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ARTICLE INFO ABSTRACT

Ovarian cancer (OvCa) is the most lethal gynecological malignancy in the United States primarily due to lack of a
reliable early diagnostic, high incidence of chemo-resistant recurrent disease as well as profuse tumor hetero-
geneity. Cancer stem cells (CSCs) continue to gain attention, as they are known to resist chemotherapy, self-
renew and re-populate the bulk tumor with undifferentiated and differentiated cells. Moreover, CSCs appear to
readily adapt to environmental, immunologic and pharmacologic cues. The plasticity and ability to inactivate or
activate signaling pathways promoting their longevity has been, and continues to be, the challenge faced in
developing successful CSC targeted therapies. Identifying and understanding unique ovarian CSC markers and
the pathways they utilize could reveal new therapeutic opportunities that may offer alternative adjuvant
treatment options. Herein, we will discuss the current state of ovarian CSC characterization, their contribution to
disease resistance, recurrence and shed light on clinical trials that may target the CSC population.
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1. Introduction

Ovarian Cancer (OvCa) is the most lethal gynecologic malignancy in
the United States (Torre et al., 2018). In 2018, it is estimated that
22,240 new cases of OvCa will be diagnosed and 14,070 women will
succumb to their disease (National Cancer Institute, 2018). The high
mortality rate is primarily due to our inability to detect early onset of

chemotherapy (Ozols et al., 2003; Armstrong et al., 2006). Some studies
suggest that neoadjuvant chemotherapy prior to interval debulking
surgery could further reduce the rates of recurrence (Kehoe et al., 2015;
Wright et al., 2016). Regardless of the treatment regimen, most patients
will develop recurrent platinum resistant disease. Recurrence is at-
tributed to the inability to completely eradicate all the tumor by sur-
gical and/or pharmacological strategies. It is also believed that among

the residual cancer cells, some have inherent or acquired stem like
properties serving as seeds for the development of recurrent disease. In
some reports, cells with distinguishable stem like biological

OvCa resulting in most women presenting with advanced stage disease
at the time of diagnosis. The standard of care for OvCa includes cy-
toreductive  surgery followed by adjuvant platinum-based
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characteristics were found to efflux the Hoechst33342 dye by cell
transporters the way cells would efflux toxic drugs. These unique cells
were found in a side population (SP) fraction as determined by flow
cytometric analysis (Christgen et al., 2010; Luo et al., 2012; Meirelles
et al., 2012; Oates et al., 2009). Thorough investigation revealed the SP
fraction was enriched for cancer stem cells (CSCs), also known as tumor
or cancer initiating cells, due to their shared characteristics with stem
cells (SCs).

OvCa is a highly heterogenous disease which is most evident by the
different histopathologies and diverse genomic signatures (Cancer
Genome Atlas Research, 2018b). Epithelial OvCa, the most common
(~90%), can be further sub-classified into the serous, endometrioid,
mucinous, or clear cell histology. The high-grade serous carcinomas
(HGSC) make up the majority of the epithelial ovarian cases and por-
tend poor 5-year survival rate of 35-40% (Berns and Bowtell, 2012;
Ledermann et al., 2011; Conklin and Gilks, 2013, Torre et al., 2018).
The remaining ~10% of OvCa subtypes are of germ cell or sex cord-
stromal origin (Torre et al., 2018). While the name suggests OvCa is
derived from the ovary itself, the exact origin of OvCa remains some-
what controversial. Mounting evidence supports the concept that OvCa
can be derived from multiple sites including the surface epithelium of
the ovary, surface epithelial cells trapped in inclusion cysts within the
ovarian stroma, the distal portion of the fallopian tube, or from (or
near) an endometriotic lesion (Nik et al., 2014; Seidman, 2015;
Abubaker et al., 2013; Merritt and Cramer, 2010; Dubeau, 2008). Due
to the lack of a reliable diagnostic method and the vague symptoms
with which patients present, more than 70% of OvCa is diagnosed at a
late stage at which point the survival rates are dismal (National Cancer
Institute, 2018). While the histology, grade and stage at which the
disease was diagnosed can influence the clinical outcome of OvCa pa-
tients, it is the overall heterogeneity of OvCa that often proves to be the
most challenging variable in successfully managing the disease. The
aim of this review is to discuss recent developments in the ovarian CSC
field, the role of CSC plasticity, and briefly review CSC-based therapies,
some of which are already in clinical trials.

2. Cancer stem cells

The genesis of cancer has long been thought to be a product of the
clonal evolution whereby a cell that withstands multiple mutational
hits or mutations eventually undergoes malignant transformation as
shown in Fig. 1A. Alternatively, there are those that argue cancer can be
derived from an aberrant stem cell (SC) or somatic cell that has un-
dergone key genetic hits allowing the cell to gain stem like properties,
including but not limited to asymmetric division. The first indication of
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the presence of tumor cells with SC properties was in 1858, when
Virchow proposed that cancers might originate from immature cells. In
1875, Cohnheim refined this model and suggested that embryonic-like
cells remain in the adult tissue and develop into cancer upon activation
later in life (Sell, 2004; R., V., Editoral Archiv fuer pathologische, 1855;
J, C., 1867). There are roughly 37.2 trillion cells that make up the
human body (Bianconi et al., 2013). This massive network of cells re-
quires careful organization, maintenance, and regeneration, which is
primarily achieved by SCs. Stem cells are best known for their ability to
regenerate skin, blood, and intestinal cells that constantly need to be
replenished (Jiang et al., 2002). Both normal stem cells (NSCs) and
CSCs are regulated by similar signaling pathways (Wnt, Hedgehog,
Notch...etc.) and share many other similarities as shown in Fig. 2. CSCs,
like their NSCs counterparts, are believed to have the enhanced de-
toxification ability (Moitra, 2015) by altering drug transporters (Dean,
2009; Hedditch et al., 2014), and repair their DNA (Wang, 2015). In
contrast, there are differences that distinguish CSCs from NSCs. For
example, NSCs are characterized by the highly regulated homeostatic
balance of self-renewal, while CSCs have lost this ability (Shackleton,
2010). Unlike the bulk tumor population, CSCs maintain their capacity
to generate new tumor. Their slow turnover rate renders them un-
responsive to current cytotoxic strategies designed to target the more
rapidly replicating bulk tumor cells (Moitra, 2015). It is believed the
differentiation of CSCs is hierarchal, allowing subsets of cells to have
varying levels of replicative ability, often termed transient progenitor
cells. Collectively, these properties serve to differentiate CSC from non-
CSC. In response to stress initiated by surgery, therapy and/or the
tumor microenvironment, some CSCs, progenitors or differentiated
tumor cells can undergo further selection or accumulation of genetic
mutations leading to more genetically diverse and heterogeneous tumor
groups. It remains a point of debate in the scientific community as to
which model is primarily responsible for tumorigenesis, metastasis
and/or recurrent disease.

In OvCa, Bapat and colleagues first characterized the presence of
OvCa stem-like or progenitor cell properties using cells isolated from
patient ascites. Using a combination of clonal isolation, anchorage-in-
dependent growth and spheroid formation techniques they identified
cells that possessed SC like properties. While not all tumor cells have
the capacity to form new tumors, these ovarian stem-like cells were
tumorigenic (Bapat et al., 2005). Clinically, Steg and colleagues ana-
lyzed matched primary/recurrent OvCa samples for expression of CSC
markers and showed an enrichment of CSCs and SC pathway mediators
after primary therapy (Steg et al., 2012a). Limited functional evidence
suggests that treatment of OvCa cell lines or ovarian tumors in vivo
with cisplatin or other cytotoxics may push cells to take one or more

Fig. 1. The CSC model proposes that NSCs or somatic cells (red
and pink respectively) undergo transformations that render them
CSCs (blue and green cells). These CSCs are then capable of giving
rise to more differentiated daughter tumor cells (yellow cells) (A).
The CSCs have been shown to be chemo-resistant. Although most
of the bulk tumor cells are eliminated, the CSCs remain. The re-
maining CSCs have been hypothesized as one of the primary dri-
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Fig. 2. NSCs and CSCs can have independent as well as shared phenotypes and utilize similar pathways.

