Mechanism and stereospecificity of Z-enamide synthesis from salicylaldehydes with isoxazoles using DFT calculations

Baoping Ling a,b,*, Yuan-Ye Jiang b, Yuxia Liu b, Peng Liu b, Rutao Liu a,**, Siwei Bi b,***

Article info
Article history:
Received 26 July 2019
Received in revised form
1 October 2019
Accepted 13 October 2019
Available online 17 October 2019

Keywords:
Z-enamides
Salicylaldehyde
Isoxazole
DFT calculations
Stereospecificity
Catalytic mechanism

A R T I C L E I N F O

A mechanistic study on Rh-catalyzed synthesis of stereospecific Z-enamide from salicylaldehydes and isoxazoles has been performed with DFT calculations. The aldehydic C–H bond activation was found directed by anionic phenolic group rather than neutral phenolic hydroxyl, which reasonably rationalizes the reversibility of the C–H bond activation. Direct ring-opening rather than N–O oxidative addition of isoxazole, and subsequent C–C reductive elimination generate the stable tripodal intermediate that has been demonstrated by LC-MS analysis. Finally, sequential amino and phenolic protonations of the tripodal species produce the product Z-enamide. Stereospecificity of Z-enamide can be attributed to the rigid carbon-carbon double bond formed by direct ring opening of isoxazole. The rate-determining process is found to include the directing ring-opening and C–N reductive elimination with an overall barrier of 26.7 kcal/mol.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction
The enamides have attracted much interest in organic synthesis [1], and have been found broad applications in bioactive natural product and pharmacological field as nucleophilic synthons [2]. In recent years, the enamides have been widely used as the powerful intermediates to synthesize the heterocycles [3] due to their enhanced stability. In particular, the second enamides have exhibited reactive behavior towards highly electron-deficient unsaturated reactants [4]. The synthetic methods of enamides involve the reaction of ketone with the second amine [5], the reductive reaction of ynamine [6], and Curtius rearrangement [7]. Various transition-metal catalysts, such as copper, iridium, palladium and ruthenium, have been applied in the transposition of the terminal C=C of the corresponding allylamides to achieve a wide range of enamides [8]. Usually, these methods thermodynamically favor the E-configured enamides or lead to the Z/E mixture, and failed to provide a synthetic route to obtain the stereospecific Z-configured enamide.

Recently, Maji and coworkers [9] presented an advanced strategy for the stereospecific synthesis of Z-enamides. They used isoxazole as a masked electrophile in C–H functionalization of salicylaldehyde to afford the desired stereospecific formation of Z-enamide (Scheme 1). They disclosed a novel approach for the synthesis of Z-enamides with an exclusive Z-selectivity, a benign reaction condition and considerable yields. In previous experimental studies, some literatures presented that the phenolic group in salicylaldehyde coordinates with Rh center as an anionic ligand [10], but some proposed that it does as a neutral ligand [11]. However, the theoretical reports about the coordination mode of the phenolic group in salicylaldehyde to the transition metal center are rare, thus its coordination mode is still unclear. In this work, some key issues were further explored with DFT calculations, (1) coordination mode of the phenolic group of salicylaldehyde, a neutral ligand or an anionic ligand? (2) origin of the stereospecificity of enamides? (3) N–O bond cleavage mode.

2. Computational details
All density functional theory (DFT) calculations were performed
by using Gaussian 09 program [12]. Molecular geometries of all the intermediates and transition states were optimized at the M06 level of theory [13] in conjunction with the ultrafine grid [14]. The effective core potentials of Hay and Wadt with a double-ζ basis set (LANL2DZ) [15] were used for Rh, and the 6-31G(d,p) basis set was used for C, O, N and H atoms (BS1). Vibration frequency calculations were conducted at the same level to confirm the optimized structures as minima (no imaginary frequency) and transition states (no imaginary frequency), and to obtain the thermodynamic corrections. All transition-state structures were verified to connect two relevant minima by using intrinsic reaction coordinate (IRC) calculations [17].

