 2001. Overexpression of a dominant-negative signal transducer and activator of transcription 3 variant in tumor cells leads to production of soluble factors that induce apoptosis and cell cycle arrest. *Cancer Res.* 61 (8), 3276–3280.

Niu, G., et al., 2002. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. *Oncogene* 21 (13), 2000–2008.

Niu, G., et al., 2005. Role of Stat3 in regulating p53 expression and function. *Mol. Cell. Biol.* 25 (17), 7432–7440.

Oh, M.K., et al., 2011. Hypoxia-inducible factor-1alpha enhances haptoglobin gene expression by improving binding of STAT3 to the promoter. *J. Biol. Chem.* 286 (11), 8857–8865.

Pansky, A., et al., 2000. Defective Jak-STAT signal transduction pathway in melanoma cells resistant to growth inhibition by interferon-alpha. *Int. J. Cancer* 85 (5), 720–725.

Park, O.K., et al., 2000. Dimer stability as a determinant of differential DNA binding activity of Stat3 isoforms. *J. Biol. Chem.* 275 (41), 32244–32249.

Park, S.J., et al., 2004. IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. *J. Immunol.* 173 (6), 3844–3854.

Peng, H.Y., et al., 2016. MPTOB098, a microtubule inhibitor, suppresses JAK2/STAT3 signaling pathway through modulation of SOCS3 stability in oral squamous cell carcinoma. *PLoS One* 11 (7), e0158440.

Quesnelle, K.M., Boehm, A.L., Grandis, J.R., 2007. STAT-mediated EGFR signaling in cancer. *J. Cell. Biochem.* 102 (2), 311–319.

Ram, P.T., Iyengar, R., 2001. G protein coupled receptor signaling through the Src and Stat3 pathway: role in proliferation and transformation. *Oncogene* 20 (13), 1601–1606.

Redell, M.S., et al., 2007. Conditional overexpression of Stat3alpha in differentiating myeloid cells results in neutrophil expansion and induces a distinct, antiapoptotic and pro-oncogenic gene expression pattern. *J. Leukoc. Biol.* 82 (4), 975–985.

Regis, G., et al., 2008. Ups and downs: the STAT1:STAT3 seesaw of Interferon and gp130 receptor signalling. *Semin. Cell Dev. Biol.* 19 (4), 351–359.

Rivat, C., et al., 2005. Implication of STAT3 signaling in human colonic cancer cells during intestinal trefoil factor 3 (TFF3) – and vascular endothelial growth factor-mediated cellular invasion and tumor growth. *Cancer Res.* 65 (1), 195–202.

Ruff-Jamison, S., et al., 1994. Epidermal growth factor and lipopolysaccharide activate Stat3 transcription factor in mouse liver. *J. Biol. Chem.* 269 (35), 21933–21935.

Sano, S., et al., 1999. Keratinocyte-specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis. *EMBO J.* 18 (17), 4657–4668.

Sano, S., et al., 2001. Stat3 in thymic epithelial cells is essential for postnatal maintenance of thymic architecture and thymocyte survival. *Immunity* 15 (2), 261–273.

Sasse, J., et al., 1997. Mutational analysis of acute-phase response factor/Stat3 activation and dimerization. *Mol. Cell. Biol.* 17 (8), 4677–4686.

Schaefer, T.S., Sanders, L.K., Nathans, D., 1995. Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3. *Proc. Natl. Acad. Sci. U. S. A.* 92 (20), 9097–9101.

Schaefer, T.S., et al., 1997. Functional differences between Stat3alpha and Stat3beta. *Mol. Cell. Biol.* 17 (9), 5307–5316.

Schindler, C., et al., 1992. Proteins of transcription factor ISGF-3: one gene encodes the 91-and 84-kDa ISGF-3 proteins that are activated by interferon alpha. *Proc. Natl. Acad. Sci. U. S. A.* 89 (16), 7836–7839.

Schuringa, J.J., et al., 2001. Ser727-dependent transcriptional activation by association of p300 with STAT3 upon IL-6 stimulation. *FEBS Lett.* 495 (1–2), 71–76.

