Comment

A hierarchical view of abstractness: Grounded, embodied, and situated aspects

Comment on “Words as social tools: Language, sociality and inner grounding in abstract concepts” by Anna M. Borghi et al.

Andriy Myachykov a,b, Martin H. Fischer c,*

a Department of Psychology, Northumbria University, Newcastle upon Tyne, United Kingdom
b Institute of Cognitive Neuroscience, Higher School of Economics, Moscow, Russian Federation
c Potsdam University, Potsdam, Germany

Received 8 April 2019; accepted 9 April 2019
Available online 11 April 2019
Communicated by J. Fontanari

We want to offer two clarifications pertaining to the WAT proposal: one on the complexity of the relationship between abstract and concrete knowledge domains, the other on the place of number representations in WAT. We hope our contribution will help to stimulate further discussion on both points.

First, Borghi and colleagues [1] correctly note that “abstractness/concreteness . . . (are) arranged along a continuum (where) . . . any one concept includes a combination both of concrete and abstract information”. Nevertheless, WAT diachronically contrasts concrete and abstract conceptual domains, with concrete words grounded in interactions with the world and abstract ones in interactions with others (social grounding). This effective dichotomy leaves out other important dimensions associated with our understanding of abstract vs. concrete representations, thus limiting the scope for theoretical generalization. Specifically, the existing literature differentiates abstract from concrete concepts along 3 general dimensions [2,3]:

1. **Grounding:** The relationship between the concept and its physical/material referent. On this account, Mars (the planet) is a concrete concept and Love (the feeling) is an abstract one. This is a *phenomenological* dimension of abstractness.

2. **Embodiment:** The relationship between the concept and the associated sensorimotor experience. Note that on this account, Mars is an abstract concept as we have little-to-no direct sensorimotor experience associated with it while Love is quite concrete as we all have complex but nevertheless quite embodied sensorimotor experiences, reflected in the abundance of similar conceptual metaphors associated with “love” across languages and cultures. This is a *sensorimotor* dimension of abstractness.

3. **Situatedness:** The relationship between the concept and the flexible contexts, in which it features. This, by far, is the most flexible of the three dimensions. For example, Mars can have a very concrete sensorimotor representation
when referring to a Mars chocolate bar, a more abstract object – when referring to the planet, and an even more abstract one – when referring to a deity in Greek mythology. This is a contextual dimension of abstractness.

Borghesi et al.’s [1] theoretical framework uses the operational definition of abstractness closest to embodiment: “Abstractness concerns knowledge domains that are less spatio-temporally bounded and cannot be fully tracked with exteroceptive senses alone” but even then, some of the examples of abstract words used in the paper are quite concrete with regard to their sensorimotor bases (e.g., wet, eat). At the same time, it is unclear how this stance accommodates, or differentiates between, the contrasts described as grounded or situated.

A taxonomic and componential approach to knowledge representation may be useful here. Specifically, some theories [4,5] previously suggested that both abstract and concrete representations encode combinations of the three dimensions by reflecting our experiences in the physical world, our bodily constraints, and the changeable context in which these concepts are used. Tropic (or grounded) components reflect constraints of the physical world in which the representation is acquired and (re)used (e.g., gravity, stable spatial location of physical objects). Embodied components encode the agent’s bodily states during the acquisition and activation of conceptual knowledge (e.g., the agent’s intrinsic body composition). Situated components reflect the specific variable contexts within which representations are formed and used (e.g., left-to-right reading habits, specific type-token relationships). Concepts can be positioned along an abstract-concrete continuum depending on the relative weight of these ingredients.

Similarly continuous and relativist views of abstractness are offered elsewhere; i.e., that abstract words are not such, because their meaning is “far from experience” but because of the relative complexity of the attached experiential clusters [2,6,7]. We believe that a hierarchical and componential view of abstractness, similar to the three dimensions described above, may take us closer to a comprehensive understanding of abstractness in knowledge representations, as was illustrated for the example of embodied number knowledge [8].

This proposed componential framing of concepts brings us to our second point. While WATs four core tenets (distinct acquisition and cortical localization, effector specificity and diversity) cover much evidence on abstract knowledge, the authors declared number concepts to be exceptional. Several reasons for this perhaps unnecessary limitation were mentioned in the review. First, WAT “focuses on the mechanisms that underlie the formation and use of ACs” (p. 5) as opposed to their content; this is an important qualification of the meaning of “conceptual grounding” and echoes similar considerations recently advanced for number concepts [8]. Second, confusion seems to exist on how to systematize number knowledge: either with space and time, apparently resulting in high concreteness and low emotion ratings [9], or together with emotions [10]. These divergent approaches reflect distinct research on spatial-numerical associations during concept formation and use (critically reviewed in [11]) or on emotional grounding [12], which is only beginning to accumulate for number representations [13–15]. Third, math-related sentences were associated with hands more than other abstract concepts in a questionnaire [16], which seems to violate the prediction of WAT that abstract concepts are generally related to the mouth; but that study never presented numbers as materials.

It is worth revisiting the alleged exceptional status of number concepts by considering the relationship between numbers and language from a componential view. In fact, language is arguably crucial for all numbers exceeding the small range from one to perhaps four or five items – only these are quickly and correctly appreciated in their quantity through a specialized “subitizing” mechanism. All other numbers are linguistically constructed concepts, otherwise not discreetly available to the mind. Even numbers still within the finger counting range remain imprecisely represented until we acquire language-based knowledge about addition and multiplication facts (e.g., [17]). Much of our number use, even in simple arithmetic, is affected by articulation and hence mouth-based, from the inversion problem to the native language bias when calculating (for review, see [18]). Thus, the authors’ general disclaimer for “number” as deviating from the tenets of WAT unnecessarily diminishes WAT as a welcome and inspiring proposal on the cognitive status of abstract and concrete concepts.

Acknowledgements

AM would like to acknowledge support from the HSE Basic Research Program and the Russian Academic Excellence Project 5-100. MHF is supported by DFG project FI/1915/8-1 “Competing heuristics and biases in mental arithmetic”.

References