CSC-like properties (i.e. chemo-resistance) or cause the enrichment of
CSCs as shown in pre-clinical data (Chaffer et al., 2011; Chaffer and
Weinberg, 2011) and depicted in Fig. 1B.

Recently, a relatively new concept in the CSC research field de-
scribed as CSC plasticity has brought additional controversy to an al-
ready turbulent field. The plasticity of cells refers to the ability of a
specific population of cells to switch between different phenotypical
states; a more differentiated state to a CSC phenotype. Bidirectional
interconversion between stem and non-stem like is attributed to ge-
netic, epigenetic, pharmacologic and/or microenvironmental changes
(van Neerven et al., 2016). This process reportedly combines elements
of the clonal evolution model and the hierarchal CSC model (Kreso and
Dick, 2014; Rich, 2016).

The integration of CSCs, clonal evolution and potential for bidir-
ectional interconversion ensures the durability and longevity of the
tumor. More than likely, OvCa is a byproduct of all these models con-
tributing to the heterogeneity of the disease, which is further modified
by clinical treatment regimens. Although the interpretation of these
models will be further refined, presently, we believe the combination of
both clonal evolution and hierarchal CSC models are culprits in the
development and resurgence of cancer.

3. CSC markers and challenges in their identification

Identifying and functionally characterizing ovarian CSCs is crucial
for developing effective therapies. Several surface antigens, molecular
markers and enzymatic activity have been used to identify CSC popu-
lations. Herein, we will discuss the more established ovarian CSC
markers including CD44, CD117, CD133, CD24 and assessment of
ALDH activity and/or expression and the challenges associated with
CSC identification. While these are described individually, it is im-
portant to note that these markers/enzymatic activities are also used in
combination in different cancer types and subtypes. The co-expression
as well as changes in marker expression/activity with disease progres-
sion are only a few factors to consider when determining the best
strategy to use while identifying CSCs.

3.1. CD44

CD44 is a cell-surface receptor with a role in cell-cell interaction,
adhesion and migration (Karan Krizanac et al., 2018). CD44 levels are
enriched in various cancers and can contribute to tumor metastasis
through interaction with different extracellular matrix ligands such as
hyaluronic acid (Senbanjo and Chellaiah, 2017). CSCs isolated from
solid tumors and ascites of ovarian serous adenocarcinoma patients as
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well as from established OvCa cell lines (SKOV-3, OV90 and 3A0) were
enriched with CD44 + cell surface expression (Alvero et al., 2009; Meng
et al., 2012; Shi et al., 2010; Zhang et al., 2008). The CD44 + cells had
high sphere-forming ability, possessed asymmetric replicative proper-
ties and were resistant to carboplatin and paclitaxel treatment (Alvero
et al., 2009). In addition, the CD44 + population had enriched capacity
for tumorigenesis (Alvero et al., 2009; Shi et al., 2010; Zhang et al.,
2008). Comparing matched ovarian primary, metastatic and recurrent
samples showed that CD44 levels were elevated in metastatic and re-
current samples compared to the primary tumors (Gao et al., 2015).
Moreover, elevated CD44 levels were also associated with shorter
progression free survival (PFS) and reduced overall survival (OS) (Gao
et al., 2015). Additional studies revealed an association between
CD44 + cells by IHC with poor OS but not with PFS (Karan Krizanac
et al., 2018; Lin and Ding, 2017).

3.2. CD117

CD117, also known as c-Kit, is a transmembrane protein tyrosine
kinase receptor involved in the embryonic development of hemato-
poietic SC, primordial germ cells, and melanocytes. As evidenced by
THC, CD117 was highly expressed in various solid tumors including
OvCa and its elevation was correlated with cancer grade (Schmandt
et al., 2003). Spheres derived from SKOV-3, HEYA8 and HO8910 OvCa
cell lines were enriched for CD117 + cells (Chau et al., 2013; Yan et al.,
2014). Inhibition of CD117 expression by shRNA or CD117 kinase ac-
tivity by imatinib in SKOV-3 and HEYAS8 reduced the number and size
of spheres and sensitized them to cisplatin or paclitaxel treatment
(Chau et al., 2013). Independently, inhibition of CD117 gene expression
or CD117 activity reduced the tumorigenic potential, while tumors that
did form were smaller in size (Chau et al., 2013). CD117 + cells isolated
from a serous OvCa PDX formed new tumors at a higher rate and with
the original heterogeneity compared to CD117- cells when re-injected
into BALB/c-nu mice (Chau et al., 2013). Clinically, elevated CD117
levels as determined by IHC were positively correlated with patient
chemo-resistance (Raspollini et al., 2004) and responsiveness to che-
motherapy(Chau et al., 2013). Collectively, these studies support that
CD117 + enriched cells, like other CSC markers, have many of the re-
quired properties of CSCs and can be used as a CSC marker.

3.3. CD133

CD133, also known as Prominin-1, is a trans-membrane glycopro-
tein with a potential role in organizing plasma membrane topology
(Ferrandina et al., 2008). The CD133 marker is widely used for
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identifying and isolating CSCs in several solid tumor types. Ferrandina
et al. showed that CD133+ cells isolated from OvCa samples had in-
creased colony-forming capacity compared to CD133- populations
(Ferrandina et al., 2008). Elevated CD133 + expression was detected in
human OvCa samples, epithelial cells derived from ascites, and in OvCa
cell lines including IGROV1, OVCARS8, A2780, PEO-1, OVCARS3,
OVCAR4, and OVCARS5. These CD133 + cells were highly tumorigenic
which recapitulated the original tumor heterogeneity, were drug re-
sistant and/or had vasculogenic potential (Baba et al., 2009; Ferrandina
et al., 2009; Curley et al., 2009; Kusumbe et al., 2009; Stemberger-
Papic et al., 2015; Cioffi et al., 2015). CD133+ cells were enriched in
samples collected from platinum resistant patients and post-che-
motherapy treated mouse OvCa cells, supporting the concept that
CD133+ cells were chemo-resistant (Steg et al., 2012a; Kulkarni-Datar
et al., 2013). However, there is discrepancy within the field as at least
two studies show no difference between the tumorigenic potential of
CD133+ and CD133- cells in OvCa (Stewart et al., 2011; Ishiguro et al.,
2016). Such inconsistencies could be attributed to different analytical
tools used and various methodological limitations. Some studies have
shed light on regulators of CD133 expression hinting to their possible
involvement in CSCs. One such regulator is DNA binding protein
ARID3B which is overexpressed in serous OvCa (Cowden Dahl et al.,
2009). Overexpression of ARID3B in SKOV-3IP cells was shown to in-
crease mRNA expression of CD133 by binding to its upstream tran-
scription start site. SKOV-3 cells overexpressing ARID3B when treated
with cisplatin formed chemo-resistant spheres that displayed elevated
levels of CD133 + cells. Mice injected with cells overexpressing ARID3B
and CD133 ShRNA had increased survival and less ascites formation
compared to mice injected with cells overexpressing ARID3B alone,
confirming that ARID3B mediated CD133 regulation is involved in
tumor growth and metastasis (Roy et al., 2014, 2018). Another player
known to indirectly regulate levels of CD133 is miR-200a. CD133 +
cells isolated from OVCAR3 cells had decreased expression of miR-200
compared to CD133- cells as determined by qPCR. Overexpressing a
miR-200a mimic in CD133+ cells led to inhibition of their migratory
and invasion potential indicating a possible role of miRNA in regulation
of CSC marker expression (Wu et al., 2011).

