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Cardiovascular diseases are a major cause of death and disability. Despite enormous progress in diagnosis,
prevention, and treatment over the years, the incidence of this group of pathologies continues to increase
worldwide. An important step in reversing this situation is filling in the gaps we have in our understanding of
cardiovascular homeostasis and of the pathogenic processes leading to disease. On this point, the discovery of
epigenetics — heritable chemical modifications of DNA bases and histone proteins, as well as non-coding RNA-
based mechanisms regulating gene expression — has opened up new vistas. Here, we will review recent findings
regarding the epigenetics of three main vascular diseases (atherosclerosis, restenosis, and aortic aneurysm), with
a focus on DNA methylation and histone modification. The emerging fundamental nature of epigenetics for

cardiovascular physiopathology and, importantly, the amenability to manipulation with pharmacological
techniques are an indication that epigenetics-based prognostic and therapeutics procedures might be developed

in the future.

1. Introduction

Cardiovascular diseases (CVDs) are the main cause of death and
disability worldwide (Murray and Lopez, 1997). Despite enormous
progresses in diagnosis, prevention, and treatment, which have con-
siderably lowered incidence and improved overall survival, the number
of people developing CVDs remains very high worldwide (Nabel and
Braunwald, 2012). The strong penetrance of CVDs depends on a
number of pathophysiological alterations influencing the heart and
vasculature, such as those affecting the cardiovascular (CV) system’s
cells — which can fundamentally be narrowed down to cardiomyocytes,
endothelial cells (ECs), and vascular smooth muscle cells (VSMCs) — and
the reciprocal interactions between them (Climent et al., 2015; Tirziu
et al., 2010). CV risk factors could translate into specific stresses acting
on these cells and, more in depth, activate specific signaling pathways
that eventually influence the cells’ chromatin state, altering their gene
expression profile. How chromatin structure affects gene expression is
studied under the heading of epigenetics, a term coined to classify those
heritable changes that, rather than depending on changes of the DNA
sequence, are based on the chemical modification of DNA bases — in
particular, cytosine — and histone proteins; more recently, processes
regulated by non-coding RNAs have been added among those classified
as epigenetic (Egger et al., 2004; Quintavalle et al., 2011).
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As described in 1956 by the British developmental biologist Conrad
Waddington, epigenetic-based mechanisms are essential modulators of
cell fate determination (Waddington, 1956). In eukaryotes, specific cell
development goes through coordinated events of activation and re-
pression of the expression of specific genes in a precise time- and space-
dependent manner in cells that share the same DNA sequence (Cantone
and Fisher, 2013). Therefore, epigenetic inheritance is central for the
stable propagation of gene activity states from one generation of cells to
the next (Probst et al., 2009). Although the understanding of the epi-
genetic mechanisms associated with CVD development is still in its
infancy, the definition of the epigenetic landscape in different patho-
logical contexts is being facilitated by a dramatic improvement in DNA
sequencing capacity paralleled by a big drop in costs. Thus, today it is
possible to foresee how knowledge generated by studying the epige-
netics of CVDs may be applied for therapeutic ends (van der Harst et al.,
2017; Greco and Condorelli, 2015). In this review, we will focus on the
chemical alteration of DNA and histones; for epigenetic mechanisms
mediated by non-coding RNAs, we refer the reader elsewhere (Elia and
Condorelli, 2015; Elia and Quintavalle, 2017; Thum and Condorelli,
2015).

E-mail addresses: leonardo.elia@unibs.it (L. Elia), gianluigi.condorelli@hunimed.eu (G. Condorelli).

https://doi.org/10.1016/j.biocel.2018.12.005

Received 25 October 2018; Received in revised form 4 December 2018; Accepted 8 December 2018

Available online 10 December 2018
1357-2725/ © 2018 Elsevier Ltd. All rights reserved.


http://www.sciencedirect.com/science/journal/13572725
https://www.elsevier.com/locate/biocel
https://doi.org/10.1016/j.biocel.2018.12.005
https://doi.org/10.1016/j.biocel.2018.12.005
mailto:leonardo.elia@unibs.it
mailto:gianluigi.condorelli@hunimed.eu
https://doi.org/10.1016/j.biocel.2018.12.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biocel.2018.12.005&domain=pdf

L. Elia, G. Condorelli

De novo methylation

International Journal of Biochemistry and Cell Biology 107 (2019) 27-31

Fig. 1. DNA undergoes different chemical

Methylated modifications during the differentiation pro-

Unmethylated (DNMT3A, DNMT3B) cess. De novo methylation (shown as red tags)

