

The expanding roles of long non-coding RNAs in the regulation of cancer stem cells

Zhaowu Ma^{a,b,1}, Ying-Ying Wang^{a,b,1}, Hong-Wu Xin^{a,b}, Lingzhi Wang^{c,d}, Frank Arfuso^e, Arunasalam Dharmarajan^e, Alan Prem Kumar^{c,d}, Hong Wang^{d,f}, Feng Ru Tang^f, Sudha Warrier^{g,*}, Vinay Tergaonkar^{h,i,**}, Gautam Sethi^{d,*}

^a The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China

^b School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China

^c Cancer Science Institute of Singapore, National University of Singapore, Singapore

^d Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore

^e Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6009, Australia

^f Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602, Singapore

^g Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, 560 065, India

^h Institute of Molecular and Cellular Biology (A₄STAR), 61 Biopolis Drive, Singapore, 138673, Singapore

ⁱ Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore

ARTICLE INFO

Keywords:

Cancer stem cells

Long non-coding RNAs

Tumorigenesis

ABSTRACT

Long non-coding RNAs (lncRNAs) are a novel class of gene regulators playing multifaceted roles in physiological processes as well as pathological conditions such as cancer. Cancer stem cells (CSCs) are a small subset of tumor cells that constitute the origin and development of various malignant tumors. CSCs have been identified in a wide spectrum of human tumors and could act as a critical link underlying the processes of tumor metastasis and recurrence. Mounting evidence indicates that lncRNAs are aberrantly expressed in diverse CSCs and regulate CSC properties at different molecular levels. Here, we very briefly summarize the recent findings on the potential roles of lncRNAs in regulating various functions of CSCs, and elaborate on how can lncRNAs impact CSC properties via interacting with other macromolecules at the epigenetic, transcriptional, and post-transcriptional levels. This mini-review also highlights the understanding of the modular regulatory principles of lncRNA interactions in CSCs.

1. Introduction

Long non-coding RNAs (lncRNAs) are longer than 200 nucleotides and have no potential to code proteins, with poor conservation across species (Morris and Mattick, 2014). Current studies indicate that lncRNAs play versatile roles in various cellular processes via interacting with different molecules including DNA, RNA, and protein. Growing evidence indicates that lncRNAs manipulate epigenetic modification, transcriptional regulation, and post-transcriptional regulation in the eukaryotic genome (Marchese et al., 2017). During the latest decade, accumulating research indicates that lncRNAs play an expanding role in physiologic and pathologic processes including cancer cell biology (Chew et al., 2018; Li et al., 2018a; Liu et al., 2018). To date, numerous

studies have discovered that dysregulation of lncRNAs plays vital roles in tumorigenesis and metastasis by regulating cancer stem cells.

Cancer stem cells (CSCs), also known as tumor-initiating cells or CSC-like cells, possess exclusive properties of self-renewal and the ability to differentiate into heterogeneous lineages of cancer cells (Clarke et al., 2006; Visvader and Lindeman, 2012). CSCs play critical roles in the initiation, progression, metastasis, recurrence, and drug resistance of malignant tumors (Amaya and Bryan, 2015). Therefore, it is extremely valuable to understand the biology of CSCs to improve diagnosis and therapeutics in various ailments (Rosen and Jordan, 2009). Here we summarize recent findings that highlight the expanding role of lncRNAs in CSC biology. We also characterize the functions and mechanisms of lncRNAs interacting with different molecules in CSCs.

* Corresponding authors.

** Corresponding author at: Institute of Molecular and Cellular Biology (A₄STAR), 61 Biopolis Drive, Singapore, 138673, Singapore.

E-mail addresses: sudha.warrier@manipal.edu (S. Warrier), vinayt@imcb.a-star.edu.sg (V. Tergaonkar), phcgs@nus.edu.sg (G. Sethi).

¹ These authors contributed equally to this work.

Furthermore, we examine how lncRNAs contribute to CSC properties and could be utilized for assessing cancer progression and metastasis.

