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ARTICLE INFO ABSTRACT

High-throughput next-generation sequencing technologies have led to a rapid increase in the number of se-
quence variants identified in clinical practice via diagnostic genetic tests. Current bioinformatic analysis pipe-
lines fail to take adequate account of the possible splicing effects of such variants, particularly where variants fall
outwith canonical splice site sequences, and consequently the pathogenicity of such variants may often be
missed. The regulation of splicing is highly complex and as a result, in silico prediction tools lack sufficient
sensitivity and specificity for reliable use. Variants of all kinds can be linked to aberrant splicing in disease and
the need for correct identification and diagnosis grows ever more crucial as novel splice-switching antisense
oligonucleotide therapies start to enter clinical usage. RT-PCR provides a useful targeted assay of the splicing
effects of identified variants, while minigene assays, massive parallel reporter assays and animal models can also
be used for more detailed study of a particular splicing system, given enough time and resources. However, RNA-
sequencing (RNA-seq) has the potential to be used as a rapid diagnostic tool in genomic medicine. By utilising
data science approaches and machine learning, it may prove possible to finally understand and interpret the
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‘splicing code’ and apply this knowledge in human disease diagnostics.

1. Introduction

Aberrant splicing detection is the next gateway to diagnostic uplift
in genomic medicine. The introduction of next-generation DNA se-
quencing technology has allowed a recent rapid expansion of alter-
native splicing knowledge. Up to an estimated 62% of all disease-
causing point mutations are thought to affect RNA splicing (Lopez-Bigas
et al., 2005). Whilst such a high figure may at first glance sound sur-
prising or even alarming, it serves to highlight two pertinent realities
facing those at the clinical ‘coal face’ of genomic diagnostics. First of all,
it belies the underlying complexity of the splicing process itself and how
much our knowledge of this mechanism and its regulation lags behind
the true state of things. Secondly, it suggests that current diagnostic
genetic testing of clinical samples may in fact be missing a significant
proportion of potentially diagnosable cases, since RNA analysis is not a
routine part of the diagnostic pipeline.

A single gene with multiple exons can produce different mRNAs
using alternative splicing and in eukaryotic species splicing has been
shown to be an important player for protein diversity and function
(Fig. 1). The consequences of such alternative splicing on a resulting
protein depend upon the nature and function of the coding sequence
region that is alternatively spliced and also on the resulting reading

frame of the spliced mRNA. A spliced-out exon may, for example, code
for a functionally important domain or a cellular localisation sequence,
while an alternative spliced-in exon may incorporate a different domain
that leads to alteration of a protein’s function or localisation. However,
should alternative splicing result in the reading frame becoming dis-
rupted, the spliced mRNA will in most cases be subject to cellular de-
gradation via nonsense-mediated decay (NMD) (Lloyd, 2018). This
mechanism will generally lead to reduced gene expression and can
therefore be a cause of haploinsufficiency.

Exon-intron boundaries have a distinctive but limited degree of
sequence conservation which are recognised by the spliceosome.
Introns usually have GU at their 5" end and AG at their 3’ end
(Breathnach et al., 1978). In mammalian genomes, over 98% of splice
sites utilise GU-AG as the splice donor and acceptor sites and less than
1% have GC-AG (Burset, 2000). In addition, a number of exonic and
intronic sequence elements, named exonic/intronic splicing enhancers
(ESEs and ISEs) and exonic/intronic splicing silencers (ESSs and ISSs),
influence the final splicing outcome. These are recognised and bound
by various RNA-binding proteins such as serine-arginine-rich (SR)
proteins and heterogeneous ribonucleoproteins (hnRNPs) that are trans-
acting splicing factors. The spliceosome complex itself is composed of
small nuclear RNAs (snRNAs) plus various proteins (forming snRNPs)
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Fig. 1. Simplified diagram of an intron and five different types of alternative splicing. (A) Classic intron characteristics consist of GT at the 5’ splice donor site and AT
at the 3 splice acceptor site. These are recognised by UlsnRNP and U2snRNP respectively. The branch point is located approximately 40 nucleotides upstream of the
splice acceptor and is always an adenine. The polypyrimidine tract is a chain of 15-20 pyrimidine bases near the splice acceptor site. In addition to these conserved
sequences, both introns and exons have less well conserved sequences which regulate splicing as enhancers or silencers. (B) A nascent mRNA with four exons can
produce six types of different mature mRNAs. In addition to simple constitutive splicing which simply joins all the exons after intron removal, there are five different
types of alternative splicing patterns possible. These are: alternative 5’ splicing, alternative 3’ splicing, mutually exclusive splicing, cassette splicing and retained

intron splicing.

and accessory factors (Dvinge, 2018). In addition to snRNPs, long non-
coding RNAs have also been reported to be involved in splicing
(Romero-Barrios et al., 2018).

Due to the complexity of splicing, and despite much research, its
complete regulatory mechanism is still to be fully elucidated. This lack
of knowledge hampers our abilities to predict the effect of a sequence
variant of unknown significance on splicing. Many splicing prediction
tools, programs and algorithms have been developed based on available
biological research data. However, none of them has deciphered the
complete ‘splicing code’ and none predict splicing effects with 100%
accuracy. As has been reviewed elsewhere (Baralle and Baralle, 2018),
to splice or not to splice is determined by not only the splice site con-
sensus sequences but also by exonic/intronic enhancer/silencer ele-
ments as well as cellular and tissue-specific factors.

The ultimate goal of genomic medicine in the high-throughput se-
quencing era is to exploit knowledge of sequencing variants among
patients for genomic diagnosis and personalised therapeutics. This will
be aided by learning how to interpret genomic DNA sequence variation
not only in terms of protein function but also with regards to splicing
function. RNA sequencing (RNA-seq) will be a useful diagnostic tech-
nique to detect these splice variants as well as for determining RNA
expression levels. In this review, we will discuss splicing defects in
disease, technological advances in predicting splicing and the use of
RNA-seq and new bioinformatics techniques as diagnostic tools.

2. Splicing in disease

It is well documented that splicing abnormalities play a major role
in human diseases (Douglas and Wood, 2011). Since approximately
95% of human multi-exon genes are alternatively spliced through in-
completely understood regulatory mechanisms (Pan et al., 2008), al-
most any type of sequence variation in the genome, including both
single nucleotide polymorphisms (SNPs) and copy number variants
(CNVs), has the potential to affect splicing. Estimates of how often this
occurs vary between different genes. Studies of neurofibromatosis type
1 (NF1) and ataxia-telangiectasia (ATM) genes, found 50% of sequence
variants led to aberrant alternative splicing (Teraoka et al., 1999; Ars
et al., 2000) and even the lowest estimates, which take into account
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only variants affecting splice sites, comprise a significant 15% of pa-
thogenic mutations (Krawczak et al., 1992). However, it is also im-
portant to consider the fact that variants may affect splicing beyond the
bounds of consensus splice sites. Newer studies estimate that 27% of
developmental disorder-related splicing mutations are not within ca-
nonical splice sites (Lord et al., 2018), providing at least part of the
explanation for the thus far ‘missing’ mutations in genetic disease.

2.1. How splicing goes wrong in disease

Owing to its inherent complexity, the splicing process can be per-
turbed in multiple different ways and at different levels. At the most
basic level, a canonical splice site mutation may interrupt an individual
splicing event within a specific gene transcript. Variants in either splice
donor or acceptor sequences are commonly associated with exon
skipping of their closest exon (Buratti and Baralle, 2012). For example,
exon 7 of the COL5A1 collagen gene is found to be skipped in patients
with Ehlers-Danlos syndrome who have a sequence change in the splice
acceptor site of intron 6 (c.925-2A > G) (Symoens et al., 2011)
(Fig. 2A). Similarly, a splice donor sequence variant in intron 3 in the
major intrinsic protein gene (MIP) causes exon 3 skipping found in
patients with congenital cataract (Zeng et al., 2013) (Fig. 2C).

In addition, simple sequence variants in splice donor/acceptor se-
quences can cause multi-exon skipping, particularly if the regulation of
the neighbouring exons is linked. For example, exon 12 and 13 are
skipped in fibroblast OXT1 transcripts with an intronic sequence variant
near the splice donor site of intron 13 (c.1245 + 5G > A) (Hori et al.,
2013) (Fig. 2B). Similar double-exon skipping (exon 11 and exon 12a of
NF1) is found with a splice donor sequence variant of NF1 intron 12a
(Fang et al., 2001) (Fig. 2D). However, it is well reported that whole
exon skipping is not always the effect of mutations in the consensus
splice donor/acceptor sequences. For example, a new cryptic splice
donor site is activated within exon 45 of DMD when the splice donor
site of intron 45 is altered, resulting in partial loss of exon 45 (Habara
et al., 2009) (Fig. 2E). There is also evidence that variants deep within
exons need to be considered with regards to their effects on the splicing
process. These sequence changes may disrupt enhancer or silencer
elements and thus affect the delicate balance of splice factors involved.
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Fig. 2. Diagram of different alternative splicing patterns reported in disease phenotypes. A single nucleotide change in a splice acceptor site causes skipping of either
(A) a single adjacent exon or (B) two or more adjacent exons. Similar exon skipping patterns have been reported in cases with sequence variants in splice donor sites
(C and D). Variants in a splice donor site can also activate a new splice donor site in an adjacent exon (E). Intronic sequence variants outside of the conserved splice
donor, splice acceptor, branch point or polypyrimidine tract sequences can also produce a new cryptic exon as well as retained intron splice variants (F and G). Exonic
sequence variants can cause the same exon skipping in some diseases (H). Both branch point and polypyrimidine tract sequence variants are also associated with exon

skipping (I and J).

An example of this includes a single nucleotide variant, well within
exon 2 of COL2ZA1 (c.196G > A) resulting in exon 2 skipping
(McAlinden et al., 2008) (Fig. 2H).

Intronic sequence variants may cause splicing defects in a number of
ways. They may, for example, create a de novo splice site, transforming
part of an intron into a new exon (Vaz-Drago et al., 2017). This was first
described with a deep intronic sequence variant in NFI intron 30
(c.293-279A > G) (Raponi et al., 2006). Similar cryptic exon forma-
tion has been reported as a result of a deep intronic sequence variant
within intron 12 of CFTR (Sanz et al., 2017) (Fig. 2F). In some cases, a
single deep intronic sequence change produces more than one abnormal
splice variant. For example, AR ¢.2450-118A > G in intron 6 of the
androgen receptor gene produces a splice variant with a new cryptic
exon and another one with intron inclusion (Kinsikoski et al., 2016)
(Fig. 2G).