It is worthy of note that both CD117 and CD133 were investigated
using an FDA approved OvCa treatment strategy: Poly (ADP-ribose)
polymerase inhibitors (PARPi). The treatment of OvCa cell lines with
the PARPi olaparib and rucaparib induced an enrichment of cells ex-
pressing the CSC markers CD133 and CD117 (Bellio et al., 2018). These
CSCs displayed a more efficient DNA repair pathway, compared to their
non-CSC counterpart. This enhanced DNA repair observed in the
ovarian CSCs is believed to be due to activation of a DNA meiotic re-
combinase 1 (DMC1), a DNA recombinase, which is normally associated
with meiosis, provides CSCs with an advantage to survive the synthetic
lethality of PARPi (Bellio et al., 2018). These findings may provide
some insight as to why patients treated with PARPi develop resistance
despite a promising initial clinical response.

3.4. CD24

CD24 is a glycoprotein attached to the cell surface via a glycosyl-
phosphatidylinositol link and is expressed in a variety of solid tumors.
Immunohistochemistry analysis of 69 epithelial ovarian tumors showed
membrane and cytoplasmic expression of CD24 in 84% and 59% of low
and high-grade cases respectively (Kristiansen et al., 2002). A subset of
CD24 + cells that were isolated from human OvCa samples were shown
to be more quiescent, chemo-resistant, tumorigenic in nude mice, and
possessed the ability to self-renew and differentiate (Gao et al., 2010).
CD24 was found to be a specific diagnostic marker in differentiating
malignant mesothelioma from OvCa with its expression being uni-
formly absent in malignant mesothelioma (Davidson et al., 2016).
While being present in a majority of OvCa samples, as analyzed by IHC,
CD24 expression was elevated in OvCa effusions compared to solid
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tumors and metastatic lesions suggesting that its expression might be
linked with acquisition of a CSC-like phenotype (Davidson et al., 2016).
CD44+, CD24 +, EPCAM+, and E-cadherin™ cells isolated from es-
tablished OvCa cell lines SKOV-3 and OVCAR-5 showed increased
colony formation, resistance to doxorubicin treatment in vitro and
displayed shorter tumor-free intervals in vivo (Meirelles et al., 2012).
Combined, these studies indicate that CD24+ enriched cells possess
CSC like phenotypes. However, like other makers, use of CD24 alone
may not be sufficient to detect CSCs but may gain efficiency when
combined with other CSC markers (Jaggupilli and Elkord, 2012).

3.5. Aldehyde dehydrogenase (ALDH)

Aldehyde dehydrogenase is a family of enzymes that catalyzes the
oxidation of aldehydes to their carboxylic acid forms (Chang et al.,
2009). ALDH enzymatic activity detected by ALDEFLUOR assay has
been used to identify stem-like cells in several solid cancers (Chang
et al., 2009). Expression analysis of a member of the ALDH family,
ALDH1, comprising of multiple isoforms such as ALDH1Al,
ALDH1A2...etc has also been utilized to characterize the CSC popula-
tion in several malignancies (Landen et al., 2010). Deng and colleagues
showed that expression levels of ALDH1 by IHC correlated with ALDH
activity in human epithelial cancers (Deng et al., 2010). Hence, studies
using the ALDEFLUOR assay to determine ALDH activity as well as
those using IHC to detect ALDH1 expression in CSCs should be con-
sidered. Briefly, elevated ALDH1 expression and ALDH activity were
directly related to cells possessing high tumorigenic potential and
chemo-resistance in OvCa cell lines and patient samples (Landen et al.,
2010; Ayub et al., 2015; Liao et al., 2014; Meng et al., 2014; Sharrow
et al., 2016; Wang et al., 2014). Knockdown of ALDH1 or inhibiting
ALDH activity using a DNA methyltransferase inhibitor sensitized OvCa
cells to chemotherapy and reduced their stem-like properties (Ishiguro
et al., 2016; Landen et al., 2010; Meng et al., 2014; Wang et al., 2014).
Treatment of drug-resistant OvCa cell lines with all-trans-retinoic acid
(all-trans-RA) to downregulate ALDH1, or with di-ethyl-amino-benzal-
dehyde (DEAB) to inhibit ALDH activity led to re-sensitization of these
cells to paclitaxel and topotecan (Januchowski et al., 2016). These re-
sults suggest that ALDH may be involved in drug resistance and is
therefore an interesting therapeutic molecular target (Januchowski
et al., 2016). Several studies have shown a negative correlation be-
tween ALDH1 expression and poor clinical outcome including reduced
OS and PFS in OvCa patients (Landen et al., 2010; Deng et al., 2010;
Ayub et al., 2015; Meng et al., 2014; Liebscher et al., 2013). On the
contrary, other studies present positive correlation between patient
outcome and ALDH1 expression (Chang et al., 2009; Huang et al.,
2015). Collectively, there remains some controversy, which is likely
based on analysis, technique, methodology and group composition.

The utility of ALDH has been realized by multiple researchers and
was used as a read-out to determine whether there are drugs that can be
re-purposed to enhance the ability of chemotherapeutic measures by
targeting CSCs. Metformin hydrochloride, a biguanide, was developed
as an anti-diabetic. Alternatively, metformin was able to suppress
tumor growth and relapse in vivo in breast cancer xenografts when
combined with standard chemotherapy, implying its ability to target a
different cell population (Iliopoulos et al., 2011). In OvCa, Metformin
reduced the percentage of ALDH+ cells below control levels. Met-
formin also decreased the number of tumor spheres formed from both
ALDH + and unsorted primary human ovarian tumor or ascites cells,
further supporting its involvement in targeting a CSC population
(Liopoulos et al., 2011; Shank et al., 2012; Wu et al., 2012). Several
potential mechanisms of action for metformin have been proposed and
are currently being studied in a Phase II clinical trial focused on OvCa
(NCT02122185). It will evaluate PFS along with radiological and bio-
chemical progression. In addition to determining whether metformin
thwarts recurrence, it would be of interest to confirm if metformin
targets the ALDH + population clinically. Similarly, its impact on other
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cells that share CSC like phenotype but were ALDH- would be of value.
Metformin’s unique repurposing opens the door to consider the po-
tential of already approved drugs that could also target CSCs.

3.6. Altered glycosylation and its impact on CSCs

Tumor associated carbohydrate antigens (TACAs) have emerged as
contributors to the CSC phenotype. It has been shown that sialyl-Tn
(STn) expression in cells can overlap with SC markers such as CD133
(Starbuck et al., 2018). Specifically, cells isolated via STn share several
properties that are normally associated with CSCs including colony and
sphere formation, enhanced tumorigenic capacity and chemo-re-
sistance. Additionally, targeting STn positive cells with anti-STn-ADC
led to decreased tumor volume in OvCa PDX models (Eavarone et al.,
2018).

From another perspective, the ST6Gal-I glycosyltransferase
(ST6GalNac-I) adds a2-6-linked sialic acids to substrate glycoproteins
and has been implicated in carcinogenesis (Schultz et al., 2016).
ST6Gal-I was shown to be upregulated in OvCa, enriched in metastatic
tumors and associated with reduced patient survival (Christie et al.,
2008). More importantly, ST6Gal-I upregulation in cancer cells directly
altered spheroid growth, chemo-resistance and augmented tumor in-
itiating potential (Schultz et al., 2016). Tumor associated ST6GalNac-I
has been previously shown to regulate SC transcription factors such as
Sox9 and Slug (Schultz et al., 2016). The tumor initiating capacity was
reversed following knockdown of ST6Gal-1. Collectively, these studies
support a role for altered glycosylation promoting a CSC phenotype.