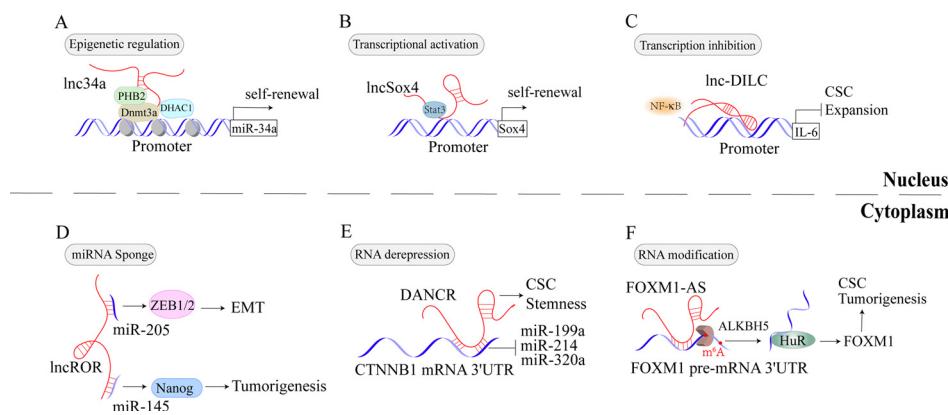
2. LncRNAs are a novel class of gene regulators in cancer stem cells

With the advent of next-generation sequencing, massive RNA transcripts have been identified with similar properties to mRNAs in a variety of tissues. LncRNAs are a class of linear transcripts and function as versatile molecules that regulate diverse biological processes via nucleotide base pairing or specific structures generated by RNA folding. To date, lncRNAs function mainly as a signal, decoy, guide, and scaffold for their interacting partners, such as DNA, RNA or proteins (Liu et al., 2017; Wang and Chang, 2011). Uncovering the roles of lncRNAs has revealed and established a new scheme of diagnostic and therapeutic opportunities in human diseases.

Under normal cases, lncRNAs are widely expressed in all humans and could be related to maintaining cellular function (Jiang et al., 2016). Similar to protein-coding cancer genes, an increasing number of lncRNAs have been found to be targets of cancer signaling pathways. However, most lncRNAs are dysregulated and highly tissue-specific, with more versatile modes of action than mRNA genes in malignant tumors (Iyer et al., 2015). Current studies indicate that the dysregulation of lncRNAs is associated with the initiation and progression of diverse tumors, including liver cancer, breast cancer, lung cancer, gastric cancer, and colon cancer (Huarte, 2015; Schmitt and Chang, 2016). Recent research has demonstrated that certain dysregulated lncRNAs in malignant tumors associate with a variety of CSC characteristics. For example, a well-known lncRNA termed HOTAIR, is significantly upregulated and promotes CSC properties in breast and colon CSCs (Deng et al., 2017; Padua Alves et al., 2013). Therefore, a better understanding of lncRNA regulation of CSCs will provide novel targets for the development of effective therapeutic and prognostic strategies in malignant tumors.

3. The role of lncRNAs at the epigenetic and transcriptional level in CSCs

3.1. Chromatin modification and regulation


An accumulation of findings has indicated that lncRNAs regulate gene expression as epigenetic modifiers in CSCs via interacting with chromatin remodeling complexes. In colon CSC asymmetric division, lnc34a promotes self-renewal and tumorigenesis by epigenetically silencing miR-34a expression via recruiting PHB2/Dnmt3a and histone deacetylase inhibitor 1 (HDAC1) to methylate and deacetylate the promoter (Fig. 1A) (Wang et al., 2016a). Similarly, lncCAMTA1 facilitates proliferation and CSC-like properties via inhibiting tumor suppressor CAMTA1 by altering the chromatin structure at its promoter

(Ding et al., 2016). LncRNA CUDR promotes another lncRNA HULC or β -catenin dysregulation via restraining HULC promoter methylation, and thereby acting as a positive potential role to govern malignant differentiation in human liver stem cells (Gui et al., 2015). lnc- β -Catm maintains CSC self-renewal and tumor propagation by facilitating the stability of β -catenin. Therefore, lnc- β -Catm acts as a scaffold for activation of Wnt/ β -catenin signaling by regulating β -catenin methylation, which then suppresses the ubiquitination of β -catenin (Zhu et al., 2016a). Studies identifying additional lncRNA partners of epigenetic modification will broaden our understanding of CSCs to enable therapeutic interventions.