Sequence variants at the branch point or in the polypyrimidine tract
(Van De Water et al., 2004; Raponi et al., 2006, Raponi et al., 2008;
Aoyama et al., 2017) (Fig. 2J) of an intron may also disrupt specific
splice events and can cause skipping of the adjacent exon (Khan et al.,
2010) (Fig. 2I). Similarly, mutations within important regulatory ele-
ments such as ESEs, ESSs, ISEs and ISSs can abrogate the normal spli-
cing events they control by affecting the binding of specific splicing
factors to these motifs. Such a mechanism is thought to explain why the
evolutionarily duplicated gene SMN2 is not able to fully compensate for
deficieny of its paralogue SMN1 in cases of spinal muscular atrophy
(SMA), despite the two genomic sequences differing at only a handful of
single nucleotide sites, including just one synonymous coding sequence
change (Douglas and Wood, 2013).

As well as mutations within cis-acting regulatory motifs, abnorm-
alities of their trans-acting RNA binding protein partners can also lead
to secondary splicing defects. Splicing factors themselves may have
mutations, such as in the case of TARDBP-related amyotrophic lateral
sclerosis (ALS) or frontotemporal dementia (FTD), where depletion of
TDP-43 protein has been shown to cause widespread retention of very
long introns within its target transcripts (Polymenidou et al., 2011).
Alternatively, splicing factors may become sequestered and thereby
downregulated by binding to toxic RNA species, with consequent
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downstream splicing abnormalities. A well-known example of this is
myotonic dystrophy type 1, where transcripts containing a non-conding
CUG trinucleotide expansion within the DMPK gene sequester the
splicing factor MBNL1, with subsequent abnormal splicing of the
muscle chloride channel gene CLCN1 (Charlet-B et al., 2002; Lin et al.,
2006). A similar sequestration mechanism may occur in ALS/FTD
caused by a hexanucleotide GGGGCC expansion in the C9orf72 gene,
which has been shown to bind multiple splicing factors including
hnRNP-H and SRSF1, with detectable downstream splicing abnormal-
ities in the central nervous system (Reddy et al., 2013; Cooper-Knock
et al., 2014, 2015; Conlon et al., 2016).

Long non-coding RNAs (IncRNAs) are increasingly being found by
high-throughout RNA sequencing techniques and have been shown to
be important for normal cellular functions and disease (Dey et al.,
2014). Of note, IncRNAs are generally subject to the same splicing
mechanisms as coding RNAs and a large number of such IncRNAs have
annotated splicing events with intron/exon boundaries, frequently
generating multiple splice isoforms. Indeed the non-coding exons of
IncRNAs are found to be GC rich in a manner similar to coding RNA
exons (Haerty and Ponting, 2015). Altered IncRNA splicing can be as-
sociated with disease, for example where the alternatively spliced iso-
form of IncRNA-PXN-AS1 appears to promote heptocellular carcinoma
growth (Yuan et al., 2017). LncRNAs are also involved in the splicing
process itself (Romero-Barrios et al., 2018). One prominent role they
appear to play in splicing is through the recruitment of splicing factors
such as SR proteins and regulation of their phosphorylation (Tripathi
et al.,, 2010; Cooper et al., 2014). In another example, the IncRNA
BC200, which is upregulated in breast cancer, recruits splicing factor
hnRNP A2/B1, which suppresses the alternative splicing of Bcl-x into
the otherwise pro-aptotic factor Bcl-xS, thus suggesting an oncogenic
role for BC200 (Singh et al., 2016). However, for the most part it re-
mains unclear what genetic disorders are directly related to IncRNA
variants.

2.2. Therapeutics that manipulate splicing

As knowledge of the splicing mechanisms involved in disease has



H. Wai et al.

increased, so too has our knowledge of how to therapeutically manip-
ulate RNA splicing in a beneficial manner. Once the key sequence
features governing a given splice event have been identified, it becomes
possible to design and synthesise antisense oligonucleotide (ASO)
compounds that are complementary to these sequences and can thus
bind to their targets and interefere with their usage (Douglas and Wood,
2013; Rinaldi and Wood, 2018). Such ASO drugs are short chemically
modified analogues of nucleic acid, whose chemical properties allow
retention of base-pairing ability with specific target sequences but
whose modifications can enhance stability, activity, cellular delivery
and pharmacokinetics and dynamics.

Splice-switching ASO therapies are now starting to enter the clinical
arena, perhaps best exemplified by the drug nusinersen for SMA (Finkel
et al., 2016). Nusinersen is a 2’-O-methoxyethyl phosphorothioate ASO
that binds to an ISS sequence within pre-mRNA transcripts of SMN2,
restoring the inclusion of exon 7 in mature mRNA. This rescue of
splicing leads to generation of functional SMN protein, with a profound
effect on survival and motor function in this heretofore lethal neuro-
muscular disease of infancy. Splice-switching ASOs have also been de-
veloped for the muscle-wasting disease Duchenne muscular dystrophy
(DMD) and the drug eteplirsen has been granted clinical approval in the
USA (Mendell et al., 2016). Eteplirsen is a phosphorodiamidate mor-
pholino ASO that binds to and masks an ESE sequence within exon 51 of
DMD pre-mRNA. The consequent skipping of exon 51 has the effect (in
DMD patients with amenable frameshift exon deletion mutations) of
restoring the mRNA reading frame, leading to an internally shortened
but mechanically functional dystrophin protein.

Therapeutic splicing manipulation is also being developed through
use of the CRISPR-Cas9 gene editing system. Cryptic splice site muta-
tions in CEP290 causing severe retinal dystrophy (Leber congenital
amaurosis 10) can be edited out in cell models, restoring normal spli-
cing patterns (Ruan et al., 2017). In a dog model of DMD with a dele-
tion of DMD exon 50, it has also been shown that CRISPR-Cas9-medi-
ated disruption of an ESE within DMD exon 51 can result in both
restoration of mRNA reading frame through introduction of indels as
well as induced skipping of exon 51, with resulting production of sig-
nificantly restored levels of dystrophin protein (Amoasii et al., 2018).
Similarly, it has also been shown that splice-corrected human myoblasts
from DMD patients lacking exon 44 can be generated using CRISPR-
Cas9 gene-editing at the iPS cell stage so as to disrupt the splice ac-
ceptor site of exon 45 and induce frame-correcting skipping of that exon
(Ifuku et al., 2018). Such gene-editing techniques always raise concerns
about possible off-target effects that could disrupt important genes.
However, approaches to reduce this possibility, such as through the use
of precisely targeted base-editing enzymes that do not cause double-
strand DNA breaks, are being developed to offer the potential for
broadly applicable platforms for splice-site editing (Gapinske et al.,
2018).

2.3. Alternative splicing signature as a disease biomarker

Another important role that splicing analysis may play in disease is
its use in the discovery and monitoring of disease biomarkers. Since the
transcriptome-wide regulation of splicing is a finely balanced process,
specific disease signatures are likely to manifest as unique and re-
cognisable patterns of splicing dysregulation. This idea has been shown
to be feasible in microsatellite expansion disorders such as myotonic
dystrophy and discovery of splicing biomarkers for other diverse dis-
orders may in time prove to be similarly tractable (Sznajder et al.,
2018). Should this be the case, it would not only allow for clinically
useful measures of disease severity and treatment response but would
also provide a powerful means of making diagnoses in the first place.
Furthermore, functional genomic splicing signatures of this kind could
play critical roles in helping clarify the pathogenicity of the many
genomic variants of uncertain significance discovered through genomic
testing.
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3. In vitro/in vivo assays for validation of alternative splicing
3.1. RT-PCR

The mainstay of diagnostic splicing analysis for the past several
decades has been reverse transcription polymerase chain reaction (RT-
PCR). The high sensitivity, sequence specificity and robust reproduci-
bility of RT-PCR make it an ideal tool for the analysis of specific splice
events on a quick and relatively cheap basis. However, the targeted
nature of PCR generally precludes the ability of comprehensively
screening a gene for all possible splicing abnormalities. Unexpected
splicing mutations in a gene may therefore be missed by RT-PCR, as too
will pathogenic splicing mutations in alternative disease genes not
covered by the assay.

3.2. Minigene assays and MPRA

Despite numerous splicing prediction tools being available, pre-
dicted splicing events still need to be validated using wet-lab experi-
ments. A commonly used cell-based in vitro approach for alternative
splicing studies is the minigene assay (Baralle et al., 2003; Singh and
Cooper, 2006). In this assay, the genomic DNA sequence of interest,
which must include at least one exon and ideally more than one exon,
flanked by upstream and downstream introns, is synthesised by PCR
before cloning into a minigene plasmid vector. The insertion site of the
vector is sandwiched between two intrinsic exons, one next to a pro-
moter while the other one has a poly-A tail. After cloning the sequence
of interest into the plasmid, the construct is transfected into appropriate
cells. Splicing variations in the transcripts can be determined by RT-
PCR (Fig. 3A).

Massively parallel reporter assay (MPRA) is an additional high-
throughput, powerful technique for analysing sequence variants af-
fecting alternative splicing. The assay determines the effects of se-
quence variants on splicing at the single nucleotide level (Rosenberg
et al., 2015; Soemedi et al., 2017). In this assay, a large number of
sequence variants of interest are cloned into minigene reporters before
transfection into appropriate cell cultures. Thereafter, the tran-
scriptomes can be analysed for alternative splicing using RNA-seq
(Fig. 3B).

3.3. Animal models for splicing analysis

Using the advantages of transparent model organisms and colourful
reporter genes, in vivo minigene assays have been developed using C.
elegans (Wani and Kuroyanagi, 2017). This fluorescent in vivo minigene
reporter allows the visualisation of tissue-specific alternative splicing
patterns in a model organism. Although classic minigene assays have
been applied in a vertebrate model organism, the zebrafish (Barboric
et al., 2009; Markmiller et al., 2014), fluorescent minigene assays are
yet to be tested in it. The potential success of these fluorescent assays in
the transparent zebrafish could provide a better understanding of al-
ternative tissue-specific splicing mechanisms in vivo.

4. In silico approaches for predicting aberrant splicing

Alongside improvements in wet-lab based techniques for assaying
alternative splicing, dry-lab based computational tools, databases and
machine learning techniques are being developed to expand our
knowledge of alternative splicing and with a view to applying this
knowledge for patient benefit (Figs. 4 and 5).