3.7. Challenges associated with identifying and sorting CSCs

Due to their low frequency and hierarchal nature, accurately iden-
tifying a pure CSC population from bulk tumor cells can be difficult. In
addition to technical complexities, the most common CSC markers are
recognized for their ability to enrich for CSC populations, but not all
cells displaying CSC markers have CSC properties. The purification of
CSCs is commonly done using an immunomagnetic approach or fluor-
escent activated cell sorting. Using a variety of positive and negative
markers for CSC inclusion and exclusion criteria aids in the isolation of
CSC populations with high fidelity. However, establishing parameters
for CSC frequency of surface markers is further complicated by the
inter- and intra-tumor heterogeneity of OvCa. Additionally, it is im-
portant to take into consideration that tumor cells change in response to
fluctuations in the local microenvironment typically caused by diag-
nostic modalities such as positron emission tomography (PET) scans,
surgical intervention and/or pharmacological treatments which can
further complicate CSC isolation (Predina et al., 2013).

Relying on marker expression alone to determine CSC frequency is
risky in studying NSC as well as CSCs. Similarly, the use of only a single
marker may be risky and not be sensitive enough to detect CSCs.
However, the efficiency of CSC identification may be increased by using
a combination of CSC markers (Jaggupilli and Elkord, 2012). More
recently, Gonzalez et al have used single cell mass cytometry to identify
the co-expression of various proteins with CSC markers/antigens that
may augment the identification and their functional characterization
(Gonzalez et al., 2018). In addition to CSC marker identification,
functional assays should be employed to verify SC like properties of
CSCs, which can vary widely. While the xenograft in vivo model is
considered a ‘gold standard’ for determining whether cells truly display
stem like properties it is costly and time consuming. Moreover, not all
primary tumor cells or established cell lines grow in the more com-
monly used immunocompromised mouse models or grow slower than
the original tumor in vivo (Gomez-Cuadrado et al., 2017). Further,
these in vivo models have limitations, perhaps the most relevant to the
current emerging immune-oncology field is their immunocompromised
state. Thus, multiple methods should be employed for higher con-
fidence in proper CSC isolation.
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4. Signaling pathways directly or indirectly involved in CSC
maintenance, self-renewal, differentiation and/or drug resistance

Understanding the signaling pathways involved in the maintenance,
self-replication, differentiation and/or drug resistance properties of
CSCs would provide a platform to identify novel therapeutic targets.
Here, we will highlight the major pathways that are known to be active
in ovarian CSCs. It is important to note that these pathways are not
necessarily linear and like many other cancer subtypes, there is cross-
talk between the various pathways. It is equally important to note that
these pathways are also essential in the normal homeostatic control
needed in cells, which renders studying and targeting them a challenge.

4.1. Notch

The Notch pathway is highly conserved and extensively studied in
many areas including embryonic development, cell fate and CSC
maintenance, replication and differentiation (Venkatesh et al., 2018;
Patel et al., 2005). The contribution of Notch to the pathology of OvCa
has been extensively reviewed in 2014 (Groeneweg et al., 2014a).
Briefly, the Notch pathway is activated when one of its receptors
(Notch-1, 2, 3, 4) is cleaved by coupling with a Notch Ligand (Jagged-1,
2, Delta-like 1, 4) expressed on neighboring cells (Karamboulas and
Ailles, 2013). Notch cleavage is mediated by Gamma-secretase and A-
disintegrin and metalloproteinase 10 (ADAM-10) allowing nuclear
translocation of the Notch intra-cellular Domain (NICD). Inside the
nucleus, NICD binds to Core binding factor-1 (CBF-1) which recruits
transcription factors to regulate gene transcription (Karamboulas and
Ailles, 2013; Takebe et al., 2015). Gamma secretase inhibitors (GSI)
were used in in vitro and in vivo experiments to determine the func-
tional role of Notch signaling in OvCa. GSI inhibited the proliferative
ability of the OVCAR3 and SKOV-3 OvCa cell lines. Additionally, GSI
mediated inhibition of the Notch pathway negatively impacted tumor
growth in OvCa PDX models (Groeneweg et al., 2014b). Use of GSI in
combination with paclitaxel had a synergistic effect in platinum-re-
sistant ovarian tumors compared to single agent treatment. Interest-
ingly, the use of GSI did not have a synergistic effect in platinum-sen-
sitive tumors which suggests a role for the Notch pathway, particularly
Notch 1 and Notch 3 in the ability of the tumor to become chemo-
resistant indicating a link with CSCs (Groeneweg et al., 2014b). In a
separate study, blocking gamma-secretase cleavage activity by GSI, and
silencing Notch-3 using siRNA in vivo resulted in increased tumor
sensitivity to cisplatin and reduced tumor burden (McAuliffe et al.,
2012). The significance of Notch in OvCa was also determined through
epigenetic analysis using cancer genome atlas (TCGA) data. Analysis of
DNA methylation, miRNA and gene expression for Notch showed that
modifications of Notch regulate multiple downstream cancer related
genes including PPARG, CCND1, and RUNX1 (Ivan et al., 2013). With
relation to CSCs, gene expression levels of Notch 1, 2, 3 and ALDH1
were measured in OvCa tumors, and the results showed that ALDH1 was
positively correlated with Notch-3 (Kim et al., 2017). Additionally, via
clinicopathological analysis of patient outcomes, overexpression of
Notch-3 was shown to be an independent poor prognostic indicator for
patient survival (Kim et al., 2017). Notch-3 was specifically implicated
in promoting chemo-resistance in OvCa (McAuliffe et al., 2012).
Overexpression of the Notch-1, 2 or 3 intracellular domains (NICD1, 2,
3) in the 4306 murine OvCa cell line showed a positive correlation
between NICD3 and levels of CD44 via gene expression suggesting a
possible connection between the Notch and CD44 signaling pathways
(McAuliffe et al., 2012).

Overexpression of Galectin-3 (a lectin with affinity to -galactose-
containing glycoconjugates) resulted in an increase in nuclear translo-
cation of NICD1 suggesting that Galectin-3 could support ovarian CSC
maintenance via Notch-1 activation. Galectin-3 has been shown to in-
crease drug resistance and is associated with poor survival rates in
OvCa by multiple studies utilizing primary OvCa samples and OvCa cell
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lines (Kim et al., 2011; Mirandola et al., 2014; Oishi et al., 2007). Si-
lencing Galectin-3 in SKOV-3, SNU-840, DOV13 and RMUG-1cell lines
led to a decrease in the cleaved form of the NICD1 as well as Notch
signaling pathway target genes HEY1 and HES (Kang et al., 2016).
Conversely, the overexpression of Galectin-3 in A2780 and OVCAR3
cell lines led to an increase in NICD1 and downstream Notch regulated
genes (Kang et al., 2016).