3.2. Transcriptional activators or repressors

lncRNAs have also been confirmed as a novel group of transcriptional activators or repressors in a wide range of malignant tumors. As mentioned above, CUDR functions not only as an epigenetic modifier but also has an oncogenic effect to promote the proliferation of liver CSCs and malignant transformation by activating c-Myc and TERT via interacting with Cyclin D1 and forming a transcriptional complex at the promoters of c-Myc and H19 (Pu et al., 2015). In human glioma stem cells (GSCs), decreasing the expression of HOTAIR inhibits their proliferation, invasion, and tumorigenicity, and activates the expression of tumor suppressor PDCD4 by repressing the recruitment of EZH2 and LSD1 (Fang et al., 2016). Conversely, increasing HOTAIR expression contributes to epithelial mesenchymal transition (EMT) and to the development of lung CSCs induced by cigarette smoke extract, which establishes a novel modulation for cigarette smoke extract-induced lung carcinogenesis (Liu et al., 2015). HOTAIR promotes tumorigenesis via repressing SETD2 in liver CSCs and reducing the recruitment of the CREB/P300/RNA polII complex to the SETD2 promoter (Li et al., 2015). In liver tumor-initiating cells (TICs), lncSox4 facilitates liver TIC self-renewal by activating Sox4 expression by acting as a scaffold for recruiting Stat3 to the Sox4 promoter (Fig. 1B) (Chen et al., 2016). Another similar study has indicated that lncTCF7 activates TCF7 gene transcription and maintains liver CSC self-renewal by recruiting the SWI/SNF complex to the TCF7 promoter (Wang et al., 2015). lncBRM interacts with BRM to activate YAP1 signaling, thereby promoting self-renewal of liver CSCs and initiating tumor propagation (Zhu et al., 2016b).

Recent research has indicated lncGata6 promotes tumor initiation and progression in colorectal CSCs. lncGata6 interacts with Bptf and recruits the NURF complex to activate Ehf transcription, which forms the lncGATA6-Bptf-Ehf axis to initiate Lgr4/5 expression and activate the Wnt signaling pathway (Zhu et al., 2018). Recent research demonstrates that lncRNA is also a key transcriptional repressor of liver CSCs. lnc-DILC suppressed liver CSC expansion via competitively binding the IL-6 promoter and suppressing IL-6 transcription to block NF- κ B mediated transcription, thereby inhibiting autocrine IL-6/STAT3

Fig. 1. lncRNAs regulate CSC properties at different molecular levels. Currently, lncRNAs interact with their molecules through a multitude of mechanisms in epigenetic and transcriptional (up) and post-transcriptional regulation (down). Specifically, lncRNAs function as epigenetic modifiers (A), transcriptional regulators (B, C), and post-transcriptional regulators (D, E, F) in various CSCs. lncRNAs display versatile roles in gene regulation of CSCs via RNA-protein (e.g., lnc34a and lncSox4) or RNA-DNA (e.g., lnc-DILC) and RNA-RNA (e.g., lncROR and DANCR) interactions.

signaling (Fig. 1C) (Wang et al., 2016b). Taken together, mounting studies demonstrate that lncRNAs manipulate a transcriptional switch through interacting with CSC related molecules.

4. The role of lncRNA at the post-transcriptional level in CSCs

4.1. Interactions with miRNAs and mRNAs

Interestingly, lncRNAs function as a miRNA sponge to sustain the expression of stemness related transcription factors and proteins through binding to miRNAs, while miRNAs negatively regulate expression of these proteins. To date, studies have indicated that lncRNAs act as miRNA sponges and RNA binding partners to affect CSC fate (Huang et al., 2013, 2017).