Schust, J., et al., 2006. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. *Chem. Biol.* 13 (11), 1235–1242.

Seto, D.N., Kandarian, S.C., Jackman, R.W., 2015. A key role for leukemia inhibitory factor in C26 Cancer Cachexia. *J. Biol. Chem.* 290 (32), 19976–19986.

Sharma, Y., et al., 2016. Implication of protein tyrosine phosphatase SHP-1 in cancer-related signaling pathways. *Future Oncol.* 12 (10), 1287–1298.

Sherry, M.M., et al., 2009. STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. *Stem Cells* 27 (10), 2383–2392.

Sherry-Lynes, M.M., et al., 2017. Regulation of the JMD3 (KDM6B) histone demethylase in glioblastoma stem cells by STAT3. *PLoS One* 12 (4), e0174775.

Shi, M., et al., 2015. Enhancer of zeste homolog 2 is widely expressed in T-cell neoplasms, is associated with high proliferation rate and correlates with MYC and pSTAT3 expression in a subset of cases. *Leuk. Lymphoma* 56 (7), 2087–2091.

Shuai, K., et al., 1993. A single phosphorytrosine residue of Stat91 required for gene activation by interferon-gamma. *Science* 261 (5129), 1744–1746.

Shuai, K., et al., 1994. Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. *Cell* 76 (5), 821–828.

Silver, D.L., et al., 2004. Activated signal transducer and activator of transcription (STAT) 3: localization in focal adhesions and function in ovarian cancer cell motility. *Cancer Res.* 64 (10), 3550–3558.

Sinibaldi, D., et al., 2000. Induction of p21WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts: role of activated STAT3 signaling. *Oncogene* 19 (48), 5419–5427.

Stahl, N., et al., 1995. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. *Science* 267 (5202), 1349–1353.

Sun, Z., et al., 2006. An oligonucleotide decoy for Stat3 activates the immune response of macrophages to breast cancer. *Immunobiology* 211 (3), 199–209.

Takeda, K., et al., 1997. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. *Proc. Natl. Acad. Sci. U. S. A.* 94 (8), 3801–3804.

Takeda, K., et al., 1998. Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell-specific Stat3-deficient mice. *J. Immunol.* 161 (9), 4652–4660.

Takeda, K., et al., 1999. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. *Immunity* 10 (1), 39–49.

Tammineni, P., et al., 2013. The import of the transcription factor STAT3 into mitochondria depends on GRIM-19, a component of the electron transport chain. *J. Biol. Chem.* 288 (7), 4723–4732.

Teng, T.S., et al., 2009. Stat3 promotes directional cell migration by regulating Rac1 activity via its activator betaPIX. *J. Cell. Sci.* 122 (Pt 22), 4150–4159.

Tian, S.S., et al., 1994. Rapid activation of the STAT3 transcription factor by granulocyte colony-stimulating factor. *Blood* 84 (6), 1760–1764.

Timofeeva, O.A., et al., 2012. Mechanisms of unphosphorylated STAT3 transcription factor binding to DNA. *J. Biol. Chem.* 287 (17), 14192–14200.

Tu, B., et al., 2012. STAT3 activation by IL-6 from mesenchymal stem cells promotes the proliferation and metastasis of osteosarcoma. *Cancer Lett.* 325 (1), 80–88.

Wang, T., et al., 2004. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. *Nat. Med.* 10 (1), 48–54.

Wang, X., et al., 2012. STAT3 inhibition, a novel approach to enhancing targeted therapy in human cancers (review). *Int. J. Oncol.* 41 (4), 1181–1191.

Wegenka, U.M., et al., 1993. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the post-translational level. *Mol. Cell. Biol.* 13 (1), 276–288.

Wegrzyn, J., et al., 2009. Function of mitochondrial Stat3 in cellular respiration. *Science* 323 (5915), 793–797.

Wei, L.H., et al., 2003a. Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. *Oncogene* 22 (10), 1517–1527.

Wei, D., et al., 2003b. Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. *Oncogene* 22 (3), 319–329.

