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Semaphorins were originally discovered as essential mediators involved in regulation of axonal growth during
development of the nervous system. Ubiquitously expressed on various organs, they control several cellular
functions by regulating essential signaling pathways. Among them, semaphorin3E binds plexinD1 as the primary
receptor and mediates regulatory effects on cell migration, proliferation, and angiogenesis considered major
physiological and pathological features in health and disease. Recent in vitro and in vivo experimental evidence
demonstrate a key regulator role of semaphorin3E on airway inflammation, hyperresponsivenss and remodeling

in allergic asthma. Herein, we aim to provide a broad overview of the biology of semaphorin family and review
the recently discovered regulatory role of semaphorin3E in modulating immune cells and structural cells
function in the airways. These findings support the concept of semaphorin3E/plexinD1 axis as a therapeutic

target in allergic asthma.

1. Introduction

Asthma is the most common chronic lung disease affecting 300
million people worldwide with at least 250,000 deaths annually and a
substantial socioeconomic burden (Croisant, 2014). It is highly pre-
valent in affluent societies, wherein approximately 1 in 10 children and
1 in 12 adults are diagnosed with asthma (Lambrecht and Hammad,
2015). Also, there is a remarkable increase of asthma along with ur-
banization in developing countries (Croisant, 2014).

Asthma is defined as a chronic inflammatory disease of the con-
ducting airways characterized by bronchial hyper-reactivity, airway
wall remodeling, and airway narrowing (Hamid and Tulic, 2009). It is
generally characterized by a Th2/Th17-biased response associated with
an enhanced recruitment and accumulation of granulocytes into the
airways. Moreover, asthmatic airways undergo massive structural al-
terations manifested by airway smooth muscle (ASM) hyperplasia/hy-
pertrophy, sub-epithelial fibrosis, mucus overproduction, and increased
angiogenesis (Hamid and Tulic, 2009).

Despite effective treatment in most of patients, 5-10% of asthmatic
patients are refractory to inhaled corticosteroid treatment and therefore
require oral administration of corticosteroid and hospitalization
(Chung, 2013), thus highlighting the need for better understanding of
factors regulating pathological features of asthma.

Recent studies have implicated semaphorins and plexins in many

airway diseases including acute lung injury, allergic asthma, and pul-
monary fibrosis (Movassagh et al., 2018). These effects are mediated
via shaping immune system (Choi et al., 2008) regulation of cell traf-
ficking, and cell to cell interactions (Takamatsu et al., 2010; Morote-
Garcia et al., 2012; Choi et al., 2014).

Semaphorins were discovered as axon guidance cues determining
the migration pattern of neurons via exerting repulsing or attracting
signals during development (Kolodkin et al., 1992). However, it has
been shown that expression and function of semaphorins is not re-
stricted to the nervous system. In fact, semaphorins emerge as a large
family of versatile mediators present in different organs. They are ca-
tegorized into eight classes in which class 1 and 2 are specifically found
in invertebrates and class V includes the viral ones. Class 3-7 are found
only in vertebrates where the secreted semaphorins belong to class 3.
Class 4-6 are transmembrane while class 7 members are glycosylpho-
sphatidylinositol (GPI)-linked (Movassagh et al., 2018). Although
plexins are the main receptors conveying semaphorin signaling, other
proteins could be involved in determination of semaphorin effects as co-
receptors or binding partners. In addition, some receptors are shared by
different semaphorins, e.g. PlexinD1 can bind semaphorin3E (Sema3E)
and Sema4A (Meyer et al., 2016; Pascoe et al., 2015). It should be
emphasized that expression, function and the mechanism of action of
each semaphorin is highly dependent on the specific context such as cell
type, organ/system, and the physiological versus pathological
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condition. Classification of semaphorin family members and their re-
ceptors have been summarized in Table 1.

In this review, we describe the recent advances incriminating
Sema3E’s role in allergic asthma. We will highlight our novel findings
showing a regulating role of this pathway in airway inflammation,
airway hyperresponsiveness (AHR) and remodelling.