Recent research has uncovered that the lncRNA–miRNA–mRNA regulatory circuitry can modulate post-transcriptional gene expression in breast and glioma CSCs. LncRNA H19, let-7, and LIN28 form a dual-feedback loop, promoting breast CSC clonogenicity, migration, and mammosphere-forming ability (Peng et al., 2017). Another tumor suppressive lncRNA, GAS5, acts as a sponge for miR-196a-5p to rescue FOXO1 generation, thus promoting PID1 and MIIP expression in GSCs. Furthermore, FOXO1 facilitates GAS5 transcription, forming a positive feedback loop to suppress malignancy of human GSCs (Zhao et al., 2017).

Studies have also indicated that an increasing number of lncRNAs are associated with stem cell properties of CSCs. LncRNA ROR is up-regulated in most tumor tissues and acts as a sponge for many miRNAs to modulate EMT, stemness, tumorigenesis, and metastasis. ROR acts as a competitive endogenous RNA (ceRNA) by sponging the let-7 family and miR-145 to promote stem cell properties in pancreatic CSCs (Fig. 1D) (Fu et al., 2017; Gao et al., 2016). Another study found that ROR functions as a miRNA sponge to regulate the EMT program by blocking degradation of miR-205 targets (ZEB1/ZEB2) in breast cancer tumorigenesis and metastasis (Fig. 1D) (Hou et al., 2014). ROR functions as a miR-145 sponge to decrease miR-145-induced tumor sphere differentiation in endometrial CSCs. In a similar mechanism to ROR, NEAT1 and CRNDE are abundantly expressed and upregulated in GSCs, promoting GSC proliferation, migration, and invasion by absorbing let-7e and miR-186 (Gong et al., 2016; Zheng et al., 2015). LncRNA Sox2ot functions as a ceRNA to promote EMT with the miR-200 family in pancreatic ductal adenocarcinoma by absorbing miR-194-5p and miR-122 in GSCs (Li et al., 2018b; Su et al., 2017). In addition, lncRNA TUG1 facilitates self-renewal by sponging miR-145 and recruiting polycomb via YY1-binding activity to inhibit the expression of differentiation genes (Katsushima et al., 2016). Taken together, lncRNAs act as ceRNAs to compete with stemness-related genes by binding to these molecules with miRNA sponges.

Although numerous studies have focused on a ceRNA mechanism by which lncRNAs sponge miRNAs to manipulate stem cell properties in the cytoplasm, recent studies have identified that lncRNAs exert their effects via binding to messenger RNAs. As an example, a novel miRNA-blocking lncRNA, DANCR, can interact with CTNNB1 mRNA and significantly promote stemness features of hepatocellular carcinoma cells. Mechanistically, DANCR competitively binds to the 3'UTR of CTNNB1

to block the repressing effect of microRNAs (miR-214, miR-320a, and miR-199a) on CTNNB1 (Fig. 1E) (Yuan et al., 2016). This study uncovered a novel mechanism of CSC properties involving lncRNAs, messenger RNAs, and miRNAs.

4.2. RNA and protein modifications

LncRNAs have also been recognized as novel post-translational modifiers that may influence many aspects of CSCs. The lncRNA PVT1 is located with the well-known oncogene c-Myc. The stability of MYC protein modulated by phosphorylation is regulated by PVT1 (Tseng et al., 2014). LncRNA-hPVT1 facilitates cell proliferation and cell cycling by stabilizing NOP2 protein, thereby contributing to stem cell-like properties of hepatocellular carcinoma (Wang et al., 2014). An X-inactive specific transcript lncRNA (termed Xist) could be used to predict tumor response to treatment with the HDACi abexinostat; thus, suggesting modulation of histone acetylation could alter the breast CSC proportion (Salvador et al., 2013). Additionally, a feed-forward loop between lncRNA and YAP activity was uncovered in TICs. lncARSR-YAP interaction facilitates the viability of renal TICs, preventing the phosphorylation of YAP by LATS1 and facilitating YAP nuclear translocation (Qu et al., 2016). Taken together, studies have indicated that lncRNAs exert functional roles in the generation and regulation of CSCs by regulating the modification of stemness-related molecules.