4.1. Currently available tools
There are three basic types of tools available based on various dif-

ferent approaches such as consensus sequence analysis and statistical
modeling. SplicePredictor (Brendel et al., 2004), SplicePort (Dogan
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Fig. 3. Comparison between classic minigene and high-throughput MPRA minigene assays. (A) Schematic diagram of classic minigene assay. A sequence of interest,
which usually includes an exon with its flanking intron sequences, is inserted into a plasmid vector minigene which has an exon with promoter and an exon with poly-
A sequence. After transfection into cells, mRNA abundance is measured by qRT-PCR. (B) Schematic diagram of high-throughput massively parallel reporter assay
(MPRA) minigene. This assay uses the same principle of a classic minigene. However, it uses multiple sequence variants from a library to insert into the vectors. After

transfection, the splice variant patterns are measured by RNA-seq.

et al., 2007), GENSCAN (Burge and Karlin, 1997), GeneSplicer (Pertea
et al., 2001), Spliceman (Lim and Fairbrother, 2012), Human Splicing
Finder (Desmet et al., 2009) and similar other tools have been devel-
oped based on consensus splicing donor and acceptor sequences at
exon-intron junctions. Tools such as Branch Site Analyser (Kol et al.,
2005), SVM-BP Finder (Corvelo et al., 2010) and IntSplice (Shibata
et al., 2016) are able to predict alternative splicing events based on the
branch sites and polypyrimidine tracts of introns. Moreover, tools such
as EX-SKIP and HOT-SKIP are designed to predict splicing events based
on exonic splicing enhancers (ESEs) and exonic splicing silencers (ESSs)
(Raponi et al., 2011). All these prediction tools rely heavily on degen-
erate sequence motifs but do not consider the tissue type or cell-specific
splicing patterns, non-coding RNAs or splicing factor changes.

4.2. Current diagnostic practice and ACMG guidelines

Current American College of Medical Genetics (ACMG) guidelines
for assessing a genomic sequence variant with regards to its effect on
splicing recommend the use of multiple in silico tools for splicing pre-
diction (Richards et al., 2015). This is to take account of the significant
room for error inherent in such tools (Jian et al., 2014). One reason for
this problem is that while most tools generate some sort of splicing
“score” to indicate the likelihood of a splicing effect, there are no
agreed thresholds for the interpretation of such scores. By combining
the outputs of more than one tool, there is some hope that more ac-
curate predicitions can be made. A study comparing 272 BRCA1 and
BRCAZ2 variants both in vitro and in silico found that a combined Max-
EntScan cutoff value of 15% and a 5% cutoff value for use of a position
weight matrix model achieved an overall sensitivity of 96% and a
specificity of 83% (Houdayer et al., 2012). More recently, a study
combining two or more in silico tools (HSF, SSF-like and MES) was able
to show 99.44% sensitivity in detecting disruption of splice donor sites
and 92.63% sensitivity for disruption of splice acceptor sites in breast/
ovarian cancer genes (Moles-Fernandez et al., 2018). However, such in
silico evidence (even if sourced from multiple tools) can also only be
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applied as one single combined piece of supporting evidence in the
assessment of a single variant, so as not to attribute undue weight to
such predictions and to take account of some tools using overlapping
algorithms.

5. Alternative splicing RNA-seq analysis

Over the past decade or so, massively parallel sequencing of RNA
(RNA-seq) has become a widely used modality for studying the tran-
scriptome, not only with regard to differential gene expression but in-
creasingly also for alternative splicing and differential isoform expres-
sion, as well as for the study of IncRNAs. Following on from RT-PCR’s
ability to prove the relevance of disrupted splicing function in disease,
RNA-seq has now also been shown to be a complementary diagnostic
application for Mendelian genetic disorders (Cummings et al., 2017).
Moreover, patients’ RNA-seq analysis can potentially yield unique
patterns that are linked to specific diseases, differentiating them from
control RNA-seq samples of the same tissue, which could thereby po-
tentially lead to the development of RNA-seq biomarkers of disease
Fig. 4.

5.1. Data generation options for RNA-seq

When considering RNA-seq for splicing analysis, it is critical to
design the optimal sequencing parameters that will allow extraction of
the maximum splicing information from a sample. This starts with
suitable sample collection (from a relevant tissue or cell type) and the
extraction of high-quality RNA. Poor-quality RNA with low RNA in-
tegrity number (RIN) will generate bias when sequenced, favouring for
example coverage of the 3’ region of transcripts that have been poly-A-
selected over the degraded 5’ ends. The next consideration is the type of
library preparation required. Should total RNA be sequenced, with the
inclusion of long non-coding RNAs? This may potentially reduce se-
lection bias but generally comes at the expense of reduced interpretable
read-depth of mRNA, requires removal of rRNA and increases
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Fig. 4. Applications of three different technologies to detect alternatively spliced mRNA. First generation sequencing or Sanger sequencing needs reverse tran-
scription of mRNA into cDNA before sequencing. Then, the cDNA is aligned to the genomic sequence to detect alternative splicing patterns. Next generation
sequencing platforms such as Illumina, PacBio and nanopore technologies can sequence cDNA to measure RNA abundance as well as alternative splicing. PacBio and

nanopore sequencing generate much longer reads than Illumina.

sequencing ‘noise’. Would poly-A-selected mRNA be more suitable?
This may be appropriate if non-coding RNAs are not of interest, since a
higher proportion of sequenced reads will map to annotated transcripts,
facilitating interpretation. Should small RNAs such as miRNAs be re-
quired for analysis, separate library preparation types will generally be
required.

In addition, one must choose what sequencing platform to use and
what sequencing parameters to employ. While useful gene expression
data can be obtained from single-end reads as short as 50 base-pairs,
analysis of splicing relies on mapping reads that span exon-exon junc-
tions and this really requires reads of at least 100 bp or more, ideally
paired-end (Chhangawala et al., 2015). Read depth is another limiting
factor in terms of detecting abnormal splicing events, particularly if a
gene is expressed at only low levels in a given tissue. Thus, in general
the rule is very much ‘the more the better’ when it comes to numbers of
reads per sample. For short-read mRNA sequencing, around 70 million
reads per sample appears to achieve a reasonable balance between
adequate coverage and depth without costs becoming prohibitive.

There are, of course, also long-read RNA-seq approaches that are
becoming increasingly available in the form of nanopore sequencing
and PacBio technologies (Weirather et al., 2017). Such approaches have
the advantage of generating full-length reads of individual whole
transcripts, making splice isoform variants readily identifiable. Nano-
pore technology relies on detection of changes in electrical current
generated as a single-stranded nucleic acid molecule passes through a
protein nanopore. Different patterns of current change are generated by
different combinations of bases as they transit the pore, which thereby
allows base-calling to take place. An array of nanopores is embedded
within a flow cell membrane and this allows parallel sequencing of
multiple single molecules during the course of a sequencing run. In
addition, since no moving mechanical parts are required for the se-
quencing process, nanopore sequencers can be very small devices in-
deed, making them highly portable. Oxford Nanopore Technologies
currently offer RNA-seq capability via PCR amplicon-based cDNA se-
quencing, direct cDNA sequencing without PCR, and also direct RNA
sequencing, which potentially removes any bias introduced through
reverse transcription. Direct RNA sequencing also has the potential to
detect RNA modifcations, since these affect how the current is altered as
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bases move through the nanopore. Nanopore RNA-seq approaches have
been shown capable of deconvoluting large numbers of individual
splice isoforms (Bolisetty et al., 2015). Detecting allele-specific isoform
usage has also been demonstrated (Seki et al., 2018). One issue that
remains is the limited accuracy of base-calling using the nanopore
method, which at best may be up to 92.3% for cDNA sequencing,
though < 90% for direct RNA sequencing. However, methods are in
development that should improve such accuracy and may allow ap-
plications such as single-cell nanopore transcriptomics (Volden et al.,
2018).

PacBio sequencing employs polymerase enzymes individually teth-
ered to the base of zero-mode wave guides, nanophotonic confinement
structures that allow excitation and emission of light confined to the
very small volume within which the polymerase sits. Single-molecule
real-time (SMRT) sequencing within each well proceeds through in-
corporation of fluorescently labelled nucleotides by the tethered poly-
merase and the incorporation event can then be detected through epi-
fluorescence. This type of approach applied to herpes viruses resulted in
identification of novel transcripts and isoforms, extending the known
number of isoforms by at least around 100% (Tombécz et al., 2018).
Similarly, SMRT sequencing identified over one thousand novel zeb-
rafish isoforms in comparison to what had previously been annotated
through short-read sequencing (Nudelman et al., 2018).

Attempts to accurately quantify and define alternatively spliced
isoforms from short-read data have been shown to be of limited accu-
racy, with analysis tools such as CEM, Cufflinks, iRECKON, RSEM and
SLIDE frequently producing high numbers of false positive results
(Angelini et al., 2014). High GC content can also lead to the over-re-
presentation of such fragments in short-read data (Dabney and Meyer,
2012). With the increasing accuracy of nanopore sequencing and the
increasing throughput available on PacBio platforms, it is likely that
long-read RNA-seq will cpomntonue to gain in popuarity and will
eventually in time become the preferred method for transcriptomic
analysis of differential isoforms and alternative splicing.

Another consideration in data generation is the addition of RNA
spike-in control sequences (Devonshire et al., 2010; Lee et al., 2016).
Such spike-ins can help in controlling for levels of expression between
samples as well as allowing quality assessment of library preparation
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and sequencing. Related to this, it is widely known that RNA-seq can be
highly susceptible to confounding effects introduced by inter-sample
and inter-run variability. It is therefore advisable to seek to process and
run all samples together in parallel so as to minimise these effects.
Having said this, the introduction of RNA-seq into a diagnostic setting
will likely make this approach unviable, since although samples from
patients may be batched for convenience, it would be prohibitively
expensive and time-consuming to fully sequence multiple control
samples with each run. Another potential concern is the lack of re-
plicates available for clinical samples. Many downstream RNA-seq data
analysis piplelines rely on the presence of replicates for their statistical
analysis. In this regard, diagnostic splicing analysis may prove to be
resilient, since in many cases a genetic diagnosis will depend only on
the identification of a novel splice event in a patient rather than on
comparing relative increases or decreases in exon usage.