4.2. Hedgehog

There are three main ligands that activate the Hedgehog pathway,
namely Sonic, Desert, and Indian. These ligands convey their down-
stream actions via Patched, Smoothened (SMO) and Gli transcription
factors (Merchant and Matsui, 2010). The Gli transcription factors are
the targets of TGF(3/SMAD and can activate the Hedgehog pathway
independently, rendering it as a positive feedback loop (Dennler et al.,
2007). The Hedgehog pathway cascade is involved in the development
of the nervous system, skeleton, major body organs and regulation of
SCs (Merchant and Matsui, 2010). The expression of the Hedgehog li-
gand, Sonic, has been shown to be present in ~47% of the malignant
primary ovarian epithelial tumors, yet absent in benign tumors
(McCann et al., 2011). The TGF-f3 co-receptor endoglin (CD105) and the
Hedgehog mediator Gli 1/2 were reported to be overexpressed in re-
current OvCa and contribute to cisplatin resistance (Ivan et al., 2013).
In a separate study, it was shown that treatment of OvCa cell lines with
a Sonic Hedgehog antibody decreased cell proliferation (Bhattacharya
et al., 2008). Steg and colleagues demonstrated that in tumors collected
from patients with recurrent platinum-resistant disease, the knockdown
of CD105, Glil and Gli2 decreased cell viability. They speculated that
the loss of resistance indicated the importance of this pathway in pla-
tinum-resistance (Steg et al., 2012a). The Hedgehog pathway inhibitor,
saridegib (IPI-926), conveys its action by inhibiting SMO (Tremblay
et al., 2009). Treatment of multiple ovarian PDX models with IPI-926
was shown to be effective as a single agent and effective as a main-
tenance therapy strategy post-chemotherapy (McCann et al., 2011).
Similarly, Coffman and colleagues showed that using IPI-926 in vivo,
resulted in the elimination of chemo-resistance and angiogenesis, al-
luding to the role of this pathway in CSCs (Coffman et al., 2016).

While many of the trials weren’t designed to target CSCs specifi-
cally, their outcomes yield some interesting results that indirectly hint
at their ability to influence CSCs. Sonidegib is an antagonist for the
SMO protein. Sonidegib is FDA approved for basal cell carcinoma (Doan
et al., 2016). A recent study using the SMO antagonists sonidegib and
cyclopamine in A2780cp20 and SKOV-3TRip2 cells in xenograft models
showed decreased tumor burden compared to the placebo. Ad-
ditionally, both SMO antagonists significantly increased the sensitivity
of the chemotherapy-resistant OvCa cell lines A2780cp20, HeyASMDR,
and SKOV-3TRip2 to paclitaxel. In A2780cp20 and SKOV-3TRip2 cell
lines, sonidegib decreased multidrug resistance 1 (MDR1) expression
compared to vehicle control, while paclitaxel increased MDR1 expres-
sion (Steg et al., 2012b). A Phase I clinical trial in combination with
paclitaxel (NCT01954355) found two of eight OvCa patients showed a
partial response and established a recommended Phase II dose (Stathis
et al., 2017). A Phase IB clinical trial (NCT02195973) using lower doses
assessed the development of adverse events and tumor response.
However, no results have been released as of yet. Additional preclinical
and clinical studies are warranted to elucidate the specific cell popu-
lations that sonidegib targets. It would be of interest to know whether it
reduces CSC number or only prevents their self-replicative or differ-
entiative properties in the patients that responded. A second Hedgehog
pathway inhibitor, vismodegib, also acts through SMO. A phase II trial
tested vismodegib in a maintenance therapy regimen in patients diag-
nosed with OvCa after 2nd or 3rd complete remission (NCT00739661).
Unfortunately, no marked increase in PFS was observed (5.8 months in
the placebo compared to 7.5 months in the treatment group) (Kaye
et al., 2012) suggesting that inhibition of Hedgehog pathway alone was
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insufficient to overcome recurrent disease. It is unclear if the CSC po-
pulation was affected post treatment. Whether combining a Hedgehog
inhibitor with a different cytotoxic treatment or an additional inhibitor
targeting a different supportive CSC signaling pathway would extend
the PFS remains to be seen.

4.3. Wnt/B-catenin

The wingless/integrated (Wnt) signaling pathway is critical during
embryogenesis where it controls cell proliferation, differentiation, mi-
gration, organ development and body axis formation (Clevers, 2006).
Canonically, the Wnt ligand binds to the frizzled (Fz) complex resulting
in phosphorylation of the dishevelled (Dsh) and lipoprotein receptor-
related protein (LRP) by Casein kinase 1-y (CK1-y) and Glycogen syn-
thase kinase 33 (GSK3p). These phosphorylation events allow docking
of the scaffold protein, Axin, to the Fz/Dsh complex resulting in sta-
bilization of p-catenin. (3-catenin accumulates in the nucleus where it
forms complexes with transcriptional coactivators such as T cell factor
(TCF) for transcription of Wnt-responsive genes (MacDonald et al.,
2009). Wnt/B-catenin signaling is important in normal as well as CSCs.
TCF3 is a downstream Wnt/f-catenin transcription cofactor that forms
a complex with Nanog and octamer binding transcription factor 4
(OCT4) transcription factors to maintain the gene expression necessary
for embryonic stem cell pluripotency in mice (Cole et al., 2008).
Moreover, work by Chen and colleagues, demonstrated the importance
of Wnt signaling in tissue regeneration as well as SC function and self-
renewal in a zebrafish model (Chen et al., 2009). Wnt/B-catenin
pathway activity has been linked to the CSC population in several
cancer types including colorectal (Vermeulen et al., 2010), breast (Xu
et al., 2015) and lung (Jiang et al., 2015). Elevated levels of Wnt sig-
naling were detected in OvCa (Arend et al., 2013) and may contribute
to chemo-resistance and poor patient OS (Nagaraj et al., 2015). Treat-
ment of OvCa cell lines (SKOV-3 and HEYA8) with Compound K, the
downstream metabolite of the Saponin ginesenoside-Rbl, led to re-
duced proliferation as determined by MTT assays, epithelial-mesench-
ymal transition (EMT) as determined by protein expression and phos-
phorylation as well as sphere forming ability (Deng et al., 2017).
Additionally, Nagaraj and colleagues underlined the importance of
Wnt/B-catenin signaling in ovarian CSCs as knock down of 3-catenin or
use of the Wnt/f-catenin inhibitor, iCG-001, reduced sphere formation,
sensitized platinum-resistant cells to cisplatin, and reduced CSC fre-
quency in chemo-resistant OvCa cell lines (Nagaraj et al., 2015).
Treatment of CSCs isolated from prostate, breast, and OvCa cell lines
with Secreted frizzled-related protein 4 (sFRP4), a Wnt antagonist, in
combination with doxorubicin/cisplatin reduced sphere forming capa-
city, proliferation as measured by MTT assay, and downregulated
stemness related genes (Deshmukh et al., 2017). Crosstalk between
signaling pathways is common. Chen and colleagues showed the in-
hibition of the Signal transducer and activator of transcription 3
(STAT3) pathway epigenetically inactivated Wnt/ -Catenin signaling
resulting in reduced sphere formation and chemo-resistance in cells
isolated from ascites from recurrent OvCa patients as well as estab-
lished OvCa cell lines (Chen et al., 2017). Additionally, in a mouse
model of intraperitoneal OvCa, paclitaxel treatment combined with
STAT3 knock down synergistically reduced peritoneal tumor seeding
and extended mouse survival (Chen et al., 2017).