/ is mediated primarily by DNA (cytosine-5-

ATCGAATGCTGCGGA ATCGAATGCTGCGGA )-methyltransferase-3alpha (DNMT3A) and

S N~~~ -3beta (DNMT3B). The DNA methylated at

TAGCTTACGACGCCT TAGCTTACGACGCCT CpG islands is recognized by methyl-binding
proteins (yellow stars), which trigger a silen-

cing cascade whereby histone H3K9 is first

Epigenetic reprogramming (TET enzymes) deaceylated and then methylated, it being a
Silencing complex  (Histone binding substrate for heterochromatin protein

deacetylation,

methylation, HP1
Restored methylation Y 4

histone H3K9

1 (HP1). Upon DNA replication, newly syn-
thesized strands (shown in light blue) lack
methylation marks, but DNMT1 rapidly de-
posits methyl groups on newly synthesized
DNA, using the old DNA strand as a template
for where to place the methyl groups. This re-

W Silenced sults in the faithful conservation of methyla-
TAGCTTACGACGCCT tion patterns needed to maintain gene silen-
ATCGAATGCTGCGGA cing. Adult patterns of methylation are erased
by epigenetic mechanism involving TET family
TAGCTTACGACGCCT proteins. (For interpretation of the references
to colour in this figure legend, the reader is

Methylation maintenance (DNMT1) referred to the web version of this article).

DNA replication

Hemi-methylated

ATCGAATGCTGCGGA
S N~ ~—
TAGCTTACGACGCCT

2. Epigenetic alterations: DNA methylation and histone
modifications

Nuclear DNA is tightly wrapped around a core of eight histone

proteins (two copies each of H2A, H2B, H3, and H4), generating re-
petitive units named nucleosomes. These structures allow the DNA to be
strongly compacted and contained in the limited space of the cell nu-
cleus, through the formation of chromatin. Despite its complex three-
dimensional structure, chromatin is a very dynamic entity: DNA and
histones can be chemically modified so as to alter the accessibility of
transcriptional factors to genes and, thus, modulate transcription
(Goldberg et al., 2007). Only part of repertoire of post-translational
modification of histone proteins has probably been unearthed to date;
many of these involve histone protein H3, but modifications are also
known to occur on H4, and less so on H2A and H2B.

DNA methylation occurs preferentially, but not exclusively, at spe-

cific dinucleotide sites along the genome where a cytosine base fol-
lowed by a guanine — known as a CpG island - can be methylated to 5-
methylcytosine (5-mC) (Bird, 1986) (Fig. 1). The enzymes catalyzing
this modification are known as DNA methyltransferases (DNMTs):
DNMT1 is involved fundamentally in maintenance of the methylation
status of DNA during cell division, whereas DNMT3a and DNMT3b are
essential for de novo methylation during developmental stages (Lister
et al., 2009). The activity of DNMT1 has been demonstrated to be de-
pendent on a co-factor that recognizes hemi-methylated DNA. Among
these, ubiquitin-like, containing PHD and RING fingers domains, 1
(UHRF1) has been shown to be essential for maintenance of the me-
thylation status of DNA by directing the recruitment of DNMT1 to re-
plication forks (Bostick et al., 2007). In terms of biological significance,
methylated CpG islands are always a marker of gene repression, since
they act as docking sites for methyl-binding proteins. Indeed, they can
generate steric impediment to the binding of a transcriptional factor to
specific gene promoters, recruit transcriptional repressors, or prevent
the binding of activator proteins (Prokhortchouk et al., 2001).

Besides methylation, other chemical modifications of cytosine have
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been identified, such as hydroxymethylation, formylation, and car-
boxylation, but their interrelation with methylation is not completely
understood yet (Iurlaro et al., 2013). Among these further modifica-
tions, the discovery of 5-hydroxymethylation of cytosine (5-hmC) has
challenged the traditional dogma that DNA methylation is a stable
epigenetic mark. The active oxidation of 5-mC to 5-hmC is regulated by
a family of proteins named ten-eleven translocation (TET) enzymes, and
this modification seems to affect gene expression in both directions
depending on the cellular context. Thus, hydroxymethylation is now
considered a novel epigenetic mark of gene regulation that acts in
concert with DNA methylation (Greco et al., 2016).