5.2. Alignment and splice site identification (short-read sequencing)

Once data are generated, they must be analysed appropriately in
order to extract meaning. Following quality control and filtering of raw
reads, alignment mapping to the genome must be undertaken by a
splice-aware alignment algorithm. In very simple terms, a “splice-una-
ware” aligner will only map reads that continuously align along their
length to the provided reference sequence (e.g. the human genome) and
will not make allowances for reads that only partially align (e.g. on
account of a splice junction spanning two exons). Junction-spanning
reads would therefore tend to be discarded by a splice-unaware aligner.
Splice-aware aligners, on the other hand, do make these allowances and
can therefore be used to map spliced reads, either to a known tran-
scriptome or to a whole genome. Commonly used splice-aware aligners
include TopHat2, GSNAP, OLego, STAR and HISAT2, among others (Wu
and Nacu, 2010; Dobin et al., 2013; Kim et al., 2013; Wu et al., 2013;
Kim et al., 2015). Mapping is generally a computationally intense
process and for full transcriptome analysis this is greatly facilitated by
acces to a high-performance computing cluster. Once mapping has been
completed and BAM files have been generated, subsequent analysis can
in many cases be achieved on a personal computer. Of note, it is also
possible to map reads to known transcriptome datasets, rather than to a
genome. This may prove faster but comes with the cost that un-
annotated novel transcripts, isoforms and splicing events may not be
detected.

Newly developed software such as Kallisto (Bray et al., 2016) and
Salmon (Patro et al., 2017) provide faster ways to map and quantify
RNA-seq data without using high capacity performance computers and
this may prove useful in a diagnostic setting. Kallisto (Bray et al., 2016)
software uses pseudo-alignment and offers a very fast method of raw
data analysis, analysing 30 million unaligned paired-end RNA-seq reads
in less than ten minutes even using a standard laptop computer. How-
ever, these are not ideal when analysing multiple isoforms from a single
gene as they use very short reads (Xie et al., 2014). Importantly, it must
also be emphasised that Kallisto and Salmon are not programs designed
for splicing analysis but rather are ultra-rapid read quantitation tools
for RNA-seq data.

Following read mapping, a quick and straightforward way to vi-
sualise splicing data at specific genomic loci is to view the aligned BAM
files via an interface such as the Integrated Genome Viewer (IGV),
which can illustrate the numbers of mapped reads spanning individual
splice junctions using the Sashimi plot function (Katz et al., 2010).
However, direct visualisation is not a high-throughput method and
additional software is required to perform more detailed analysis.

5.3. Differential splicing analysis and isoform quantification
When RNA-seq was introduced using high-throughput massively

parallel sequencing technology (Wang et al., 2009), splicing knowledge
expanded exponentially, not only in the ability to discover new novel
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transcripts but also in terms of measuring the abundance of mRNAs
(Mortazavi et al., 2008; Pan et al., 2008; Wang et al., 2008). In addition,
RNA-seq is also a useful tool to analyse alternative splicing events at
single cell resolution (Song et al., 2017) (Fig. 3). Current widely used
bead-based RNA capture methods for single cell short-read RNA-seq
analysis (such as Drop-seq and 10X Genomics) tend to only yield se-
quence data from the 3’ end of transcripts, limiting its utility for spli-
cing analysis. However, with the correct experimental design, long-read
nanopore sequencing can be used to identify isoforms from individual
cells (Byrne et al., 2017; Seki et al., 2018; Volden et al., 2018). De-
veloping an accurate picture of isoform usage at single cell level is likely
to be critical for our understanding of complex biological systems such
as tumours and immune cell diversity.

Alongside improvements in high-throughput sequencing technolo-
gies, software to analyse the raw data of RNA-seq has also been de-
veloped and improved. Multiple software packages have been devel-
oped that can compare alternative splicing and differential exon usage
between samples. However, it is important to note that many such
programs are only able to quantify the use of known, annotated splice
junctions (or at least junctions that are otherwise pre-specified by the
user) and may therefore not be able to identify or account for cryptic
splicing events.

Open-source software, such as Cufflinks, allows alignment of short
reads to the reference genome to detect alternative splicing (Trapnell
et al., 2010). Cufflinks was one of the first RNA-seq analysis algorithms
to use short reads (75bp) generated from cDNA, which are then mapped
onto a reference genome. About 27% of reported transcripts were
previously unannotated and a wide range of splice isoform switches
were apparent during different time point analysis. Analytical software
such as MISO (mixtures of isoforms)(Katz et al., 2010), SpliceTrap (Wu
et al., 2011), and rMATS (Shen et al., 2014) are specifically designed to
analyse alternative splicing. The MISO method shows that paired-end
reads which are 300 base pairs or more are preferable for the detection
of splice isoforms (Katz et al., 2010). SpliceTrap is similar tool which
focuses on full length transcript isoforms by quantifying exon inclusion
level of every single exon using paired-end RNA-seq data (Wu et al.,
2011). A software program called SUPPA is designed for full-length
transcript quantitation without using alignment methods, resulting in
shorter assembly time (Alamancos et al., 2015).

DEXSeq is a popular program for the analysis of differential exon
usage between groups of samples (Anders et al., 2012). However, it
requires replicate samples for its statistical analysis and relies on an-
notated splice events. SpliceSeq is another program that utilises anno-
tated splice graph alignment of RNA-seq data to quantify and visualise
alternative splicing events through an interactive user interface (Ryan
et al., 2012). JunctionSeq builds on the DEXSeq methodology by as-
sessing both differential exon and splice junction usage between sam-
ples with additional functionality allowing analysis of unannotated
junctions and splicing visualisation (Hartley and Mullikin, 2016).
SGSeq is a versatile software package that can also quantify splice
junction usage but in addition makes direct predictions of novel iso-
forms based on detection of novel splice junctions in aligned RNA-seq
data (Goldstein et al., 2016). Very recently, another program called
Whippet has been developed that uses contiguous splice graphs to
model transcriptome structure and, through the use of k-mer indexing
around splice site boundaries, is able to very rapidly map spliced reads
and to efficiently quantify event-level alternative splicing utilising
computational resources available on a laptop computer (Sterne-Weiler
et al., 2018).

Detailed guidelines for choosing which specific software packages to
use for different purposes are reviewed elsewhere (Conesa et al., 2016).
However, the rapid rate of development of novel RNA-seq software
tools means that up-to-date advice and guidance on the use and ap-
plicability of such tools is often best found via online resources, in-
cluding the many bioinformatics discussion forums that are active on
the worldwide web.
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Fig. 5. Workflow of integration of alternative splicing studies into genomic databases and diagnostics. RNA-seq from patients with genetic disorders can be integrated
into machine learning and splicing prediction tools. The performance of tools should be validated using in vitro assays. Pathogenicity of splice variants can be tested in
animal models before the models are used for drug testing and genome editing studies.

6. Deciphering the splicing code via artificial intelligence/
machine learning

Advances in computing over the past few decades have led to the
development of machine learning algorithms that can be trained to
recognise patterns in data through a system akin to experiential
learning. These “deep learning” algorithms use data fed back from
correct and incorrect inferences and decisions to refine their ability to
achieve a predefined goal. This type of artificial intelligence (AI) ap-
proach effectively frees such algorithms from the constraints of having
to rely upon human-devised rules of decision-making and allows in-
stead the discovery of novel methods and solutions to a problem that
may not have been obvious to (or possible for) a human observer
(Fig. 5).

Machine learning holds promise for disentangling the complex
splicing prediction process and has already been applied in various
genomics studies including splice site identification and the classifica-
tion of splice-altering variants (Libbrecht and Noble, 2015; Xiong et al.,
2015). The idea of machine learning in splicing is to accurately predict
a splicing event from any given sequence using rules that have been
learnt from previous experiences. An early example was ExonScan
which looks for potential splice donor and acceptor sites in any given
sequence using maximum entropy splice site models, before presenting
a candidate exon which has the highest scores (Wang et al., 2004). In
the same year, Sorek et al. developed a method to predict exon skipping
without using ESTs (Sorek et al., 2004). Support vector machine (Dror
et al., 2005) and Acescan (Yeo et al.,, 2005) are similar machine
learning-based algorithms to predict alternative splicing. In 2010,
Barash et al presented a more sophisticated method to predict alter-
native splicing (Barash et al., 2010), where the distinctive feature was
integration of tissue/cell-specific splicing, not previously considered.
The results produced new classes of splicing patterns as well as muta-
tion-verified regulatory sequences. Hidden variables were added to this
method using a Bayesian approach to improve splicing predictions
(Xiong et al., 2011). A Galaxy-based web tool called AVISPA which
predicts tissue-specific splicing patterns as well as regulatory element
associations, is also based on this method (Barash et al., 2013).

Deep learning uses multilayer data processing with multilevel ab-
straction (LeCun et al., 2015). Unlike previous models, Leung et al.
demonstrated a deep learning approach to understanding the tissue-
regulated splicing code by employing a deep neural network algorithm
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applied to RNA-seg-based tissue-specific splicing patterns (Leung et al.,
2014), which outperformed previous Bayesian neural network
methods. It has also been shown that machine learning can now predict
if a sequence variant is likely to interrupt splicing in a tissue-specific
manner, even if the variant is outside the protein-coding region (Xiong
et al., 2015; Jha et al., 2017). This method could prove particularly
useful for predicting the effect of an unknown variant with regards to its
pathogenicity and clinical significance. In their publication, Xiong et al.
report that the method correctly predicted up to 94% of splice disrup-
tions in disease-related variants (Xiong et al., 2015). This is a fast-
changing and promising field, a very recent example of which is
COSSMO (Competitive Splicing Site Model), a novel model using deep
learning to predict competitive effects on splice site selection based on
sequence alone (Bretschneider et al., 2018).

Despite the rapid rise of Al, the challenge of understanding the
“splicing code” presents machine learning with a difficult problem that
may or may not be solvable. As we have seen, regulation of splicing and
the use of specific splice sites depends not only on key RNA sequence
motifs and their surrounding sequence contexts but also on epigenetic
factors controlling gene expression, trans-acting levels of RNA-binding
proteins and other cell- and tissue-specific environmental factors, many
of which will differ to some extent from person to person. This inherent
variability and the stochastic nature of biological processes can there-
fore make them somewhat refractory to reliable predictive modelling,
since many such variables are unknowable in practical terms.
Nevertheless, the computational power of Al-based methods applied to
large multi-omic datasets makes it likely they will succeed in identi-
fying at least some significant novel and biologically relevant connec-
tions between splice-regulating elements.

7. Conclusion

The fields of medical genetics, RNA biology and data science are
experiencing unprecedented explosions of knowledge and under-
standing, driven largely by the NGS revolution and by parallel con-
tinued advances in both computational hardware and software. With
such change comes associated challenges: for medical genetics the
challenge of variant interpretation for clinical diagnosis, for RNA
biology the challenge of understanding the functions of the multiple
coding, non-coding and small RNA species, and for data science the
challenge of extracting meaning from vast datasets. However, this same
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change also brings opportunities in all these fields in ways that should
be synergistic and mutually beneficial.