4.4. NFxB and TLR2-MyD88-NFxB

Nuclear factor kappa-light-chain-enhancer of activated B cells
(NFkB) is involved in multiple normal cellular functions; nonetheless,
its constant activation has been implicated in invasion of several forms
of cancer including OvCa (Prasad et al., 2010). The NFkB signaling
pathway has been thoroughly studied in inflammation and several
cancer subtypes (Hayden and Ghosh, 2008; Hoesel and Schmid, 2013).
There are five proteins in the NFkB transcription factor family that
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dimerize but are typically inactivated by IkB (Hayden and Ghosh,
2008). The NFkB pathway can be activated in a canonical or non-ca-
nonical manner. In the canonical pathway, NFkB activation occurs
through the binding of TNFa or IL1f to specific receptors. In the non-
canonical pathway, activation occurs via different receptors such as
CD40 and signals through IKKa (Hayden and Ghosh, 2008; Hoesel and
Schmid, 2013). House et al has shown that the non-canonical NFxB
pathway regulates ALDH activity, spheroid formation and tumorigen-
esis in OvCa via the transcription factor RelB (House et al., 2017).
However, they also show the canonical pathway is also involved in
tumorigenesis but not ALDH activity (House et al., 2017). CD44 + CSCs
isolated from OvCa patient ascites displayed constitutive activation of
both canonical and non-canonical NFkB pathways (Alvero et al., 2009).
Additionally, inhibition of NFkB activity in ovarian CSCs using erioca-
lyxin reduced cytokine production and increased sensitivity to FasL and
TNFa-mediated cell death of ovarian CSCs in vitro (Leizer et al., 2011).

Myeloid differentiation primary response gene 88 (MyD88) is an
adapter protein used by almost all Toll Like Receptors (TLRs) to activate
NF«xB and was shown to be present in neoplastic cells as assessed by IHC
of OvCa tumors (d’Adhemar et al., 2014). The expression of MyD88 was
also associated with decreased PFS and OS (d’Adhemar et al., 2014;
Steffensen et al., 2011; Block et al., 2018). A recent study that analyzed
5263 OvCa tumor samples by IHC and microarray analysis concluded
that MyD88 expression was modestly correlated with OS. However,
MyD88 expression was strongly associated with advanced stage of
OvCa. In contrast, low grade OvCa tumor expression of both MyD88
and TLR4 were associated with improved survival (Block et al., 2018).
MyD88 protein levels of isolated tumor cells measured by western blot
revealed that patients with low MyD88 expression responded better to
carboplatin and paclitaxel treatment and had better OS compared to
those with elevated MyD88 (Silasi et al., 2006). The presence of MyD88
and CD44 in epithelial OvCa cells was used to isolate and establish
clonal cells that could re-capitulate an original tumor in mice (Chefetz
et al., 2013). Chefetz and colleagues then used these CD44 + /MyD88 +
as well as CD44-/MyD88- cells to show that the CD44 + /MyD88 + cells
had increased wound healing capacity as determined by scratch assays
(Chefetz et al., 2013). Alvero and colleagues demonstrated that one of
the phenotypes of ovarian CSCs is the expression of CD44 + /MyD88 +
as well as the activation of the NFkB pathway (Alvero et al., 2009). The
presence and activation of the TLR4/MyD88/NF«B signaling pathway
also contributes to the inflammatory microenvironment which typically
drives an aggressive OvCa phenotype (Li et al., 2016). In fact, Silasi and
colleagues showed that MyD88 protein expression, as determined by
[HC, was seen in immune cells infiltrating OvCa tumors as well as tumor
cells (Silasi et al., 2006). Collectively, these data suggest the expression
of MyD88 in addition to specific CSC markers confers some of the
chemo-resistance properties seen in CSCs.

4.5. YAP/TEAD

The Hippo pathway is best known for its ability to regulate organ
size and is associated with OvCa progression and drug resistance (Hall
et al.,, 2010). TEA domain family member (TEAD) is a transcription
factor targeted by the Hippo pathway effector Yes-associated protein
(YAP) to transcribe downstream target genes. The importance of the
YAP/TEAD complex in ovarian CSCs was demonstrated by knock-down
of YAP/TEAD in A2780 spheres which reduced Oct4 and Notchl pro-
tein levels as measured by western blot and RNA levels of Sox2, Oct4,
Nestin, Notch1, and Nanog as measured by RT-PCR (Xia et al., 2014a).
Moreover, knock-down of YAP alone reduced sphere forming ability of
A2780 cells. In the same model system, the authors show that the YAP/
TEAD complex was involved in chemo-resistance to cisplatin, pacli-
taxel, and bleomycin through crosstalk with the RAS-MAPK and PI3K
pathways (Xia et al., 2014a, b). Collectively, this data hints that the
YAP/TEAD pathway may influence CSC pluripotency, drug resistance,
and self-renewal. YAP/TEAD targeting therapies are in development
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and promising results have been shown with the inhibitor of YAP/
TEAD, verteporfin. This inhibitor disrupts the YAP-TEAD interaction
which led to decreased proliferation, migration, and invasion of
OVCAR3 and OVCARS cell lines in vitro and reduced tumor burden in
OVCARS xenografts (Feng et al., 2016). While the results of verteporfin
are encouraging, it would be interesting to see its effect specifically on
ovarian CSC populations.

4.6. JAK/STAT3

The Janus kinases (JAKs), Signal Transducer and Activator of
Transcription proteins (STATs) (JAK/STAT) pathway has been im-
plicated as a promoter of OvCa pathology. Activation via phosphor-
ylation was found in more than 85% of ovarian tumors and overall
phospho-STAT3 nuclear expression has been correlated with poor OS in
OvCa (Rosen et al., 2006; Shang et al., 2017). CD24, a marker for OvCa
cells with stem like features, has been shown to correlate with increased
phosphorylation of STAT3. The importance of the JAK/STAT pathway
in metastasis was shown by using a JAK2 inhibitor TG101209 in an in
vivo model in which intra-bursal injections of adenovirus Cre depleting
Apc—; Pten —; Trp53 — were used to induce ovarian tumors (Wu et al.,
2007). Mice were treated with a JAK2 inhibitor/cisplatin combination
or cisplatin alone. The mice treated with the combination JAK2 in-
hibitor/cisplatin had increased survival. Additionally, when mice were
treated with TG101209 only 1/14 mice exhibited metastases compared
to mice treated with vehicle (Burgos-Ojeda et al., 2015). When these
cells were sorted to CD24 + and CD24- populations and treated with the
JAK2 inhibitor, a decrease in STAT3 phosphorylation was observed and
there was an induction of cytotoxicity in resistant CD24 + cells (Burgos-
Ojeda et al., 2015). Similarly, HEY OvCa cell line and OvCa cells iso-
lated from patient ascites treated with paclitaxel in combination with
JAK2-specific small molecule inhibitor CYT387 were more sensitive to
paclitaxel treatment than those treated with paclitaxel alone. This
therapeutic combination additionally led to decreased tumor volume
compared to paclitaxel treatment alone (Abubaker et al., 2014). While
impactful, it is not clear whether JAK2 specific inhibitors affected other
potential CSCs isolated by additional parameters (i.e., CD133 or CD117
or ALDH activity). These results and others render members of the JAK/
STAT pathway as potential therapeutic targets in OvCa. The durability
of the response may provide some insight as to whether it is truly im-
pacting the CSC population.

4.7. PI3K/PTEN/AKT

The Phosphatidylinositol-4, 5-bisphosphate 3-kinae (PI3K)/Protein
kinase B (also known as Akt)/mammalian Target of Rapamycin (mTOR)
pathway is hyperactive in approximately 70% of OvCa. It is a major
pathway that regulates cell survival, growth, metabolism, proliferation,
and angiogenesis (Li et al., 2014). Activating mutations of Akt have
been linked to poor PFS and OS rates (Cai et al., 2014). Seo and col-
leagues utilized the SP method to enrich and isolate CSCs from A2780
cells. The isolated SP A2780 cells demonstrated increase sphere forming
ability, chemo-resistance against cisplatin and paclitaxel, and were
enriched for ALDH1 relative to the bulk cell fraction (Seo et al., 2016).
These findings were supported in vivo as evidenced by accelerated
tumor growth by the SP fraction relative to the bulk population. Fur-
thermore, knock down of Akt in A2780 SP cells resulted in decreased
expression of ALDH1 (Seo et al., 2016). Moreover, Autotaxin, an en-
zyme that produces lysophosphatidic acid (LPA), was found to promote
ovarian CSC properties through upregulation of Akt. Conversely, in-
hibition of Autotaxin attenuates ovarian CSC sphere formation and drug
resistance (Seo et al., 2016).