2. Semaphorin3E

Sema3E is one of the vertebrate secreted class 3 semaphorins.
Sema3E plays critical roles in axon path finding and vascular patterning
during development. Encoded by the SEMAS3E gene located on the
7q21.11 chromosomal region in the human genome, full length Sema3E
protein contains 775 amino acids (89.2kDa) (Anon, 2018a). RNA-Seq
analysis on normal human tissues has revealed that Sema3E is highly
expressed in the brain, urinary bladder, gall bladder, prostate, digestive
tract, and lung (Anon, 2018b). Pneumocytes, bronchial epithelial cells,
endothelial cells, and macrophages are the main sources of Sema3E
expression in the lung (Anon, 2018c). However, Sema3E may undergo
differential expression and post-translational modification under pa-
thological conditions. For instance, the full length Sema3E protein has
been shown to be cleaved by furin-like enzymes in tumor cells which

(Basile et al., 2005; Burkhardt et al., 2005; Conrotto et al., 2005; Ito et al., 2015; Kumanogoh et al., 2000; Le et al., 2015; Lu

(Winberg et al., 1998; Bellon et al., 2010; Bouvree et al., 2012; Brown et al., 2001; Casazza et al., 2010; Castellani et al., 2002;
et al., 2018; Nagai et al., 2007; Toyofuku et al., 2007; Witherden et al., 2012)

(Ayoob et al., 2006; Bates and Whitington, 2007; Hernandez-Fleming et al., 2017; Roh et al., 2016; Wu et al., 2011)
Falk et al., 2005; Franken et al., 2003; Rohm et al., 2000; Taniguchi et al., 2005; Zachary, 2011)

(Artigiani et al., 2004; Kantor et al., 2004; Matsuoka et al., 2011; Saxena et al., 2018)
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does not occur in endothelial cells (Gu et al., 2005; Sakurai et al.,
2010).

The intracellular portion of PlexinD1 contains a “Sex and Plexins”
SP domain that harbors two highly conserved Cl1 and C2 regions
(Tamagnone et al., 1999) named RasGAP domain because of sequence
similarity to a group of Guanosine triphosphatase (GTPase)-Activating
Proteins (GAPs) and specificity for the R-Ras family of small GTPases
(Pasterkamp, 2005; Goel and Mercurio, 2013). The GAP activity of
PlexinD1 retracts integrin-mediated cell adhesion to the extracellular
matrix (ECM) and downregulates MAPK and PI3K signaling, considered
key pathways involved in cell survival, proliferation and migration.
Therefore, interaction of Sema3E with ectodomain of PlexinD1 poten-
tially prime the receptor by inducing an intracellular conformational
change. Consequently, activated small GTPases (e.g. Racl, Cdc42 and
Rnd), bind to the “Rho GTPase binding domain” or RBD, which leads to
disruption of the inhibitory association between the C1 and C2 regions
and activation of the GAP (Gay et al., 2011).

Furthermore, in endothelial cells Sema3E treatment decreases the
phosphorylation of focal adhesion kinase (FAK), a critical molecule that
regulates the turnover of integrin-containing focal adhesions. Rnd1, 2
and 3 have been shown to interact physically with the intracellular
domain of PlexinD1 through RBD. These GTPases are required for the
activation of in vivo RasGAP activity of PlexinD1. Therefore, they could
be considered the potential signaling components mediating the early
signaling events upon Sema3E-PlexinD1 interaction regardless of the
functional repulsive versus attractive outcome.

Another possibility is that PlexinD1 antagonizes the R-Ras GTPase
activity merely via sequestering these enzymes without catalytic in-
tervention (Sakurai et al., 2010). Alteration in cytoskeletal and ECM
compartments such as actin polymerization and integrin localization
have been demonstrated to be the final targets of semaphorin signaling
in various contexts. ADP-ribosylation factor 6 (Arf-6) is another small
GTPase by which Sema3E-induced detachment of integrin from ECM is
mediated in endothelial cells leading to inhibit angiogenesis (Sakurai
et al., 2010). Finally, T-cell activation RhoGTPase activating protein
(Tagap) has recently emerged as a specific mediator involved in thy-
mocyte trafficking via direct interaction with the cytoplasmic domain of
plexin-D1 (Duke-Cohan et al., 2018). However, the precise mechanism
underlying Sema3E effects remains inadequately addressed (Table 2).

4. Sema3E and PlexinD1 expression in asthma

We have recently demonstrated that Sema3E is highly expressed in
bronchial biopsies obtained from healthy subjects. Interestingly, along
with disease progression from mild, to moderate, to severe forms,
Sema3E immunoreactivity diminished with a significant difference
between healthy and severe asthmatic subjects. In addition, the
bronchoalveolar lavage fluid (BALF) level of Sema3E secretion is sig-
nificantly reduced in severe allergic asthmatic patients compared to
healthy subjects, and inversely correlated to forced expiratory volume
in 1s. Along the same line, primary human bronchial epithelial cells
isolated from severe asthmatics displayed a downregulation of Sema3E

Table 2

Summary of signaling components mediating Sema3E effects on various cell types.
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mRNA and protein levels (Movassagh et al., 2017a). In addition, surface
expression of Sema3E high-affinity receptor, PlexinD1, is reduced in
human ASM cells from allergic asthmatic patients (Movassagh et al.,
2014) suggesting that expression of Sema3E-PlexinD1 regulatory axis is
impaired in asthma.