7.1. The utility of RNA in diagnostics

The current paradigm of medical genetic diagnosis only considers
testing of RNA as something of an afterthought, for example to confirm
or refute the effect of an apparent splice site mutation. Indeed, little
consideration is given to variants (whether exonic or intronic) that
could alter splicing outside of annotated canonical splice sites and sy-
nonymous coding variants are immediately discounted by virtually all
standard variant filtering pipelines, irrespective of their potential ef-
fects on critical splice enhancer or silencer sequences. Current clinically
used algorithms for predicting the splicing effects of variants are wholly
inadequate for the reliable filtering of this complexity and it is therefore
without doubt that a significant proportion of genetic diagnoses are
being missed because of cryptic RNA abnormalities of this kind.

In order to address this diagnostic gap, a shift in the paradigm of
genetic investigation may be required. Namely, rather than turning to
RNA analysis as a follow-up test of “last resort”, it may prove more
effective to consider either targeted or transcriptome-wide RNA ana-
lysis concurrently with DNA-based investigations. This will be relevant
not just for the diagnosis of rare genetic conditions but also for diag-
nosis and biomarker-based monitoring of polygenic and complex
medical conditions that bear distinctive transcriptomic signatures. It
may even be that whole-transcriptome RNA-seq will prove to be an
effective first-line genetic screening test, abnormalities in which could
be followed up by DNA-based confirmation. Since RNA-seq returns not
only expression level and splicing data but also variant level sequencing
data, coding variants can in fact be called as part of the analysis. The
majority (at least 80%) of human genomic coding sequences are found
to be expressed at some level in blood and with sufficient read depth it
should therefore be possible to generate sufficient RNA-seq data for this
type of analysis (Lin et al., 2006).

7.2. Personalised functional genomics and the future diagnostics-
therapeutics pipeline

Up until now, genetic diagnoses have all too often been associated
with a lack of disease-modifying therapeutic options and their in-
dividual rarity has hindered investment in the development of such
treatments. However, as mentioned previously, novel RNA-based
therapies targeting splicing have now started to enter clinical usage.
Such ASO-based RNA therapeutics are attractive on account of their
versatility, specificity and titratabiliy and are likely to play an in-
creasing role in the treatment of both common and rare medical con-
ditions. A key attribute of ASO technology is its potential for persona-
lisation, since an individual patient’s splicing mutation could be
uniquely targeted for correction given the correct sequence modifica-
tions. Whilst drug regulatory authority practices are not currently
compatible with the idea of sequence-specific personalised drug de-
velopment, the pressing need for such therapies in orphan diseases may
act as a catalyst for the regulatory changes required to facilitate these
truly personlaised medicines.

If RNA-based therapeutics are to be part of the future of medicine,
so too must be the routine analysis of RNA and of splicing in particular.
Modern medicine increasingly relies upon correct molecular diagnosis
for guiding clinical management decisions and the diagnosis of a pa-
thogenic splicing mutation in a patient could in future allow bespoke
splice-modulating therapies to be employed. Thus, it may now be time
to consider routine collection of RNA samples alongside DNA samples,
certainly in the case of suspected monogenic disorders and perhaps also
in the setting of selected other disorders where transcriptomic profiling
may aid diagnosis. More broadly, our best chance of achieving a holistic
molecular understanding of an individual patient’s disease is by lever-
aging the power of personalised multi-omic datasets (genomic,
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transcriptomic, methylomic, proteomic, metabolomic and beyond) to
create a truly data-integrated approach to genomic medicine.

References

Alamancos, G.P., et al., 2015. Leveraging transcript quantification for fast computation of
alternative splicing profiles. RNA 21 (9), 1521-1531. https://doi.org/10.1261/rna.
051557.115.

Amoasii, L., et al., 2018. Gene editing restores dystrophin expression in a canine model of
Duchenne muscular dystrophy. Science 362 (6410), 86-91. https://doi.org/10.1126/
SCIENCE.AAU1549. American Association for the Advancement of Science.

Anders, S., Reyes, a, Huber, W., 2012. Detecting diferential usage of exons from RNA-seq
data. Genome Res. 22 (10), 2008-2017. https://doi.org/10.1101/gr.133744.111.

Angelini, C., Canditiis, D., Feis, I., 2014. Computational approaches for isoform detection
and estimation: good and bad news. BMC Bioinformatics 15 (1), 135. https://doi.org/
10.1186/1471-2105-15-135. BioMed Central.

Aoyama, Y., et al., 2017. A novel mutation (c.121-13T&A) in the polypyrimidine tract of
the splice acceptor site of intron 2 causes exon 3 skipping in mitochondrial acet-
oacetyl-CoA thiolase gene. Mol. Med. Rep. 15 (6), 3879-3884. https://doi.org/10.
3892/mmr.2017.6434. Spandidos Publications.

Ars, E., et al., 2000. Mutations affecting mRNA splicing are the most common molecular
defects in patients with neurofibromatosis type 1. Hum. Mol. Genet. 9 (2), 237-247.

Baralle, M., Baralle, F.E., 2018. The splicing code. Biosystems 164, 39-48. https://doi.
org/10.1016/J.BIOSYSTEMS.2017.11.002. Elsevier.

Baralle, M., et al., 2003. Identification of a mutation that perturbs NF1 agene splicing
using genomic DNA samples and a minigene assay. J. Med. Genet. 40 (3), 220-222.
https://doi.org/10.1136/JMG.40.3.220. BMJ Publishing Group.

Barash, Y., et al., 2010. Deciphering the splicing code. Nature 465 (7294), 53-59. https://
doi.org/10.1038/nature09000. Nature Publishing Group.

Barash, Y., et al., 2013. AVISPA: a web tool for the prediction and analysis of alternative
splicing. Genome Biol. 14 (10), R114. https://doi.org/10.1186/gb-2013-14-10-r114.

Barboric, M., et al., 2009. 7SK snRNP/P-TEFb couples transcription elongation with al-
ternative splicing and is essential for vertebrate development. Proc. Natl. Acad. Sci.
U. S. A. 106 (19), 7798-7803. https://doi.org/10.1073/pnas.0903188106. National
Academy of Sciences.

Bolisetty, M.T., Rajadinakaran, G., Graveley, B.R., 2015. Determining exon connectivity
in complex mRNAs by nanopore sequencing. Genome Biol. 16 (1), 204. https://doi.
org/10.1186/513059-015-0777-z.

Bray, N.L., et al., 2016. Near-optimal probabilistic RNA-seq quantification. Nat.
Biotechnol. 34 (5), 525-527. https://doi.org/10.1038/nbt.3519.

Breathnach, R., et al., 1978. Ovalbumin gene: evidence for a leader sequence in mRNA
and DNA sequences at the exon-intron boundaries. Proc. Natl. Acad. Sci. U. S. A. 75
(10), 4853-4857.

Brendel, V., Xing, L., Zhu, W., 2004. Gene structure prediction from consensus spliced
alignment of multiple ESTs matching the same genomic locus. Bioinformatics 20 (7),
1157-1169. https://doi.org/10.1093/bioinformatics/bth058.

Bretschneider, H., et al., 2018. COSSMO: predicting competitive alternative splice site
selection using deep learning. bioRxiv 255257. https://doi.org/10.1101/255257.
Cold Spring Harbor Laboratory.

Buratti, E., Baralle, D., 2012. Exon skipping mutations in neurofibromatosis. Methods in
Molecular Biology. pp. 65-76. https://doi.org/10.1007/978-1-61779-767-5_5.
(Clifton, N.J.).

Burge, C., Karlin, S., 1997. Prediction of complete gene structures in human genomic
DNA. J. Mol. Biol. 268 (1), 78-94. https://doi.org/10.1006/jmbi.1997.0951.

Burset, M., 2000. Analysis of canonical and non-canonical splice sites in mammalian
genomes. Nucleic Acids Res. https://doi.org/10.1093/nar/28.21.4364.

Byrne, A., et al., 2017. Nanopore long-read RNAseq reveals widespread transcriptional
variation among the surface receptors of individual B cells. Nat. Commun. 8, 16027.
https://doi.org/10.1038/ncomms16027. Nature Publishing Group.

Charlet-B, N., et al., 2002. Loss of the muscle-specific chloride channel in type 1 myotonic
dystrophy due to misregulated alternative splicing. Mol. Cell 10 (1), 45-53. https://
doi.org/10.1016/51097-2765(02)00572-5.

Chhangawala, S., et al., 2015. The impact of read length on quantification of differentially
expressed genes and splice junction detection. Genome Biol. 16 (1), 131. https://doi.
org/10.1186/513059-015-0697-y.

Conesa, A., et al., 2016. A survey of best practices for RNA-seq data analysis. Genome
Biol. 17 (1), 13. https://doi.org/10.1186/s13059-016-0881-8. BioMed Central.
Conlon, E.G., et al., 2016. The C9ORF72 GGGGCC expansion forms RNA G-quadruplex
inclusions and sequesters hnRNP H to disrupt splicing in ALS brains. eLife 5, e17820.

https://doi.org/10.7554/eLife.17820.

Cooper, D., et al., 2014. Long non-coding RNA NEAT1 associates with SRp40 to tempo-
rally regulate PPARy2 splicing during adipogenesis in 3T3-L1 cells. Genes 5 (4),
1050-1063. https://doi.org/10.3390/genes5041050.

Cooper-Knock, J., et al., 2014. Sequestration of multiple RNA recognition motif-con-
taining proteins by C9orf72 repeat expansions. Brain 137, 2040-2051. https://doi.
org/10.1093/brain/awul20.

Cooper-Knock, J., et al., 2015. COORF72 GGGGCC expanded repeats produce splicing
dysregulation which correlates with disease severity in amyotrophic lateral sclerosis.
PLoS One 10, e0127376. https://doi.org/10.1371/journal.pone.0127376.

Corvelo, A, et al., 2010. Genome-wide association between branch point properties and
alternative splicing. PLoS Comput. Biol. 6 (11), e1001016. https://doi.org/10.1371/
journal.pcbi.1001016. Edited by I. M. Meyer.