Non-coding RNAs are emerging as fundamental regulators of RNA modification and post-transcriptional regulation. Increasing modifications have been identified in different cellular processes; N6-methyladenosine (m6A) is the most abundant RNA modification on mammalian lncRNA and mRNA (Chen et al., 2017). Recently, the m6A modification has been identified in many CSCs. FOXM1-AS can also promote the interaction of ALKBH5 with FOXM1 nascent transcripts to maintain glioblastoma stem-like cell tumorigenesis (Fig. 1F) (Zhang et al., 2017). Mechanistically, the m6A demethylation activity of ALKBH5 critically impacts mRNA nuclear export. While the functional investigation of lncRNAs has shed light on protein post-translational modifications, many intriguing questions remain regarding how lncRNAs are interfering with the RNA modifications of massive tumor molecules.

5. Concluding remarks

LncRNAs, lacking significant protein-coding capacity, can regulate a wide range of biological processes through diverse molecular mechanisms. An increasing number of studies has indicated that dysregulation of lncRNAs alters gene expression via a broad spectrum of mechanisms, including chromatin modification, transcriptional and post-transcriptional regulation of CSCs (Table 1). Currently, research regarding the impact of lncRNAs on CSCs has mainly concentrated on familiar molecules. In epigenetic and transcriptional regulation, the role of lncRNA interacting molecules has mainly concentrated on chromatin modification factors and transcription factors, such as EZH2, SUZ12, TP53, and MYC. In post-transcriptional regulation, numerous studies have focused on a ceRNA mechanism through which lncRNAs can regulate miRNAs-mediated cellular processes by sponging up miRNAs in most CSCs. In summary, we have briefly emphasized here

Table 1
Examples of lncRNAs interacting with various molecules in CSCs.

Category	Examples	Interaction Class	Functions	Reference
lncRNA:chromatin regulators	CUDR: H3K27me3	DNA-protein	malignant transformation	Gui et al. (2015)
lncRNA:TFs	LncSox4: Stat3	RNA-protein	TIC self-renewal and tumor initiation,	Chen et al. (2016)
lncRNA:RNA binding protein	LncBRM: BRM	RNA-protein	activate YAP1 signaling, promoting self-renewal of CSCs	Zhu et al. (2016b)
lncRNA:promoter region	Lnc-DILC: IL-6	RNA-DNA	Decrease IL-6 transcription, inhibit CSC expansion	Wang et al. (2016b)
lncRNA:miRNA	ROR: miR-205	RNA-RNA	EMT, tumor progression, and metastasis	Hou et al. (2014)
lncRNA:mRNA	DANCR: CTNNB1	RNA-RNA	increase stemness features	Yuan et al. (2016)

TFs: transcription factors, TIC: tumor-initiating cell.

the multifaceted roles of lncRNAs in CSCs. With the discovery of potential molecular mechanisms for modulating lncRNAs in CSCs as well as other stem cells, lncRNA-based therapies could become promising curative treatments for numerous cancers.

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81872412 to XHW), Hubei Province Health and Family Planning Scientific Research Project (WJ2016-Y-02 to MZ), Jingzhou Science and Technology Development Planning Project (JZKJ1501602 to MZ). We acknowledge the financial support from the program of China Scholarships Council (No. 201708420258). We thank Liu Lian and Wang Xian-Wang for helpful discussions.

References

Amaya, C.N., Bryan, B.A., 2015. Enrichment of the embryonic stem cell reprogramming factors Oct4, Nanog, Myc, and Sox2 in benign and malignant vascular tumors. *BMC Clin. Pathol.* 15, 18.

Chen, Z.Z., Huang, L., Wu, Y.H., Zhai, W.J., Zhu, P.P., Gao, Y.F., 2016. LncSox4 promotes the self-renewal of liver tumour-initiating cells through Stat3-mediated Sox4 expression. *Nat. Commun.* 7, 12598.

Chen, Y.G., Satpathy, A.T., Chang, H.Y., 2017. Gene regulation in the immune system by long noncoding RNAs. *Nat. Immunol.* 18, 962–972.

Chew, C.L., Conos, S.A., Unal, B., Tergaonkar, V., 2018. Noncoding RNAs: master regulators of inflammatory signaling. *Trends Mol. Med.* 24, 66–84.