Wei, Z., et al., 2013. STAT3 interacts with Skp2/p27/p21 pathway to regulate the motility and invasion of gastric cancer cells. *Cell. Signal.* 25 (4), 931–938.

Xiong, H., et al., 2012. Roles of STAT3 and ZEB1 proteins in E-cadherin down-regulation and human colorectal cancer epithelial-mesenchymal transition. *J. Biol. Chem.* 287 (8), 5819–5832.

Xu, Q., et al., 2005. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. *Oncogene* 24 (36), 5552–5560.

Xu, G., Zhang, C., Zhang, J., 2009. Dominant negative STAT3 suppresses the growth and invasion capability of human lung cancer cells. *Mol. Med. Rep.* 2 (5), 819–824.

Yadav, A., et al., 2011. IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. *Mol. Cancer Res.* 9 (12), 1658–1667.

Yamamoto, T., et al., 2002. The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. *Biochem. Biophys. Res. Commun.* 297 (4), 811–817.

Yang, R., Rincon, M., 2016. Mitochondrial Stat3, the need for design thinking. *Int. J. Biol. Sci.* 12 (5), 532–544.

Yang, J., Stark, G.R., 2008. Roles of unphosphorylated STATs in signaling. *Cell Res.* 18 (4), 443–451.

Yang, J., et al., 2005. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. *Cancer Res.* 65 (3), 939–947.

Yang, J., et al., 2007. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFκB. *Genes Dev.* 21 (11), 1396–1408.

Yang, C., et al., 2013. Prognostic significance of B-cells and pSTAT3 in patients with ovarian cancer. *PLoS One* 8 (1), e54029.

Yoo, J.Y., et al., 2002. Specific ablation of Stat3beta distorts the pattern of Stat3-responsive gene expression and impairs recovery from endotoxic shock. *Cell* 108 (3), 331–344.

Yu, C.L., et al., 1995. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncogene. *Science* 269 (5220), 81–83.

Yu, Z., Zhang, W., Kone, B.C., 2002. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB. *Biochem. J.* 367 (Pt 1), 97–105.

Yu, H., Kortylewski, M., Pardoll, D., 2007. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. *Nat. Rev. Immunol.* 7 (1), 41–51.

Yu, H., Pardoll, D., Jove, R., 2009. STATs in cancer inflammation and immunity: a leading role for STAT3. *Nat. Rev. Cancer* 9 (11), 798–809.

Yue, P., Turkson, J., 2009. Targeting STAT3 in cancer: how successful are we? *Expert Opin. Investig. Drugs* 18 (1), 45–56.

Zammarchi, F., et al., 2011. Antitumorigenic potential of STAT3 alternative splicing modulation. *Proc. Natl. Acad. Sci. U. S. A.* 108 (43), 17779–17784.

Zhang, H.F., Lai, R., 2014. STAT3 in Cancer-Friend or foe? *Cancers (Basel)* 6 (3), 1408–1440.

Zhang, Y., Liu, Z., 2017. *STAT1 in cancer: friend or foe?* *Discov. Med.* 24 (130), 19–29.

Zhang, Q., et al., 2005. STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. *Proc. Natl. Acad. Sci. U. S. A.* 102 (19), 6948–6953.

Zhang, H.F., et al., 2016. The opposing function of STAT3 as an oncogene and tumor suppressor is dictated by the expression status of STAT3beta in esophageal squamous cell carcinoma. *Clin. Cancer Res.* 22 (3), 691–703.

Zhang, Y., et al., 2017. STAT1beta enhances STAT1 function by protecting STAT1alpha from degradation in esophageal squamous cell carcinoma. *Cell Death Dis.* 8 (10), e3077.

Zhong, Z., Wen, Z., Darnell Jr., J.E., 1994. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. *Science* 264 (5155), 95–98.

Zhou, Y., et al., 2015. Transcriptional upregulation of microtubule-associated protein 2 is involved in the protein kinase A-induced decrease in the invasiveness of glioma cells. *Neuro Oncol.* 17 (12), 1578–1588.