Cummings, B.B., et al., 2017. Improving genetic diagnosis in Mendelian disease with
transcriptome sequencing. Sci. Transl. Med. 9 (386). https://doi.org/10.1126/


https://doi.org/10.1261/rna.051557.115
https://doi.org/10.1261/rna.051557.115
https://doi.org/10.1126/SCIENCE.AAU1549
https://doi.org/10.1126/SCIENCE.AAU1549
https://doi.org/10.1101/gr.133744.111
https://doi.org/10.1186/1471-2105-15-135
https://doi.org/10.1186/1471-2105-15-135
https://doi.org/10.3892/mmr.2017.6434
https://doi.org/10.3892/mmr.2017.6434
http://refhub.elsevier.com/S1357-2725(18)30269-3/sbref0030
http://refhub.elsevier.com/S1357-2725(18)30269-3/sbref0030
https://doi.org/10.1016/J.BIOSYSTEMS.2017.11.002
https://doi.org/10.1016/J.BIOSYSTEMS.2017.11.002
https://doi.org/10.1136/JMG.40.3.220
https://doi.org/10.1038/nature09000
https://doi.org/10.1038/nature09000
https://doi.org/10.1186/gb-2013-14-10-r114
https://doi.org/10.1073/pnas.0903188106
https://doi.org/10.1073/pnas.0903188106
https://doi.org/10.1186/s13059-015-0777-z
https://doi.org/10.1186/s13059-015-0777-z
https://doi.org/10.1038/nbt.3519
http://refhub.elsevier.com/S1357-2725(18)30269-3/sbref0070
http://refhub.elsevier.com/S1357-2725(18)30269-3/sbref0070
http://refhub.elsevier.com/S1357-2725(18)30269-3/sbref0070
https://doi.org/10.1093/bioinformatics/bth058
https://doi.org/10.1101/255257
https://doi.org/10.1101/255257
https://doi.org/10.1007/978-1-61779-767-5_5
https://doi.org/10.1007/978-1-61779-767-5_5
https://doi.org/10.1006/jmbi.1997.0951
https://doi.org/10.1093/nar/28.21.4364
https://doi.org/10.1038/ncomms16027
https://doi.org/10.1016/S1097-2765(02)00572-5
https://doi.org/10.1016/S1097-2765(02)00572-5
https://doi.org/10.1186/s13059-015-0697-y
https://doi.org/10.1186/s13059-015-0697-y
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.7554/eLife.17820
https://doi.org/10.3390/genes5041050
https://doi.org/10.1093/brain/awu120
https://doi.org/10.1093/brain/awu120
https://doi.org/10.1371/journal.pone.0127376
https://doi.org/10.1371/journal.pcbi.1001016
https://doi.org/10.1371/journal.pcbi.1001016
https://doi.org/10.1126/scitranslmed.aal5209

H. Wai et al.

scitranslmed.aal5209. NIH Public Access.

Dabney, J., Meyer, M., 2012. Length and GC-biases during sequencing library amplifi-
cation: a comparison of various polymerase-buffer systems with ancient and modern
DNA sequencing libraries. BioTechniques 52 (2), 87-94. https://doi.org/10.2144/
0001138009.

Desmet, F.-O., et al., 2009. Human Splicing Finder: an online bioinformatics tool to
predict splicing signals. Nucleic Acids Res. 37 (9). https://doi.org/10.1093/nar/
gkp215. pp. e67-e67.

Devonshire, A.S., Elaswarapu, R., Foy, C.A., 2010. Evaluation of external RNA controls for
the standardisation of gene expression biomarker measurements. BMC Genomics 11
(662). https://doi.org/10.1186/1471-2164-11-662.

Dey, B.K., Mueller, A.C., Dutta, A., 2014. Long non-coding RNAs as emerging regulators
of differentiation, development, and disease. Transcription 5 (4), €944014. https://
doi.org/10.4161/21541272.2014.944014. Taylor & Francis.

Dobin, A., et al., 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 (1),
15-21. https://doi.org/10.1093/bioinformatics/bts635.

Dogan, R.L, et al., 2007. SplicePort—An interactive splice-site analysis tool. Nucleic Acids
Res. W285-W291. https://doi.org/10.1093/nar/gkm407. 35(Web Server).

Douglas, A.G.L., Wood, M.J.A., 2011. RNA splicing: disease and therapy. Brief. Funct.
Genomics 10 (3), 151-164. https://doi.org/10.1093/bfgp/elr020.

Douglas, A.G.L., Wood, M.J.A., 2013. Splicing therapy for neuromuscular disease. Mol.
Cell. Neurosci. 56, 169-185. https://doi.org/10.1016/j.mcn.2013.04.005. The
Authors.

Dror, G., Sorek, R., Shamir, R., 2005. Accurate identification of alternatively spliced exons
using support vector machine. Bioinformatics 21 (7), 897-901. https://doi.org/10.
1093/bioinformatics/bti132.

Dvinge, H., 2018. Regulation of alternative mRNA splicing: old players and new per-
spectives. FEBS Lett. https://doi.org/10.1002/1873-3468.13119.

Fang, L.J., et al., 2001. A novel mutation in the neurofibromatosis type 1 (NF1) gene
promotes skipping of two exons by preventing exon definition. J. Mol. Biol. 307 (5),
1261-1270. https://doi.org/10.1006/JMBIL.2001.4561. Academic Press.

Finkel, R.S., et al., 2016. Treatment of infantile-onset spinal muscular atrophy with nu-
sinersen: a phase 2, open-label, dose-escalation study. Lancet 388 (10063),
3017-3026. https://doi.org/10.1016/50140-6736(16)31408-8. Elsevier Ltd.

Gapinske, M., et al., 2018. CRISPR-SKIP: programmable gene splicing with single base
editors. Genome Biol. 19 (1), 107. https://doi.org/10.1186/s13059-018-1482-5.
BioMed Central.

Goldstein, L.D., et al., 2016. Prediction and quantification of splice events from RNA-seq
data. PLoS One 11 (5). https://doi.org/10.1371/journal.pone.0156132. p. €0156132.

Habara, Y., et al., 2009. In vitro splicing analysis showed that availability of a cryptic
splice site is not a determinant for alternative splicing patterns caused by +1G-&A
mutations in introns of the dystrophin gene. J. Med. Genet. 46 (8), 542-547. https://
doi.org/10.1136/jmg.2008.061259. BMJ Publishing Group Ltd.

Haerty, W., Ponting, C.P., 2015. Unexpected selection to retain high GC content and
splicing enhancers within exons of multiexonic IncRNA loci. RNA (New York, N.Y.)
21 (3), 333-346. https://doi.org/10.1261/rna.047324.114. Cold Spring Harbor
Laboratory Press.

Hartley, S.W., Mullikin, J.C., 2016. Detection and visualization of differential splicing in
RNA-Seq data with JunctionSeq. Nucleic Acids Res. 44 (15), e127. https://doi.org/
10.1093/nar/gkw501.

Hori, T., et al., 2013. Molecular basis of two-exon skipping (Exons 12 and 13) by
c.1248 + 5g&a in OXCT1 gene: study on intermediates of OXCT1 transcripts in fi-
broblasts. Hum. Mutat. 34 (3), 473-480. https://doi.org/10.1002/humu.22258.

Houdayer, C,, et al., 2012. Guidelines for splicing analysis in molecular diagnosis derived
from a set of 327 combined in Silico / in vitro studies on BRCA1 and BRCA2 variants.
Hum. Mutat. 33 (8), 1228-1238. https://doi.org/10.1002/humu.22101.

Ifuku, M., et al., 2018. Restoration of dystrophin protein expression by exon skipping
utilizing CRISPR-Cas9 in myoblasts derived from DMD patient iPS cells. Methods in
Molecular Biology. pp. 191-217. https://doi.org/10.1007/978-1-4939-8651-4 12.
(Clifton, N.J.).

Jha, A., Gazzara, M.R., Barash, Y., 2017. Integrative deep models for alternative splicing.
Bioinformatics 33 (14), i274-i282. https://doi.org/10.1093/bioinformatics/btx268.
Oxford University Press.

Jian, X., Boerwinkle, E., Liu, X., 2014. In silico tools for splicing defect prediction: a
survey from the viewpoint of end users. Genet. Med. 16 (7), 497-503. https://doi.
0rg/10.1038/gim.2013.176.

Kénsakoski, J., et al., 2016. Complete androgen insensitivity syndrome caused by a deep
intronic pseudoexon-activating mutation in the androgen receptor gene. Sci. Rep. 6
(1), 32819. https://doi.org/10.1038/srep32819.

Katz, Y., et al., 2010. Analysis and design of RNA sequencing experiments for identifying
isoform regulation. Nat. Methods 7 (12), 1009-1015. https://doi.org/10.1038/
nmeth.1528.

Khan, S.G., et al., 2010. XPC branch-point sequence mutations disrupt U2 snRNP binding,
resulting in abnormal pre-mRNA splicing in xeroderma pigmentosum patients. Hum.
Mutat. 31 (2), 167-175. https://doi.org/10.1002/humu.21166.

Kim, D., et al., 2013. TopHat2: accurate alignment of transcriptomes in the presence of
insertions, deletions and gene fusions. Genome Biol. 14 (4), R36. https://doi.org/10.
1186/gb-2013-14-4-r36.

Kim, D., Langmead, B., Salzberg, S.L., 2015. HISAT: a fast spliced aligner with low
memory requirements. Nat. Methods 12 (4), 357-360. https://doi.org/10.1038/
nmeth.3317.

Kol, G., Lev-Maor, G., Ast, G., 2005. Human-mouse comparative analysis reveals that
branch-site plasticity contributes to splicing regulation. Hum. Mol. Genet. 14 (11),
1559-1568. https://doi.org/10.1093/hmg/ddi164.

Krawczak, M., Reiss, J., Cooper, D.N., 1992. The mutational spectrum of single base-pair
substitutions in mRNA splice junctions of human genes: causes and consequences.

70

International Journal of Biochemistry and Cell Biology 108 (2019) 61-71

Hum. Genet.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436-444.
https://doi.org/10.1038/nature14539. Nature Publishing Group.

Lee, H., et al., 2016. External RNA controls consortium Beta version update. J. Genomics
4, 19-22. https://doi.org/10.7150/jgen.16082.

Leung, M.K.K,, et al., 2014. Deep learning of the tissue-regulated splicing code.
Bioinformatics (Oxford, England) 30 (12), i121-9. https://doi.org/10.1093/
bioinformatics/btu277. Oxford University Press.

Libbrecht, M.W., Noble, W.S., 2015. Machine learning applications in genetics and
genomics. Nat. Rev. Genet. 16 (6), 321-332. https://doi.org/10.1038/nrg3920. NIH
Public Access.

Lim, K.H., Fairbrother, W.G., 2012. Spliceman-a computational web server that predicts
sequence variations in pre-mRNA splicing. Bioinformatics 28 (7), 1031-1032.
https://doi.org/10.1093/bioinformatics/bts074.

Lin, X., et al., 2006. Failure of MBNL1-dependent post-natal splicing transitions in
myotonic dystrophy. Hum. Mol. Genet. 15 (13), 2087-2097. https://doi.org/10.
1093/hmg/dd1132.