Clarke, M.F., Dick, J.E., Dirks, P.B., Eaves, C.J., Jamieson, C.H., Jones, D.L., Visvader, J., Weissman, I.L., Wahl, G.M., 2006. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. *Cancer Res.* 66, 9339–9344.

Deng, J., Yang, M., Jiang, R., An, N., Wang, X., Liu, B., 2017. Long non-coding RNA HOTAIR regulates the proliferation, self-renewal capacity, tumor formation and migration of the cancer stem-like cell (CSC) subpopulation enriched from breast cancer cells. *PLoS One* 12, e0170860.

Ding, L.J., Li, Y., Wang, S.D., Wang, X.S., Fang, F., Wang, W.Y., Lv, P., Zhao, D.H., Wei, F., Qi, L., 2016. Long noncoding RNA lncCAMTA1 promotes proliferation and cancer stem cell-like properties of liver cancer by inhibiting CAMTA1. *Int. J. Mol. Sci.* 17.

Fang, K., Liu, P., Dong, S., Guo, Y., Cui, X., Zhu, X., Li, X., Jiang, L., Liu, T., Wu, Y., 2016. Magnetofection based on superparamagnetic iron oxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells. *Int. J. Oncol.* 49, 509–518.

Fu, Z., Li, G., Li, Z., Wang, Y., Zhao, Y., Zheng, S., Ye, H., Luo, Y., Zhao, X., Wei, L., et al., 2017. Endogenous miRNA sponge LincRNA-ROR promotes proliferation, invasion and stem cell-like phenotype of pancreatic cancer cells. *Cell Death Discov.* 3, 17004.

Gao, S., Wang, P., Hua, Y., Xi, H., Meng, Z., Liu, T., Chen, Z., Liu, L., 2016. ROR functions as a ceRNA to regulate Nanog expression by sponging miR-145 and predicts poor prognosis in pancreatic cancer. *Oncotarget* 7, 1608–1618.

Gong, W., Zheng, J., Liu, X., Ma, J., Liu, Y., Xue, Y., 2016. Knockdown of NEAT1 restrained the malignant progression of glioma stem cells by activating microRNA let-7e. *Oncotarget* 7, 62208–62223.

Gui, X., Li, H., Li, T., Pu, H., Lu, D., 2015. Long noncoding RNA CUDR regulates HULC and beta-catenin to govern human liver stem cell malignant differentiation. *Mol. Ther.* 23, 1843–1853.

Hou, P., Zhao, Y., Li, Z., Yao, R., Ma, M., Gao, Y., Zhao, L., Zhang, Y., Huang, B., Lu, J., 2014. LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. *Cell Death Dis.* 5, e1287.

Huang, T., Alvarez, A., Hu, B., Cheng, S.Y., 2013. Noncoding RNAs in cancer and cancer stem cells. *Chin. J. Cancer* 32, 582–593.

Huang, X., Xiao, R., Pan, S., Yang, X., Yuan, W., Tu, Z., Xu, M., Zhu, Y., Yin, Q., Wu, Y., et al., 2017. Uncovering the roles of long non-coding RNAs in cancer stem cells. *J. Hematol. Oncol.* 10, 62.

Huarte, M., 2015. The emerging role of lncRNAs in cancer. *Nat. Med.* 21, 1253–1261.

Iyer, M.K., Niknafs, Y.S., Malik, R., Singhal, U., Sahu, A., Hosono, Y., Barrette, T.R., Prensner, J.R., Evans, J.R., Zhao, S., et al., 2015. The landscape of long noncoding RNAs in the human transcriptome. *Nat. Genet.* 47, 199–208.

Jiang, C., Li, Y., Zhao, Z., Lu, J., Chen, H., Ding, N., Wang, G., Xu, J., Li, X., 2016. Identifying and functionally characterizing tissue-specific and ubiquitously expressed human lncRNAs. *Oncotarget* 7, 7120–7133.

Katsushima, K., Natsume, A., Ohka, F., Shinjo, K., Hatanaka, A., Ichimura, N., Sato, S., Takahashi, S., Kimura, H., Totoki, Y., et al., 2016. Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. *Nat. Commun.* 7, 13616.