In line with our findings in human is a signficant reduction of
Sema3E expression in the mouse airways after either acute or chronic
challenge with house dust mite (HDM) (Movassagh et al., 2017b, c).
Collectively, our data from both human studies and in vivo models in-
dicates that Sema3E expression is decreased in asthmatic conditions
and suggests not only a crucial role of this chemorepellent in regulating
asthmatic phenotype, but also suggests a role as a potential biomarker
to stratify the severity of the disease. Accordingly, further studies are
warranted to investigate whether Sema3E is differentially expressed in
glucocorticoid-resistant versus sensitive asthmatic patients, and to as-
sess Sema3E levels before and after therapy.

5. Sema3E as a regulator of airway remodeling

Airway remodeling is a key feature of asthma and plays an im-
portant role in disease progression (Hamid and Tulic, 2009). Structural
changes in the asthmatic bronchial wall include epithelial shedding and
goblet cell hyperplasia, sub-epithelial fibrosis, enhanced thickness of
smooth muscle layer, and angiogenesis (Fajt and Wenzel, 2015).

We showed that Sema3E significantly reduces growth factor in-
duced human ASM cell proliferation and migration (Fig. 1). This in-
hibitory effect of Sema3E was associated with suppression of F-actin
polymerization, Racl GTPase activity, ERK1/2 and Akt signaling
(Movassagh et al., 2014). In concert with these findings, the in vivo
model of allergic asthma demonstrated that acute or chronic intranasal
HDM exposure induces higher mucus overproduction and collagen
deposition in the airways of Sema3E-deficient mice compared to the
control littermates. Interestingly, enhanced overexpression of the genes
involved in production of mucus and collagen (Col3 and Muc5a) was
observed in both naive and upon HDM-challenged Sema3e™/~ mice
compared to WT littermates (Movassagh et al., 2017d). Conversely,
treatment with exogenous Sema3E-Fc significantly reduced mucus
overproduction and collagen deposition (Movassagh et al., 2017b) and
airway angiogenesis (unpublished data) in HDM mouse model of
asthma. Altogether, these findings support the notion that Sema3E
could modulate airway remodeling (Fig. 1).

6. Sema3E as a major mediator in regulation of allergic airway
inflammation and hyperresponsiveness

6.1. Sema3E/PlexinD1 axis and lung DC subsets

Dendritic cells (DCs) are the most potent antigen presenting cell
found in the lung, mainly located in the conducting airways of the
epithelium (van Helden and Lambrecht, 2013). Depending on their
maturation and activation states, DCs acquire specific ability to effec-
tively induce immunological tolerance or to stimulate functionally

Binding receptor Co-receptors Small GTPases

Key signaling pathways Cytoskeleton ECM

PlexinD1(6,23,79) Nrpl (22)

VEGFR2 (47)

R-Ras (24)

RhoA (28)

Racl (19,37,80,81)
Rapl (82)

Cdc42 (83)

Rnd2 (84)

Arf-6 (24)

Tagap (28)

MAPK/ERK (19,85,86)
PI3K/Akt (19,85)
FAK (24,87)

F-actin (19,81) bl-integrin (24)

Arf6: ADP-ribosylation factor 6 (Sakurai et al., 2010), Tagap: T-cell activation RhoGTPase activating protein (Duke-Cohan et al., 2018).
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Fig. 1. Sema3E inhibitory effect on airway remodeling in allergic asthma.
Binding of sema3E to PlexinD1 in ASM cells induced an array of events leading
to inhibition of migration and proliferation, considered key factors in airway
remodeling. Signaling cross-talk between PlexinD1 and PDGFR reduced growth
factor-mediated proliferation and migration which was associated with de-
creased activation of Racl, Akt and ERK1/2 as well as reduced assembly of
actin filaments. F-actin: Filamentous actin, PDGF: Platelet-derived Growth
Factor, PDGFR: Platelet-derived Growth Factor Receptor.