Lloyd, J.P.B., 2018. The evolution and diversity of the nonsense-mediated mRNA decay
pathway. F1000Research 7, 1299. https://doi.org/10.12688/f1000research.15872.1.

Lépez-Bigas, N., et al., 2005. Are splicing mutations the most frequent cause of hereditary
disease? FEBS Lett. 579 (9), 1900-1903. https://doi.org/10.1016/j.febslet.2005.02.
047.

Lord, J., et al., 2018. The contribution of non-canonical splicing mutations to severe
dominant developmental disorders. bioRxiv 256636. https://doi.org/10.1101/
256636. Cold Spring Harbor Laboratory.

Markmiller, S., et al., 2014. Minor class splicing shapes the zebrafish transcriptome
during development. Proc. Natl. Acad. Sci. U. S. A. 111 (8), 3062-3067. https://doi.
org/10.1073/pnas.1305536111. National Academy of Sciences.

McAlinden, A., et al., 2008. Missense and nonsense mutations in the alternatively-spliced
exon 2 of COL2A1 cause the ocular variant of Stickler syndrome. Hum. Mutat. 29 (1),
83-90. https://doi.org/10.1002/humu.20603.

Mendell, J.R., et al., 2016. Longitudinal effect of eteplirsen versus historical control on
ambulation in Duchenne muscular dystrophy. Ann. Neurol. 79, 257-271. https://doi.
org/10.1002/ana.24555.

Moles-Ferndndez, A., et al., 2018. Computational tools for splicing defect prediction in
breast/ovarian cancer genes: how efficient are they at predicting RNA alterations?
Front. Genet. 9 (September), 366. https://doi.org/10.3389/fgene.2018.00366.

Mortazavi, A., et al., 2008. Mapping and quantifying mammalian transcriptomes by RNA-
Seq. Nat. Methods 5 (7), 621-628. https://doi.org/10.1038/nmeth.1226.

Nudelman, G., et al., 2018. High resolution annotation of zebrafish transcriptome using
long-read sequencing. Genome Res. 28 (9), 1415-1425. https://doi.org/10.1101/gr.
223586.117.

Pan, Q., et al., 2008. Deep surveying of alternative splicing complexity in the human
transcriptome by high-throughput sequencing. Nat. Genet. 40 (12), 1413-1415.
https://doi.org/10.1038/ng.259.

Patro, R., et al., 2017. Salmon provides fast and bias-aware quantification of transcript
expression. Nat. Methods 14 (4), 417-419. https://doi.org/10.1038/nmeth.4197.

Pertea, M., Lin, X., Salzberg, S.L., 2001. GeneSplicer: a new computational method for
splice site prediction. Nucleic Acids Res. 29 (5), 1185-1190.

Polymenidou, M., et al., 2011. Long pre-mRNA depletion and RNA missplicing contribute
to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14 (4), 459-468.
https://doi.org/10.1038/nn.2779. Nature Publishing Group.

Raponi, M., Upadhyaya, M., Baralle, D., 2006. Functional splicing assay shows a patho-
genic intronic mutation in neurofibromatosis type 1 (NF1) due to intronic sequence
exonization. Hum. Mutat. 27 (3), 294-295. https://doi.org/10.1002/humu.9412.

Raponi, M., et al., 2008. Polypyrimidine tract binding protein regulates alternative spli-
cing of an aberrant pseudoexon in NF1. FEBS J. 275 (24), 6101-6108. https://doi.
org/10.1111/j.1742-4658.2008.06734.x. Wiley/Blackwell (10.1111).

Raponi, M., et al., 2011. Prediction of single-nucleotide substitutions that result in exon
skipping: identification of a splicing silencer in BRCA1 exon 6. Hum. Mutat. 32 (4),
436-444. https://doi.org/10.1002/humu.21458.

Reddy, K., et al., 2013. The disease-associated r(GGGGCC)n repeat from the C9orf72 gene
forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures.
J. Biol. Chem. 288 (14), 9860-9866. https://doi.org/10.1074/jbc.C113.452532,

Richards, S., et al., 2015. Standards and guidelines for the interpretation of sequence
variants: a joint consensus recommendation of the American College of Medical
Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17
(5), 405-423. https://doi.org/10.1038/gim.2015.30.

Rinaldi, C., Wood, M.J.A., 2018. Antisense oligonucleotides: the next frontier for treat-
ment of neurological disorders. Nat. Rev. Neurol. 14 (1), 9-21. https://doi.org/10.
1038/nrneurol.2017.148. Nature Publishing Group.

Romero-Barrios, N., et al., 2018. Splicing regulation by long noncoding RNAs. Nucleic
Acids Res. 46 (5), 2169-2184. https://doi.org/10.1093/nar/gky095. Oxford
University Press.

Rosenberg, A.B., et al., 2015. Learning the sequence determinants of alternative splicing
from millions of random sequences. Cell 163 (3), 698-711. https://doi.org/10.1016/
j.cell.2015.09.054.

Ruan, G.-X., et al., 2017. CRISPR/Cas9-mediated genome editing as a therapeutic ap-
proach for leber congenital amaurosis 10. Mol. Ther. 25 (2), 331-341. https://doi.
org/10.1016/j.ymthe.2016.12.006.

Ryan, M.C,, et al., 2012. SpliceSeq: a resource for analysis and visualization of RNA-Seq
data on alternative splicing and its functional impacts. Bioinformatics 28 (18),
2385-2387. https://doi.org/10.1093/bioinformatics/bts452.

Sanz, D.J,, et al., 2017. Cas9/gRNA targeted excision of cystic fibrosis-causing deep-in-
tronic splicing mutations restores normal splicing of CFTR mRNA. PLoS One 12 (9),
€0184009. https://doi.org/10.1371/journal.pone.0184009. Edited by E. Buratti.


https://doi.org/10.1126/scitranslmed.aal5209
https://doi.org/10.2144/000113809
https://doi.org/10.2144/000113809
https://doi.org/10.1093/nar/gkp215
https://doi.org/10.1093/nar/gkp215
https://doi.org/10.1186/1471-2164-11-662
https://doi.org/10.4161/21541272.2014.944014
https://doi.org/10.4161/21541272.2014.944014
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/nar/gkm407
https://doi.org/10.1093/bfgp/elr020
https://doi.org/10.1016/j.mcn.2013.04.005
https://doi.org/10.1016/j.mcn.2013.04.005
https://doi.org/10.1093/bioinformatics/bti132
https://doi.org/10.1093/bioinformatics/bti132
https://doi.org/10.1002/1873-3468.13119
https://doi.org/10.1006/JMBI.2001.4561
https://doi.org/10.1016/S0140-6736(16)31408-8
https://doi.org/10.1186/s13059-018-1482-5
https://doi.org/10.1186/s13059-018-1482-5
https://doi.org/10.1371/journal.pone.0156132
https://doi.org/10.1136/jmg.2008.061259
https://doi.org/10.1136/jmg.2008.061259
https://doi.org/10.1261/rna.047324.114
https://doi.org/10.1261/rna.047324.114
https://doi.org/10.1093/nar/gkw501
https://doi.org/10.1093/nar/gkw501
https://doi.org/10.1002/humu.22258
https://doi.org/10.1002/humu.22101
https://doi.org/10.1007/978-1-4939-8651-4_12
https://doi.org/10.1007/978-1-4939-8651-4_12
https://doi.org/10.1093/bioinformatics/btx268
https://doi.org/10.1093/bioinformatics/btx268
https://doi.org/10.1038/gim.2013.176
https://doi.org/10.1038/gim.2013.176
https://doi.org/10.1038/srep32819
https://doi.org/10.1038/nmeth.1528
https://doi.org/10.1038/nmeth.1528
https://doi.org/10.1002/humu.21166
https://doi.org/10.1186/gb-2013-14-4-r36
https://doi.org/10.1186/gb-2013-14-4-r36
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1093/hmg/ddi164
http://refhub.elsevier.com/S1357-2725(18)30269-3/sbref0290
http://refhub.elsevier.com/S1357-2725(18)30269-3/sbref0290
http://refhub.elsevier.com/S1357-2725(18)30269-3/sbref0290
https://doi.org/10.1038/nature14539
https://doi.org/10.7150/jgen.16082
https://doi.org/10.1093/bioinformatics/btu277
https://doi.org/10.1093/bioinformatics/btu277
https://doi.org/10.1038/nrg3920
https://doi.org/10.1038/nrg3920
https://doi.org/10.1093/bioinformatics/bts074
https://doi.org/10.1093/hmg/ddl132
https://doi.org/10.1093/hmg/ddl132
https://doi.org/10.12688/f1000research.15872.1
https://doi.org/10.1016/j.febslet.2005.02.047
https://doi.org/10.1016/j.febslet.2005.02.047
https://doi.org/10.1101/256636
https://doi.org/10.1101/256636
https://doi.org/10.1073/pnas.1305536111
https://doi.org/10.1073/pnas.1305536111
https://doi.org/10.1002/humu.20603
https://doi.org/10.1002/ana.24555
https://doi.org/10.1002/ana.24555
https://doi.org/10.3389/fgene.2018.00366
https://doi.org/10.1038/nmeth.1226
https://doi.org/10.1101/gr.223586.117
https://doi.org/10.1101/gr.223586.117
https://doi.org/10.1038/ng.259
https://doi.org/10.1038/nmeth.4197
http://refhub.elsevier.com/S1357-2725(18)30269-3/sbref0380
http://refhub.elsevier.com/S1357-2725(18)30269-3/sbref0380
https://doi.org/10.1038/nn.2779
https://doi.org/10.1002/humu.9412
https://doi.org/10.1111/j.1742-4658.2008.06734.x
https://doi.org/10.1111/j.1742-4658.2008.06734.x
https://doi.org/10.1002/humu.21458
https://doi.org/10.1074/jbc.C113.452532
https://doi.org/10.1038/gim.2015.30
https://doi.org/10.1038/nrneurol.2017.148
https://doi.org/10.1038/nrneurol.2017.148
https://doi.org/10.1093/nar/gky095
https://doi.org/10.1093/nar/gky095
https://doi.org/10.1016/j.cell.2015.09.054
https://doi.org/10.1016/j.cell.2015.09.054
https://doi.org/10.1016/j.ymthe.2016.12.006
https://doi.org/10.1016/j.ymthe.2016.12.006
https://doi.org/10.1093/bioinformatics/bts452
https://doi.org/10.1371/journal.pone.0184009

H. Wai et al.

Seki, M., et al., 2018. OUP accepted manuscript. Dna Res. https://doi.org/10.1093/
dnares/dsy038.