Li, H., An, J., Wu, M., Zheng, Q., Gui, X., Li, T., Pu, H., Lu, D., 2015. LncRNA HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2. *Oncotarget* 6, 27847–27864.

Li, Y., Egranolan, S.D., Yang, L., Lin, C., 2018a. Molecular mechanisms of long noncoding RNAs-mediated cancer metastasis. *Genes Chromosomes Cancer*.

Li, Z., Jiang, P., Li, J., Peng, M., Zhao, X., Zhang, X., Chen, K., Zhang, Y., Liu, H., Gan, L., et al., 2018b. Tumor-derived exosomal lnc-Sox2ot promotes EMT and stemness by acting as a ceRNA in pancreatic ductal adenocarcinoma. *Oncogene* 37, 3822–3838.

Liu, Y., Luo, F., Xu, Y., Wang, B., Zhao, Y., Xu, W., Shi, L., Lu, X., Liu, Q., 2015. Epithelial-mesenchymal transition and cancer stem cells, mediated by a long non-coding RNA, HOTAIR, are involved in cell malignant transformation induced by cigarette smoke extract. *Toxicol. Appl. Pharmacol.* 282, 9–19.

Liu, C.J., Gao, C., Ma, Z., Cong, R., Zhang, Q., Guo, A.Y., 2017. lncRInter: a database of experimentally validated long non-coding RNA interaction. *J. Genet. Genomics* 44, 265–268.

Liu, H., Liao, J., Luan, S., He, C., Li, Z., 2018. Long non-coding RNAs involved in cancer metabolic reprogramming. *Cell. Mol. Life Sci.*

Marchese, F.P., Raimondi, I., Huarte, M., 2017. The multidimensional mechanisms of long noncoding RNA function. *Genome Biol.* 18, 206.

Morris, K.V., Mattick, J.S., 2014. The rise of regulatory RNA. *Nat. Rev. Genet.* 15, 423–437.

Padua Alves, C., Fonseca, A.S., Muys, B.R., de Barros, E.L.B.R., Burger, M.C., de Souza, J.E., Valente, V., Zago, M.A., Silva Jr., W.A., 2013. Brief report: The lncRNA Hotair is required for epithelial-to-mesenchymal transition and stemness maintenance of cancer cell lines. *Stem Cells* 31, 2827–2832.

Peng, F., Li, T.T., Wang, K.L., Xiao, G.Q., Wang, J.H., Zhao, H.D., Kang, Z.J., Fan, W.J., Zhu, L.L., Li, M., et al., 2017. H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance. *Cell Death Dis.* 8, e2569.

Pu, H., Zheng, Q., Li, H., Wu, M., An, J., Gui, X., Li, T., Lu, D., 2015. CUDR promotes liver cancer stem cell growth through upregulating TERT and C-Myc. *Oncotarget* 6, 40775–40798.

Qu, L., Wu, Z., Li, Y., Xu, Z., Liu, B., Liu, F., Bao, Y., Wu, D., Liu, J., Wang, A., et al., 2016. A feed-forward loop between lncARSR and YAP activity promotes expansion of renal tumour-initiating cells. *Nat. Commun.* 7, 12692.

Rosen, J.M., Jordan, C.T., 2009. The increasing complexity of the cancer stem cell paradigm. *Science* 324, 1670–1673.

Salvador, M.A., Wicinski, J., Cabaud, O., Toiron, Y., Finetti, P., Josselin, E., Lelievre, H., Kraus-Berthier, L., Depil, S., Bertucci, F., et al., 2013. The histone deacetylase inhibitor abexinostat induces cancer stem cells differentiation in breast cancer with low Xist expression. *Clin. Cancer Res.* 19, 6520–6531.

Schmitt, A.M., Chang, H.Y., 2016. Long noncoding RNAs in cancer pathways. *Cancer Cell* 29, 452–463.

Su, R., Cao, S., Ma, J., Liu, Y., Liu, X., Zheng, J., Chen, J., Liu, L., Cai, H., Li, Z., et al., 2017. Knockdown of SOX2OT inhibits the malignant biological behaviors of glioblastoma stem cells via up-regulating the expression of miR-194-5p and miR-122. *Mol. Cancer* 16, 171.