The solvent effect was treated with a self-consistent reaction field (SCRF) using the SMD model [18]. The energies were refined by single-point calculations using the larger basis set 6-311++G(d,p) for C, O, N and H atoms and SDD for Rh (BS2). Dichloroethane (DCE) was used as the solvent with a dielectric constant value of 10.125. Additional density functionals such as B3LYP [19], M06L [20] and ωB97XD [21] were applied for the key intermediates and transition states, and the calculated results show the similar trend with M06/6-311++G(d,p) (Table S1). Unless specifically mentioned, all the energies discussed throughout the main text were the solution-phase relative free energies corrected at 298 K and 1 atm in gas phase.

3. Results and discussion

A plausible catalytic cycle (Scheme 1) was proposed by Maji et al. [9]. The active catalyst A undergoes C–H metalation with salicylaldehyde 1a to generate a five-membered rhodacycle B, which is coordinated by 2a to give intermediate C. A N–O bond cleavage takes place to afford a nitrido intermediate D, which experiences migration/insertion of nitrene into the Rh–C bond to deliver a tripodal intermediate 7. Finally, protonolysis of intermediate 7 produces the desired Z-enamide 3a and regenerates the catalyst. On the basis of plausible mechanism, the detailed DFT calculations were performed.

3.1. Formation mechanism of the five-membered rhodacycle intermediate

[Cp*Rh(OAc)2] (Cat) formed in the reaction system was chosen as the initial active catalyst (Fig. S1). To clarify the coordination mode of phenolic group in salicylaldehyde, two plausible modes were considered. Maji et al. proposed that salicylaldehyde 1a undergoes C–H metalation catalyzed by the active catalyst [Cp*Rh(OAc)2] to give a five-membered rhodacycle intermediate via a direct C–H functionalization (Scheme 2) [9–11]. Based on the proposal, the direct C–H activation of 1a was calculated with the phenolic group of salicylaldehyde coordinated to Rh as a neutral ligand, as shown in Fig. 1. However, this step can be ruled out because the overall energy barrier is extremely high, 51.0 kcal/mol. Coordination of 1a to Rh center as a neutral ligand forms intermediate IM1 that undergoes a direct C–H metalation to yield intermediate IM2 via an unstable transition state TSI*. The infeasibility of such a C–H activation step is resulted from the unreasonable transformation from IM1 (18e) to IM2 (20e). To further verify whether the phenolic group of salicylaldehyde could serve as a neutral ligand, we calculated the ensuing step for the N–O bond cleavage of isoxazole. The direct ring-opening of isoxazole is also inaccessible because this step requires an overall energy barrier of 34.6 kcal/mol (Fig. S2A). Our attempts to locate another intermediate with different regioselectivity of isoxazole for the direct ring-opening have failed. In addition, the oxidative addition for the N–O bond cleavage was also considered, but this step can be ruled out owing to the extremely high activation barriers of 55.0 and 55.8 kcal/mol (Figs. S2B and S2C). Therefore, these results indicate that the phenolic group of salicylaldehyde coordinating to Rh as a neutral ligand is unfavorable in the Z-enamide synthesis with isoxazoles.
An alternative coordination mode [10] that the phenol group acting as an anionic ligand was also considered. The detailed C–H activation process is given in Fig. 2. As shown in Figure 2, 1a binds to Cat through the hydrogen bond to form intermediate IM1, which then undergoes ligand exchange with 1a to afford IM2 via TS1-2, and this step overcomes the overall energy barrier of 10.2 kcal/mol. Deprotonation of phenol group in salicylaldehyde takes place to give IM5 via a concerted metalation-deprotonation (CMD) [14(d) [22]] process (IM3→IM5), and this step is easy to occur with a barrierless process. After release of acetic acid, the C–H activation via CMD process (IM6→IM8) requires the overall energy barrier of 17.7 kcal/mol, and it is exergonic by –7.0 kcal/mol to yield IM8. Then, another acetic acid is released from IM8 to generate a five-membered rhodacycle intermediate IM9. It is noted that the overall energy barrier for the reverse reaction (IM8→IM6) is calculated to be 24.7 kcal/mol, thus, the reversibility of the C–H activation is feasible in the absence of 2a at the experimental temperature (80 °C), which is supported by the sufficient C–H/D exchange experiment [9]. Therefore, the C–H activation of salicylaldehyde is facile to occur and reversible, which can be rationalized through the mechanism with phenolic group as an anionic ligand. In addition, we have also considered a cation pathway as shown in Fig. S3, in which the catalyst reacts with 1a to produce a cation to initiate the reaction, but the Gibbs free energy of 25.2 kcal/mol is thermodynamically unfavorable for the reaction.