Shen, S., et al., 2014. rMATS: robust and flexible detection of differential alternative
splicing from replicate RNA-Seq data. Proc. Natl. Acad. Sci. U. S. A. 111 (51),
E5593-5601. https://doi.org/10.1073/pnas.1419161111.

Shibata, A., et al., 2016. IntSplice: prediction of the splicing consequences of intronic
single-nucleotide variations in the human genome. J. Hum. Genet. 61 (7), 633-640.
https://doi.org/10.1038/jhg.2016.23.

Singh, G., Cooper, T.A., 2006. Minigene reporter for identification and analysis of cis
elements and trans factors affecting pre-mRNA splicing. BioTechniques 41 (2),
177-181. https://doi.org/10.2144/000112208.

Singh, R., et al., 2016. Regulation of alternative splicing of Bcl-x by BC200 contributes to
breast cancer pathogenesis. Cell Death Dis. 7 (6). https://doi.org/10.1038/cddis.
2016.168. pp. €2262-€2262.

Soemedi, R., et al., 2017. Pathogenic variants that alter protein code often disrupt spli-
cing. Nat. Genet. 49 (6), 848-855. https://doi.org/10.1038/ng.3837.

Song, Y., et al., 2017. Single-cell alternative splicing analysis with expedition reveals
splicing dynamics during neuron differentiation. Mol. Cell 67 (1), 148-161. https://
doi.org/10.1016/j.molcel.2017.06.003. e5.

Sorek, R., et al., 2004. A non-EST-based method for exon-skipping prediction. Genome
Res. 14 (8), 1617-1623. https://doi.org/10.1101/gr.2572604. Cold Spring Harbor
Laboratory Press.

Sterne-Weiler, T., et al., 2018. Efficient and accurate quantitative profiling of alternative
splicing patterns of any complexity on a laptop. Mol. Cell Elsevier 72 (1), 187-200.
https://doi.org/10.1016/j.molcel.2018.08.018. e6.

Symoens, S., et al., 2011. A Novel Splice Variant in the N-propeptide of COL5A1 Causes
an EDS Phenotype with Severe Kyphoscoliosis and Eye Involvement. PLoS One 6 (5),
e20121. https://doi.org/10.1371/journal.pone.0020121. Edited by F. Palau.

Sznajder, L.J., et al., 2018. Intron retention induced by microsatellite expansions as a
disease biomarker. Proc. Natl. Acad. Sci. 115 (16), 4234-4239. https://doi.org/10.
1073/pnas.1716617115.

Teraoka, S.N., et al., 1999. Splicing defects in the Ataxia-Telangiectasia Gene, ATM:
underlying mutations and consequences. Am. J. Hum. Genet. 64 (6), 1617-1631.
https://doi.org/10.1086,/302418.

Tombécz, D., et al., 2018. Long-read sequencing revealed an extensive transcript com-
plexity in Herpesviruses. Front. Genet. 9, 259. https://doi.org/10.3389/fgene.2018.
00259. Frontiers Media SA.

Trapnell, C., et al., 2010. Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation. Nat.
Biotechnol. 28 (5), 511-515. https://doi.org/10.1038/nbt.1621.

Tripathi, V., et al., 2010. The nuclear-retained noncoding RNA MALAT1 regulates alter-
native splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39 (6),
925-938. https://doi.org/10.1016/j.molcel.2010.08.011.

Van De Water, N.S., et al., 2004. Factor IX polypyrimidine tract mutation analysis using
mRNA from peripheral blood leukocytes. J. Thromb. Haemost. 2 (11), 2073-2075.
https://doi.org/10.1111/j.1538-7836.2004.00989.x.

71

International Journal of Biochemistry and Cell Biology 108 (2019) 61-71

Vaz-Drago, R., Custédio, N., Carmo-Fonseca, M., 2017. Deep intronic mutations and
human disease. Hum. Genet. https://doi.org/10.1007/500439-017-1809-4.

Volden, R., et al., 2018. Improving nanopore read accuracy with the R2C2 method en-
ables the sequencing of highly multiplexed full-length single-cell cDNA. Proc. Natl.
Acad. Sci. U. S. A. 115 (39), 9726-9731. https://doi.org/10.1073/pnas.1806447115.
National Academy of Sciences.

Wang, Z., et al., 2004. Systematic identification and analysis of exonic splicing silencers.
Cell 119 (6), 831-845. https://doi.org/10.1016/J.CELL.2004.11.010. Cell Press.
Wang, E.T., et al., 2008. Alternative isoform regulation in human tissue transcriptomes.

Nature 456 (7221), 470-476. https://doi.org/10.1038/nature07509.

Wang, Z., Gerstein, M., Snyder, M., 2009. RNA-Seq: a revolutionary tool for tran-
scriptomics. Nat. Rev. Genet. 10 (1), 57-63. https://doi.org/10.1038/nrg2484.
Wani, S., Kuroyanagi, H., 2017. An emerging model organism Caenorhabditis elegans for
alternative pre-mRNA processing in vivo. Wiley Interdiscip. Rev. RNA 8 (6), e1428.

https://doi.org/10.1002/wrna.1428. Wiley-Blackwell.

Weirather, J.L., et al., 2017. Comprehensive comparison of Pacific Biosciences and Oxford
Nanopore Technologies and their applications to transcriptome analysis.
F1000Research 6 (1), 100. https://doi.org/10.12688/f1000research.10571.2.

Wu, T.D., Nacu, S., 2010. Fast and SNP-tolerant detection of complex variants and spli-
cing in short reads. Bioinformatics 26 (7), 873-881. https://doi.org/10.1093/
bioinformatics/btq057.

Wu, J., et al., 2011. SpliceTrap: a method to quantify alternative splicing under single
cellular conditions. Bioinformatics 27 (21), 3010-3016. https://doi.org/10.1093/
bioinformatics/btr508.

Wu, J., et al., 2013. OLego: fast and sensitive mapping of spliced mRNA-Seq reads using
small seeds. Nucleic Acids Res. 41 (10), 5149-5163. https://doi.org/10.1093/nar/
gkt216.

Xie, Y., et al., 2014. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-
Seq reads. Bioinformatics 30 (12), 1660-1666. https://doi.org/10.1093/
bioinformatics/btu077.

Xiong, H.Y., Barash, Y., Frey, B.J., 2011. Bayesian prediction of tissue-regulated splicing
using RNA sequence and cellular context. Bioinformatics 27 (18), 2554-2562.
https://doi.org/10.1093/bioinformatics/btr444.

Xiong, H.Y., et al., 2015. RNA splicing. The human splicing code reveals new insights into
the genetic determinants of disease. Science (New York, N.Y.) 347 (6218), 1254806.
https://doi.org/10.1126/science.1254806. NIH Public Access.

Yeo, G.W., et al., 2005. Identification and analysis of alternative splicing events conserved
in human and mouse. Proc. Natl. Acad. Sci. 102 (8), 2850-2855. https://doi.org/10.
1073/pnas.0409742102.

Yuan, J., et al., 2017. The MBNL3 splicing factor promotes hepatocellular carcinoma by
increasing PXN expression through the alternative splicing of IncRNA-PXN-AS1. Nat.
Cell Biol. 19 (7), 820-832. https://doi.org/10.1038/ncb3538. Nature Publishing
Group.

Zeng, L., et al., 2013. A novel donor splice-site mutation of major intrinsic protein gene
associated with congenital cataract in a Chinese family. Mol. Vis. 19, 2244-2249.


https://doi.org/10.1093/dnares/dsy038
https://doi.org/10.1093/dnares/dsy038
https://doi.org/10.1073/pnas.1419161111
https://doi.org/10.1038/jhg.2016.23
https://doi.org/10.2144/000112208
https://doi.org/10.1038/cddis.2016.168
https://doi.org/10.1038/cddis.2016.168
https://doi.org/10.1038/ng.3837
https://doi.org/10.1016/j.molcel.2017.06.003
https://doi.org/10.1016/j.molcel.2017.06.003
https://doi.org/10.1101/gr.2572604
https://doi.org/10.1101/gr.2572604
https://doi.org/10.1016/j.molcel.2018.08.018
https://doi.org/10.1371/journal.pone.0020121
https://doi.org/10.1073/pnas.1716617115
https://doi.org/10.1073/pnas.1716617115
https://doi.org/10.1086/302418
https://doi.org/10.3389/fgene.2018.00259
https://doi.org/10.3389/fgene.2018.00259
https://doi.org/10.1038/nbt.1621
https://doi.org/10.1016/j.molcel.2010.08.011
https://doi.org/10.1111/j.1538-7836.2004.00989.x
https://doi.org/10.1007/s00439-017-1809-4
https://doi.org/10.1073/pnas.1806447115
https://doi.org/10.1073/pnas.1806447115
https://doi.org/10.1016/J.CELL.2004.11.010
https://doi.org/10.1038/nature07509
https://doi.org/10.1038/nrg2484
https://doi.org/10.1002/wrna.1428
https://doi.org/10.12688/f1000research.10571.2
https://doi.org/10.1093/bioinformatics/btq057
https://doi.org/10.1093/bioinformatics/btq057
https://doi.org/10.1093/bioinformatics/btr508
https://doi.org/10.1093/bioinformatics/btr508
https://doi.org/10.1093/nar/gkt216
https://doi.org/10.1093/nar/gkt216
https://doi.org/10.1093/bioinformatics/btu077
https://doi.org/10.1093/bioinformatics/btu077
https://doi.org/10.1093/bioinformatics/btr444
https://doi.org/10.1126/science.1254806
https://doi.org/10.1073/pnas.0409742102
https://doi.org/10.1073/pnas.0409742102
https://doi.org/10.1038/ncb3538
https://doi.org/10.1038/ncb3538
http://refhub.elsevier.com/S1357-2725(18)30269-3/sbref0600
http://refhub.elsevier.com/S1357-2725(18)30269-3/sbref0600

	RNA splicing analysis in genomic medicine
	Introduction
	Splicing in disease
	How splicing goes wrong in disease
	Therapeutics that manipulate splicing
	Alternative splicing signature as a disease biomarker

	In vitro/in vivo assays for validation of alternative splicing
	RT-PCR
	Minigene assays and MPRA
	Animal models for splicing analysis

	In silico approaches for predicting aberrant splicing
	Currently available tools
	Current diagnostic practice and ACMG guidelines

	Alternative splicing RNA-seq analysis
	Data generation options for RNA-seq
	Alignment and splice site identification (short-read sequencing)
	Differential splicing analysis and isoform quantification

	Deciphering the splicing code via artificial intelligence/machine learning
	Conclusion
	The utility of RNA in diagnostics
	Personalised functional genomics and the future diagnostics-therapeutics pipeline

	References