The epigenetic code on DNA is further complicated by the multiple
chemical modifications taking place on histone proteins. These histone
post-translational modifications (HPTMs) occur primarily at the amino
acid residues on the core histones’ N-terminal tails, which protrude
from the chromatin fiber (Natsume-Kitatani et al., 2011). HPTMs allow
binding to specific proteins, known as readers, that interfere with
chromatin function to mainly modulate gene expression, but they can
also affect apoptosis and DNA damage repair (Jenuwein and Allis,
2001). The complexity of such regulation is further amplified by the
concomitant presence of differing HPTMs, creating numerous combi-
nations of modifications (Fig. 2). Among the different HPTMs known,
the most studied and defined are methylation and acetylation. Methy] is
a very complicated epigenetic mark since it can signal for activation or
repression of gene expression depending on the level of its deposition
and on the specific histone involved. For instance, the lysine residues at
positions 4, 9, and 27 on histone H3 can be methylated to different
levels (mono-, bi-, and tri-methylation), resulting in different chromatin
structures. Furthermore, histone methylation is a very dynamic process
regulated by histone demethylases, which remove the methyl groups
from lysine residues with a high gene specificity (Tsukada et al., 2006).
These histone marks can revert very rapidly in response to diverse sti-
muli, and they may be involved in pathogenesis, as has been demon-
strated for cardiac hypertrophy and failure (Papait et al., 2013, 2017).

In contrast, acetylation occurs mainly on lysine residues on histones
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Fig. 2. Gene expression regulated by histone modification
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H3 and H4; this mark is fundamentally associated with activation of
transcription, enhancing accessibility to chromatin (Gillette and Hill,
2015). In this context, bromodomain-containing complexes are under
considerable attention on account of their potential to bind acetyl-ly-
sine and then to recruit histone deacetylases (HDACs), triggering gene
repression (Haberland et al., 2009).

Dysregulation of the complex landscape of epigenetic modifications
comprising DNA methylation patterns and HPTMs is being increasingly
associated with pathological states, including CVDs (reviewed in (Greco
and Condorelli, 2015; Muka et al., 2016; Zhong et al., 2016)).

3. Epigenetics and vascular diseases

The involvement of epigenetics in the development of all CVDs has
been largely demonstrated. In particular, the environment strongly af-
fects the epigenetic landscape and, therefore, gene expression in the
vasculature, modulating EC and VSMC physiology. ECs are essential in
creating a selective barrier between blood and the rest of the body’s
tissues. This fundamental role directly implicates endothelial dysfunc-
tion in many pathologies, including those of the CV system (Cai and
Harrison, 2000). By contrast, VSMCs are responsible for the main-
tenance of vascular tone. Plasticity is a peculiarity of VSMCs: under
physiological conditions, they can revert from a contractile phenotype
to a migratory one for growth and wound healing (Owens, 1995). This
feature, while physiological, could also contribute to the development
of vascular pathologies, such as atherosclerosis, restenosis, and aortic
aneurysm.

Atherosclerosis is a very complex pathology in which many factors
and pathways are involved. From the clinical point of view, the disease
is characterized by chronic inflammation affecting ECs and VSMCs, so
contributing to the build-up of plaques that reduce the vascular lumen
and motility (Glass and Witztum, 2001). Analysis of the methylation
profile in human atherosclerotic plaques has demonstrated global DNA
hyper-methylation, indicating an important positive correlation be-
tween DNA methylation and atherosclerosis development (Valencia-
Morales Mdel et al., 2015; Zaina et al., 2014). For instance, the sti-
mulation of ECs with oxidized low-density lipoproteins increases
DNMT1 expression. This leads to methylation of the promoter region of
the transcription factor Kriippel-like factor 2 (KLF2), inducing a pro-
atherogenic EC phenotype (Kumar et al., 2013). In line with this
finding, our group recently demonstrated that methylation modulated
the atherogenic profile also of VSMCs: primary VSMCs treated with
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platelet-derived growth factor-BB strongly expressed UHRF1, which, in
cooperation with DNMT1, positively modulated the methylation status
of different genes associated with VSMC differentiation, such as smooth
muscle actin 2, smooth muscle-myosin heavy chain 11, calponin, and
transgelin (Elia et al., 2018).

In contrast, the role of histone methylation and acetylation in
atherosclerosis development is still under debate, with observations of
different behaviors occurring in cell dependent and independent man-
ners. For instance, the level of the repressive mark H3K27me3 was
found unchanged in ECs obtained from aortas of apolipoprotein E de-
ficient (ApoE_/ ~) mice fed a Western (i.e., high fat) diet, whereas in
the same model of atherosclerosis development there was a significant
reduction of this histone modification in VSMCs (Alkemade et al.,
2010). A more controversial observation was obtained for histone
acetylation: EC-specific knock-down of HDAC3 in ApoE ™/~ mice was
associated with an increased size of atherosclerotic plaques (Zampetaki
et al., 2010). This contrasts with in vitro data demonstrating that
overexpression of HDAC3 triggered repression in ECs of Klif4, pro-
moting a pro-atherogenic phenotype (Lee et al., 2012).