4.8. PKCi
Protein kinase C (PKC),

a serine/threonine kinase, is most
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commonly associated with regulating diacylglycerol (DAG) and calcium
ion (Ca2™) concentrations in cells. An isoform of PKC, PKCi, was found
to be an oncogene in OvCa (Zhang et al., 2006). Wang and colleagues
found that PKCt knockdown negatively affects cells in colony and
sphere formation assays. Similarly, inhibition of PKCt using the anti-
rheumatic gold compound Auranofin (ANF) resulted in loss of clonal
expansion, sphere formation, and anchorage-independent growth in
vitro, as well as reduced tumor growth in vivo by ovarian CSC-like cells
(Wang et al., 2013). PKC is known to convey its action through MAPK,
which is also known to cross-talk with several cell death/survival
pathways, including the Mammalian target of rapamycin (mTOR) in-
hibitor. The use of an mTOR inhibitor, NV-128, induced cell death in
ovarian CSCs through two independent non-canonical pathways via the
degradation of Cox-I and IV (Alvero et al., 2011). Collectively, these
studies combined support a role for PKCt as a contributor to CSC pa-
thology.

4.9. S100B

An interesting protein that has gained attention in multiple cancers
is S100B which is a member of the S100 family (Heizmann, 2004).
S100B RNA and protein expression was shown to be elevated in OvCa
samples compared to normal tissues. Additionally, S100B expression
was further elevated in advanced stage OvCa tumors compared to low
stage and in cisplatin resistant OvCa compared to cisplatin sensitive
tumors (Yang et al., 2018). A positive correlation between the expres-
sion of S100B and the CSC markers CD133, Nanog and OCT4 was ob-
served. Similarly, CD133 + A2780 cells had increased levels of SI00B
compared to CD133- cells as determined by RT-PCR, western blots and
immunofluorescence (Yang et al., 2017). Knockdown of S100B in
A2780-derived CSC-like cells induced loss of tumorigenicity and self-
renewal ability as assessed by sphere formation assays (Yang et al.,
2018, 2017). In contrast, overexpression of S100B in A2780 non-CSC-
like cells led to an increase in sphere forming capacity and the per-
centage of CD133+ cells. Although other members of the S100 family
have been investigated in various cancers, SI00B was the only one to
our knowledge thus far related to ovarian CSC.

4.10. RORI1

Another interesting CSC related marker is Type I Receptor tyrosine
kinase-like orphan receptor (ROR1). It has been shown that while ROR1
expression is absent from adult tissues, it is expressed in many different
types of cancers and is known to regulate EMT and metastasis of breast
cancer cells (Cui et al., 2013a). However, a contrasting study showed
that ROR1 was expressed on cell membranes of normal tissues such as
esophagus and colon (Balakrishnan et al., 2017). In OvCa specifically,
ROR1 was reported to be a predictor of poor clinical outcome and de-
creased disease-free survival (Zhang et al., 2014a). The protein ex-
pression of ROR1 overlapped with the activity of ALDH1 in OvCa PDX
samples. Additionally, ROR1 + cells formed more spheres, exhibited
increased protein EMT markers expression and higher tumorigenicity
compared to ROR1™ cells (Zhang et al., 2014b). Treatment of mice
harboring OvCa PDX with an ROR1 monoclonal antibody inhibited the
tumor growth compared to the vehicle control (Zhang et al., 2014b). In
addition to ROR1, ROR2 was also shown to be elevated in OvCa tumors
as evidenced by IHC (Henry et al., 2015). Knocking down ROR1 or
ROR2 decreased the invasive and migratory capacity of OVCARS3 cells.
Interestingly, knocking down both ROR1 and ROR2 had a more pro-
nounced decrease in migration and invasion compared to knocking
down one receptor alone in OVCARS3 cells (Henry et al., 2015). A si-
milar result was seen when ROR1 and/or ROR2 was/were silenced in
OVCARA4 cells in a 3D co-culture model. Knockdown of both ROR1 and
ROR2 had a synergistic effect on the cell’s adhesion and invasion
abilities (Henry et al., 2017). To determine whether ROR1 was a valid
target for therapy in OvCa, Gohil and colleagues developed a bi-specific
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T cell engager (BiTE) against ROR1 and tested it in solid tumor xeno-
grafts such as those derived from SKOV-3. ROR1-BiTE treatments pre-
vented the engraftment of SKOV-3 cells and the animals had reduced
tumor burden (Gohil et al., 2017). Based on multiple studies that pro-
vided supportive evidence that ROR1 was a viable target in multiple
cancers, clinical trials were performed to determine cytotoxicity of an
anti-ROR1 monoclonal antibody or ROR1-CAR T cells in breast cancer
and chronic lymphocytic leukemia (CLL) (NCT02222688,
NCT02776917, NCT02194374), two of which are still active (Gohil
et al., 2017).

Another ROR1 monoclonal antibody was developed by Yin and
colleagues (ROR1-cFab), which they tested in ROR1 expressing OvCa
cell lines (A2780) and the ROR1- cells (Iose386). Treatments of cells
with the ROR1-cFab antibody resulted in a decrease in viability and
migratory ability of A2780 cells but not the Iose386 cells. These data
demonstrate the specificity of ROR-cFab antibody and treatment with
this antibody could inhibit the tumor cells migratory capacity (Yin
et al., 2017). Although there are some studies suggesting ROR1’s in-
volvement in CSC survival, maintenance and overlap with CSC markers,
it remains to be seen whether the results of the clinical trials confirm
that it targets ovarian CSC.

5. Challenges in targeting drug resistant CSCs

One of the major challenges in successfully treating OvCa is the
development of recurrent and chemo-resistant disease. The TCGA re-
search network published a report on expression profiling, mutation
and copy number analysis, methylation and whole genome sequencing
from treatment-naive tissue samples collected from the patient’s initial
OvCa debulking surgery (Cancer Genome Atlas Research, 2018b; Patch
et al., 2015). Although this in-depth investigation of OvCa samples has
allowed insight into alterations that contribute to the pathology of the
disease, it does not capture the equally important molecular drivers of
chemo-resistant and recurrent disease. The same can be said for in-
vestigations focused on ovarian CSCs whereby most studies that eval-
uate their prevalence or function rely on chemo-naive tissue. The lack
of in-depth molecular information derived from chemo-resistant and
recurrent disease samples is due to the limited number of secondary
debulking or biopsies that are performed after the initial surgery or post
cytotoxic therapy. In those instances, that interim debulking occurs
after neoadjuvant treatment and tissue is obtained, the amount of vi-
able tissue is often rate limiting. Obtaining more fresh samples post
treatment over time for in depth molecular investigations could help
further delineate the dynamic changes that take place in the surviving
cells. Similarly, focused biopsies could provide insight into the con-
tinuum of changes that may be brought about by the tumor micro-
environment.

6. Immune cells and ovarian CSCs

It is of interest to better understand how CSCs evade the immune
system. The term “immuno-editing” is often used to describe how tu-
mors evade the immune system (Dunn et al., 2004). Immuno-editing is
described as consisting of three phases: elimination, equilibrium, and
escape (Dunn et al., 2004).