3.2. Formation mechanism of the tripodal intermediate

Starting from IM9, the isoxazole coordinates to Rh center to give two intermediates with isoxazole having opposite orientations (IM10 and IM10’) as shown in Fig. 3, both of which are energetically similar with relative free energies of –9.0 and –9.3 kcal/mol. IM10 undergoes a direct ring-opening process via TS11 to yield a nitrido intermediate IM12 with a barrier of 20.7 kcal/mol. Subsequently, the N–C bond reductive elimination from Rh occurs to give a tripodal intermediate IM14 via TS13 with an overall barrier of 26.7 kcal/mol (TS13 → IM10). This process is significantly exergonic by 46.0 kcal/mol as a result of the C–N and CO→Rh bond formation. The sharp signal found at m/z 504.3 in LC-MS spectra suggests the formation of the tripodal intermediate [9], which was supported by the computed stable tripodal intermediate IM14. Similarly, IM10’ also undergoes direct ring opening and C–N reductive elimination to finally give IM14-c. It can be seen that TS13-c is 1.5 kcal/mol above TS13, suggesting both pathways are competitive with the black pathway slightly favorable. IM14-c is less stable than IM14 due to the lack of CO→Rh bond. It is noted that a rigid C=C double bond formation from direct ring opening of isoxazole retains the stereospecificity of Z-enamide.

As mentioned above, the N–O bond cleavage is achieved by direct ring opening. An alternative N–O bond cleavage by oxidative addition to Rh(III) was also considered herein. As shown in Fig. 4, the barriers to N–O oxidative addition from IM10 and IM10’ were calculated as high as 41.1 and 42.5 kcal/mol, respectively. The difference between the direct ring opening and oxidative addition pathways can be clarified using distortion interaction analysis [23], which is also known as the activation strain model [24]. Fig. 5 presents the relationship among A0 and B0 obtained by optimization, fragments A and B obtained directly derived from TS11 and TS11-a. ∆E1, ∆E2 and ∆E2 represent distortion energies, while

![Fig. 2. Gibbs energy profile for O–H deprotonation and C–H metalation process.](image-url)

![Fig. 3. Gibbs free energy profile for the direct N–O bond cleavage and C–N reductive elimination process.](image-url)

\[\Delta E_2 \text{ and } \Delta E_3 \text{ represent interaction energies. } \Delta E_1 \text{ and } \Delta E_1' \text{ are close in energy indicating the rhodacyclic fragment undergoes a small distortion and contributes little to the energy difference of TS11 and TS11-a. } \Delta E_2 \text{ and } \Delta E_2' \text{ have an energy difference of 5.0 kcal/mol, contributing a little to the energy difference of TS11 and TS11-a. The higher distortion from } B_0 \text{ to } B \text{ arises from the longer N–O distance (2.13 Å) compared to the one in } B' \text{ (2.00 Å). More importantly, the interaction energies of } \Delta E_3 \text{ and } \Delta E_3' \text{ have an energy difference of 21.5 kcal/mol. Consequently, the big difference in interaction energy is the major reason leading to both transition states having different stabilities. Examining the geometries of TS11 and TS11-a, one can see the Rh–N bond (1.93 Å) in the former is obviously shorter than the Rh–O bond (2.24 Å) in the latter, indicating the stronger Rh–N interaction provides major contribution to the interaction energy } \Delta E_3. \text{ In conclusion, stronger N–Rh interaction leads to TS11 more stable.} \]

3.3. Proteolysis of tripodal intermediate and the catalyst regeneration

Fig. 6 shows the energy profile for the product release and the catalyst regeneration. From IM14, the sequential amino and oxygen protonations occur to afford the Z-enamide and regenerate the catalyst. First, coordination of acetic acid to Rh center together with a N–H–O hydrogen bonding leads to dissociation of the carbonyl to deliver IM15. Then, the amino protonation (IM15 → IM17) takes place easily. One more acetic acid again coordinates to Rh center to protonate the oxygen atom with a barrierless process (IM18 → IM20). Finally, Z-enamide is released from the Rh center and the catalyst is regenerated. This process needs to overcome an overall free energy barrier of 21.8 kcal/mol, which is lower than that for formation of the tripodal intermediate. Although the relative free energy of product P is slightly higher than that of IM14 by 1.8 kcal/mol, which seems to be unfavorable thermodynamically, but this case is feasible for catalytic reactions [25].