Atherosclerosis mainly impacts patient lifespan because it is re-
sponsible for myocardial infarction. However, it is necessary to point
out that this disease has other phenotypes that can be grouped under
the name of peripheral artery disease (PAD) (Shammas, 2007). From
the clinical point of view, PAD is much less responsive to classical
therapies, such as endovascular approaches and anti-coagulant drugs,
than is coronary occlusion. Typically, people diagnosed with PAD have
important benefits from exercise training (Hamburg and Balady, 2011).
The molecular reasons for this amelioration are unknown. However,
since epigenetic changes, like DNA methylation and histone modifica-
tions, have been associated with exercise (Ling and Ronn, 2014), there
is a strong argument for the involvement of epigenetics in PAD devel-
opment (Kullo and Leeper, 2015). Despite this, few studies have in-
vestigated the influence of epigenetics in PAD pathogenesis to date
(reviewed in (Golledge et al., 2016)). For instance, in a murine model of
femoral artery ligation, therapy with a histone deacetylase inhibitor
(HDACi) delayed maturation of newly formed muscle fibers, with
consequential increased compensatory fibrosis and muscle atrophy
(Spallotta et al., 2013). This can be explained by the fact that the his-
tone acetyl-transferase p300 triggers migration and, therefore, the
vascular repair capacities of human endothelial colony-forming cells
(Palii et al., 2014). However, the negative impact of HDACi in this in
vivo PAD model was not in line with the beneficial effects that these
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compounds have in coronary artery disease (Gillette and Hill, 2015).
Therefore, further studies are warranted.

Another important vascular pathology is restenosis, an iatrogenic
disease caused mainly by EC damage in a coronary artery following
stent placement. The absence of endothelium increases adherence of
circulating inflammatory cells to the vessel, depriving the damaged
organ of an anti-proliferative brake function on VSMCs (Rajendran
et al., 2013). Epigenetics plays an important role in restenosis, acting
directly on VSMC gene expression. In this context, VSMC DNA methy-
lation status plays a pivot role (Zhuang et al., 2017). Indeed, it was
shown that TET2, which promotes the formation of 5-hmC, enhanced
the activation of contractile genes in VSMCs; moreover, local knock-
down of TET2 exacerbated the response to vascular injury in vivo (Liu
et al., 2013). An inverse approach confirmed the direct association
between restenosis and DNA methylation: as reported above, UHRF1 is
involved in the regulation of the contractile status of VSMCs, and in-
deed its local modulation or genetic elimination strongly inhibited
restenosis in mouse carotid artery (Elia et al., 2018). Similarly, mod-
ulation of histone acetylation might impact restenosis development
since HDACi reduced VSMC proliferation in vitro and blunted neoin-
timal formation in vivo (Findeisen et al., 2011).

Aortic aneurysm is another CV pathology in which epigenetics could
play a role. This disease can be driven genetically in a monogenic
context, like in Marfan syndrome for instance (Judge and Dietz, 2005),
or in a complex disease context, such as in those aortic aneurysms
having a much broader and more intricate etiopathogenesis
(Kuivaniemi et al., 2015). In the latter, a critical role is played by the
balance between extracellular matrix (ECM) deposition and degrada-
tion (Didangelos et al., 2011). A shift toward ECM degradation is as-
sociated with vascular fragility: indeed, expression of matrix metallo-
proteinases (MMPs) 2 and 9 has been reported increased in aortic
aneurysms (Rabkin, 2017). More recently, it was demonstrated that
these MMPs are epigenetically controlled by histone acetylation in
human aneurysms (Galan et al., 2016; Zhong and Kowluru, 2013).

In line with findings on the role of ECM metabolism, the develop-
ment of aortic aneurysm depends also on VSMC differentiation status.
Indeed, differentiated VSMCs contract, maintaining the vascular tone
and producing ECM. As discussed for restenosis, DNA methylation
strongly regulates the contractility of VSMCs (Zhuang et al., 2017); our
group recently demonstrated that modulating the methylation level in
VSMCs through deletion of UHRF1 strongly improved vascular response
to the induction of aneurysms in ApoE™/~ mice with the infusion of
angiotensin II (Elia et al., 2018).

4. Conclusions

The above-mentioned studies strongly concur in suggesting that
epigenetics is fundamentally involved in the pathogenesis of CVDs. A
better understanding of the complex mechanisms linking epigenetics
and CVDs will probably have significant consequences on many aspects
of CV medicine, from prevention to prognosis and therapy.
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