With a focus on ovarian CSCs, Lai and colleagues explored the effect
of the y8 T cells on CSCs. y8 T cells differ from normal T cells as they use
y and 8 glycoproteins, instead of the more common a and 3 glycopro-
teins, to form the T cell receptor (TCR) (Lai et al., 2012). y8 T cells were
shown to have cytotoxic effects on ovarian CSCs as they reduced SKOV-
3 sphere formation and increased SKOV-3 sphere derived cell sensitivity
to cisplatin and paclitaxel (Lai et al., 2012). Additionally, y& T cells
added to SKOV-3 sphere derived cells reduced tumor burden compared
to SKOV-3 sphere derived cells alone after being injected into nude
mice. The effect of ovarian CSCs on macrophage differentiation has
been addressed by Deng and colleagues who demonstrated that ovarian
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CSCs use the NFkB and PPARy pathways to promote anti-inflammatory/
pro-tumorigenic M2 macrophage polarization over pro-inflammatory/
anti-tumorigenic M1 macrophages (Deng et al., 2015). Myeloid-derived
suppressor cells (MDSCs) are known to suppress T cell activity and Cui
and colleagues, observed that MDSCs initiate miR101 expression in
primary patient OvCa cells (Cui et al., 2013b).

Mir101 inhibits the transcriptional co-repressor C-terminal binding
protein 2 (CtBP2) resulting in an increase in the genes responsible for
promoting stemness in cancer cells such as SOX2, OCT4/3, and Nanog
(Cui et al., 2013b). The chemokine/receptor complex: C-X-C motif
chemokine receptor 4/C-X-C motif chemokine ligand 12 (CXCR4/
CXCL12) are involved in dissemination, metastatic colonization, and
maintenance of CSCs (Cojoc et al., 2013). Inhibition of CXCR4 reduced
CSC sphere formation of modified syngeneic OvCa cells, ID8-T (Gil
et al., 2014). Additionally, CXCR4 blockade stimulated anti-tumor im-
munity by reducing infiltration of T regulatory cells and increasing
infiltration of T helper as well as cytotoxic T cells into the tumor mi-
croenvironment of mice bearing tumors and ascites fluid accumulation.
Together these data suggest a role for ovarian CSCs in shifting the
immune system away from attacking tumor cells and towards pro-
moting tumor progression.

7. Epigenetic modulation of stem like markers and/or properties

Studies have shown that the CSC drug-tolerant subpopulations in
other tumor types can revert to being drug sensitive in the absence of
continued drug exposure (Sharma et al., 2010). However, it remains to
be seen whether this occurs in ovarian CSCs. The rapidly re-acquired
drug sensitivity described suggests that CSC drug-adaptability is not
driven by a heritable change such as gene mutations, but by a poised
epigenetic state (Brown et al., 2014; Easwaran et al., 2014). Two main
players implicated in this poised-state are the histone modifications
H3K27me3, with a chromatin repressive role, and H3K4me3, with a
chromatin permissive role (Lesch and Page, 2014). Both are involved in
the regulation of chromatin in the embryonic stem cells (ESCs) during
cell differentiation and tissue development (Grandy et al., 2016; Sen
et al., 2008). It has since been demonstrated that these two modifica-
tions are important in epigenetic regulation of CSCs and their acquired
drug resistance (Munoz et al., 2012). When both modifications are lo-
cated on the same gene promoter, the gene is in a poised state for
transcriptional activation or silencing (Bernhart et al., 2016). This
chromatin bivalent state was studied in OvCa cells by analyzing the
status of H3K27me3 and H3K4me3 histone modifications in both be-
nign and tumor samples. Results showed that tumor samples were
characterized by increased H3K27me3 marking which in turn, is
mediated by Enhancer of zeste homologue 2 (EZH2), and overlapped
with Polycomb Repressive Complex 2 (PRC2) (Curry et al., 2018).
Chapman-Rothe and colleagues demonstrated that transcriptional si-
lencing mediated by H3K27me3 was more frequent in platinum-re-
sistant OvCa samples than platinum-sensitive. Similarly, silencing of
genes that are mediated by H3K27me3 in the OvCa cell line IGROV1 led
to cancer recurrence and to a chemo-resistant phenotype (Chapman
et al., 2012).

Specifically, EZH2 is involved in the trimethylation of the histone
H3 (H3K27me3) and it is associated with a repressive chromatin state.
Rizzo and colleagues used OvCa ascites samples as well as the IGROV1,
PEO14 and PEO23 cell lines to elucidate the role of EZH2. They de-
termined that knock down of EZH2 reduced H3K27me3 methylation,
which reduced the SP fraction and spheroid formation in IGROV1 cells
(Rizzo et al., 2011).

Another potential epigenetic regulation of CSCs involves the CSC
marker CD133. Using OvCa samples, Baba and colleagues demonstrated
that the transcription of CD133 was regulated by histone modifications
and promoter methylation (Baba et al., 2009). Treatment with DNA
methyltransferase and histone deacetylase inhibitors in CD133- cells
enhanced CD133 expression, suggesting a transformation of non-CSCs
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to CSCs (Baba et al., 2009). However, whether enhancement of CD133
via DNA methyltransferase and histone deacetylase inhibitors is suffi-
cient to elicit stem like properties remains to be shown functionally.

These epigenetic regulations of CSCs could be a possible target to
eradicate this chemo-resistant population. Wang and colleagues shed
light on the connection between DNA hypomethylation and chemo-
resistance in ovarian CSCs via ALDH activity. By using a DNA methyl-
transferase inhibitor, SGI-110, they re-sensitized CSCs to platinum,
decreased the number of ALDH + cells and reduced sphere formation in
A2780-CR5 chemo-resistant cell line (Wang et al., 2014). Moreover,
cells pre-treated with SGI-110 and then injected into mice showed re-
duced tumorigenesis compared to those that were treated with vehicle
control. Lastly, they also showed the utility of using SG-110 as a
maintenance therapy as evidenced in A2780 cells in an in vivo ex-
periment where mice were treated with carboplatin for 21 days and
then randomized to either vehicle or SGI-110. Animals treated with
SGI-110 showed a ~50% decrease in tumor volume compared to
continued vehicle treatment to day 35 (Wang et al., 2014).

In lieu of the current findings, CSCs’ adaptability to drug treatment
and non-CSC-to-CSC plasticity are likely correlated, in part, to epige-
netic mechanisms. Treatment strategies aimed at eradicating CSCs are
insufficient as the CSC pool could be replenished by the non-CSC
counterpart. Consequently, therapies targeting epigenetic modulations
and chromatin bivalent state could improve cancer treatments, over-
coming the reversible resistance of CSCs.

8. Summary and conclusions

Despite our increasing knowledge of the idiosyncratic attributes of
ovarian CSCs, there remains much that we do not know. The inherent
heterogeneity of ovarian tumor cells will continue to provide ther-
apeutic challenges, whether they be stem or non-stem like cells, is
further complicated by the acquired heterogeneity on top of the in-
herent heterogeneity. This heterogeneity can be driven by the culmi-
nation of microenvironmental, pharmacologic, epigenetic and/or im-
munologic induced selection pressures. Optimally, the use of complex
therapeutic cocktails designed to have ample upfront cytotoxic effects
on the non-stem populations allowing for the enrichment of targetable
populations of CSCs followed by a maintenance strategy targeting the
remaining resistant residual cells. To meet this goal, it will require we
continue to identify a dynamic field of targetable signaling drivers
which can influence CSC self-replication, hierarchical heterogeneity,
differentiation, drug resistance, DNA damage repair and most im-
portantly their plasticity.
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