Starting from IM14, we have also considered the alternative pathway with a reversed sequence, i.e., oxygen-protonation prior to amino-protonation, and the corresponding energy profile is given in Fig. S4. This process is disfavored due to the high energy barrier of 37.3 kcal/mol (IM14 → TS19'). In addition, the protonolysis of competitive intermediate IM14-c has also been considered, and the detailed energy profile is shown in Fig. S5. The pathway from IM15-c1 → P, amino-protonation prior to oxygen-protonation, is more favorable with the lower energy barrier of 10.9 kcal/mol.

In summary, the complete catalytic cycle for the Z-enamide synthesis from salicylaldehyde coupling with isoxazole has been improved and as shown in Scheme 3. The salicylaldehyde 1a as an anion ligand coordinates to the active catalyst [Cp*Rh(OAc)_2] through the O–H deprotonation, undergoing C–H metalation to afford a five-membered rhodacycle intermediate IM9. The isoxazole 2a coordinates with Rh center to give IM10 with the nitrogen atom closing to the carbonyl of salicylaldehyde for the convenience of C–N reductive elimination. Then, the direct ring-opening of isoxazole takes place to generate the nitrido intermediate IM12, which experiments the C–N reductive elimination. Then, the direct ring-opening of isoxazole takes place to generate the nitrido intermediate IM12, which experiments the C–N reductive elimination to deliver a tripodal intermediate IM14. This is consistent with the experimental result that the tripodal intermediate IM14 has been demonstrated by LC-MS analysis. Finally, the sequential protonolysis of the amino group and oxygen atom by acetic acid occur to regenerate the catalyst and offer the desired Z-enamide. For the entire catalytic cycle, the process (IM10 → IM14) involving direct ring opening of isoxazole and C–N reductive elimination is the rate-determining step with an overall energy barrier of 26.7 kcal/mol.
4. Conclusions

A detailed computational study on the Rh(III)-catalyzed reaction of salicylaldehyde with isoxazole has been conducted, and an improved catalytic cycle has been presented. This mechanism involves sequential OᵉH deprotonation, aldehydic CᵉH metalation of salicylaldehyde, direct ring-opening of isoxazole, NᵉC reductive elimination, and protonolysis of amino and phenolic groups, generating the desired Z-enamide product. Major findings are as follows. 1) The deprotonated anionic phenolic group rather than the neutral phenolic hydroxyl of salicylaldehyde acts as the directing group. 2) NᵉO bond cleavage of isoxazole occurs via a direct ring-opening rather than via NᵉO oxidative addition to Rh(III). 3) Direct ring-opening of isoxazole results in a rigid carbon-carbon double bond that enables stereospecific generation of Z-enamide. 4) The rate-determining process including direct ring opening (IM10 → IM12) and C⁻N reductive elimination (IM12 → IM14) with an overall activation barrier of 26.7 kcal/mol. 5) The reversibility of aldehydic C⁻H bond activation can be rationalized based on our calculation results shown in Fig. 2.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 21603116, 21873055 and 21702119), Natural Science Foundation of Shandong Province (No. ZR2017Q001 and ZR2019MB016), and High Performance Computing Center of Qufu Normal University.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jorganchem.2019.120981.

References

(b) B. Ling, Y. Liu, Y.-Y. Jiang, P. Liu, S. Bi, Mechanistic insights into the ruthenium-catalyzed $[4+1]$ annulation of benzamides and propargyl alcohols by DFT studies, Organometallics 38 (2019) 1877–1886;
(c) A.P. Walsh, W.D. Jones, Mechanistic insights of a concerted metalation-deprotonation reaction with [{\text{Cp}^*\text{RhCl}_2}], Organometallics 34 (2015) 3400–3407;
(d) C. Deng, W.H. Lam, Z. Lin, Computational studies on Rhodium(III) catalyzed C-H functionalization versus deoxygenation of quinoline N-Oxides with diazo compounds, Organometallics 36 (2017) 650–656.

[23] (For selected examples, see): (a) W.-J. van Zeist, F.M. Bickelhaupt, The activation strain model of chemical reactivity, Org. Biomol. Chem. 8 (2010) 3118–3127;