Tseng, Y.Y., Moriarity, B.S., Gong, W., Akiyama, R., Tiwari, A., Kawakami, H., Ronning, P., Reuland, B., Guenther, K., Beadnell, T.C., et al., 2014. PVT1 dependence in cancer with MYC copy-number increase. *Nature* 512, 82–86.

Visvader, J.E., Lindeman, G.J., 2012. Cancer stem cells: current status and evolving complexities. *Cell Stem Cell* 10, 717–728.

Wang, K.C., Chang, H.Y., 2011. Molecular mechanisms of long noncoding RNAs. *Mol. Cell* 43, 904–914.

Wang, F., Yuan, J.H., Wang, S.B., Yang, F., Yuan, S.X., Ye, C., Yang, N., Zhou, W.P., Li, W.L., Li, W., et al., 2014. Oncofetal long noncoding RNA PVT1 promotes proliferation and stem cell-like property of hepatocellular carcinoma cells by stabilizing NOP2. *Hepatology* 60, 1278–1290.

Wang, Y., He, L., Du, Y., Zhu, P., Huang, G., Luo, J., Yan, X., Ye, B., Li, C., Xia, P., et al., 2015. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. *Cell Stem Cell* 16, 413–425.

Wang, L., Bu, P., Ai, Y., Srivinasan, T., Chen, H.J., Xiang, K., Lipkin, S.M., Shen, X., 2016a. A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division. *Elife* 5.

Wang, X., Sun, W., Shen, W., Xia, M., Chen, C., Xiang, D., Ning, B., Cui, X., Li, H., Li, X., et al., 2016b. Long non-coding RNA DLIC regulates liver cancer stem cells via IL-6/STAT3 axis. *J. Hepatol.* 64, 1283–1294.

Yuan, S.X., Wang, J., Yang, F., Tao, Q.F., Zhang, J., Wang, L.L., Yang, Y., Liu, H., Wang, Z.G., Xu, Q.G., et al., 2016. Long noncoding RNA DANCR increases stemness features of hepatocellular carcinoma by derepression of CTNNB1. *Hepatology* 63, 499–511.

Zhang, S., Zhao, B.S., Zhou, A., Lin, K., Zheng, S., Lu, Z., Chen, Y., Sulman, E.P., Xie, K., Bogler, O., et al., 2017. m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. *Cancer Cell* 31 (591–606), e596.

Zhao, X., Liu, Y., Zheng, J., Liu, X., Chen, J., Liu, L., Wang, P., Xue, Y., 2017. GASS5 suppresses malignancy of human glioma stem cells via a miR-196a-5p/FOXO1 feedback loop. *Biochim Biophys Acta Mol Cell Res.* 1864, 1605–1617.

Zheng, J., Li, X.D., Wang, P., Liu, X.B., Xue, Y.X., Hu, Y., Li, Z., Li, Z.Q., Wang, Z.H., Liu, Y.H., 2015. CRNDE affects the malignant biological characteristics of human glioma stem cells by negatively regulating miR-186. *Oncotarget* 6, 25339–25355.

Zhu, P., Wang, Y., Huang, G., Ye, B., Liu, B., Wu, J., Du, Y., He, L., Fan, Z., 2016a. Inc-beta-Catm elicits EZH2-dependent beta-catenin stabilization and sustains liver CSC self-renewal. *Nat. Struct. Mol. Biol.* 23, 631–639.

Zhu, P., Wang, Y., Wu, J., Huang, G., Liu, B., Ye, B., Du, Y., Gao, G., Tian, Y., He, L., et al., 2016b. LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. *Nat. Commun.* 7, 13608.

Zhu, P., Wu, J., Wang, Y., Zhu, X., Lu, T., Liu, B., He, L., Ye, B., Wang, S., Meng, S., et al., 2018. LncGata6 maintains stemness of intestinal stem cells and promotes intestinal tumorigenesis. *Nat. Cell Biol.* 20, 1134–1144.