distinct T cell subsets (Thl, Th2, or Th17). In the lung, five lung DC
subsets have been defined. Subsets include conventional DC (cDCs),
monocyte-derived DCs (Mo-DCs) and plasmacytoid DC (pDCs) (van
Helden and Lambrecht, 2013). The ¢DCs could be further divided into
CD11b* and CD11b~ where the latter express langerin and CD103
(Guilliams et al., 2014). CD11b* CD103- ¢DC (cDC2) are endowed with
the ability to prime effector CD4 Th cells in both homeostatic and
asthmatic conditions whereas CD103" CD11b- ¢DC (¢DC1) play a
crucial role in the development of tolerogenic protective response upon
allergen inhalation. ¢cDCs and Mo-DCs contribute to HDM-induced
airway inflammation, with lung CD11b* ¢DC2s being necessary and
sufficient to induce allergic sensitization. DCs functional behaviour is
dictated by many local factors including the presence of semaphorin 3
family members (Curreli et al., 2016).

Our recent data showed that Sema3E deficiency led to enhanced
airway inflammation in mice which was heightened upon HDM allergen
encounter (Movassagh et al., 2017b, c; Movassagh et al., 2017d). Spe-
cifically, Sema3e deficiency results in a high number of CD11b™ ¢DC in
the lung at baseline and upon HDM challenge, associated with en-
hanced eosinophilia and neutrophilia, AHR, and efficient Th2 and Th17
cytokine response (Movassagh et al., 2017b, d). Conversely, Sema3E
treatment reduced significantly HDM-induced airway and lung neu-
trophilia and eosinophilia, and AHR (Movassagh et al., 2017b, e),
events that were associated with a reduced number of lung CD11b*
dendritic cells. These data suggest an important role of Sema3E medi-
ated DC function in driving exaggerated neutrophilic and eosinophilic
inflammatory response, considered one of the critical characteristics
observed in severe asthma (Hamid and Tulic, 2009).
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6.2. Role of Sema3E in regulation of neutrophil functions

Neutrophil-rich airway inflammation is a common feature of severe
refractory asthma. Although allergic asthma is classically believed to be
dominated by type 2 immune response, in almost half of the patients
there is a low- or non- type 2 phenotype especially in severe forms (Fajt
and Wenzel, 2015). A growing body of evidence illustrates that sema-
phorins and their receptors are involved in regulation of neutrophil
functions. For instance, recent studies reveal a crucial role for Sema7 A-
PlexinCl axis in promoting neutrophil migration in acute lung injury
and hypoxia models (Morote-Garcia et al., 2012; Granja et al., 2014).
On the other hand, Sema3C therapeutic effect on lung injury is medi-
ated by decreased lung neutrophil influx, and silencing its expression
leads to a significant increase in neutrophil activity (Vadivel et al.,
2013).We have addressed the regulatory role of Sema3E in the reg-
ulation of pulmonary neutrophil recruitment in vivo using HDM mouse
model of allergic asthma. Intranasal HDM challenge induced an en-
hanced pulmonary accumulation of neutrophils in Sema3e™’~ mice,
whereas in vivo Sema3E treatment decreased HDM-induced neutrophil
recruitment. Interestingly, increased pulmonary neutrophilia was ob-
served in naive Sema3e”’/” mice suggesting a regulatory role of this
pathway in maintaining pulmonary neutrophil homeostasis. Further-
more, human neutrophils showed a constitutive expression of Sema3E
high-affinity receptor, PlexinD1; and Sema3E inhibited chemokine
-induced migration via suppression of GTPase activity and F-actin as-
sembly (Movassagh et al., 2017e).

7. Conclusion

Given its diverse roles in many biological processes, it is not sur-
prising that Sema3E/PlexinD1 axis plays an important role in the key
events modulating airway inflammation, remodeling, and AHR in al-
lergic asthma (Fig. 2). Several unanswered questions warrant further
investigation including which isoform of Sema3E is produced in asth-
matic airways; and whether it correlates with disease severity or ther-
apeutic outcomes. Future research should also evaluate the role of
Sema3E in mouse models other than HDM, e.g. cockroach, to ascertain
if its effect is independent of type of allergen. We still do not know the
precise role of Sema3E in modulating: eosinophil function or migration;
the expression of epithelial innate-derived cytokines (IL-25, IL-33 and
TSLP); and epithelial-mesenchymal transition in asthmatic airways.
Furthermore, considering the enhanced IgE production in Sema3e de-
ficient mouse model (Movassagh et al., 2017d), studies on B cells can
address whether Sema3E regulates IgE class switching. Also, the full
range of molecular signaling mediated by Sema3E is still poorly un-
derstood and is likely to yield unexpected finding in the future. Taken
together, Sema3E/PlexinD1 pathway provides a fascinating example
that warrants more research to enhance our understanding of asthma
pathogenesis.
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