1-Butyl-3-methyl-2-(diphenylphosphino)imidazolium hexafluorophosphate as an efficient ligand for recoverable palladium-catalyzed Suzuki-Miyaura reaction in neat water

Faezeh Khosravi a, Mohammad Gholinejad a,b,*, David Lledó c, Guillermo Grindlay c, Carmen Nájera d, José M. Sansano d,e

Article info
Article history:
Received 29 May 2019
Received in revised form 4 September 2019
Accepted 16 September 2019
Available online 18 September 2019

Keywords:
Suzuki coupling
Biaryls
Palladium
Water
Green process

1. Introduction

The Suzuki reaction is a suitable method for the formation of different type of compounds especially biaryls [1–20]. The resulting products of Suzuki reaction have different application in the preparation of natural products, nucleoside analogues, biologically active compounds, liquid crystals and pharmaceuticals [21–23]. In spite of abundant reports on performing the Suzuki-Miyaura coupling reactions, developments to improve it are currently done. For example, conducting the Suzuki-Miyaura coupling reaction in environmentally friendly solvents such as water have particular importance [24–42]. Water is a great alternative to organic solvents which disposal is a main problem in the industry. Water is cheap, green, nonflammable, nontoxic, renewable, ecofriendly and has a high thermal capacity. Performing the reactions in water leads to high selectivity which is not achieved with organic solvents [2,8,43–47]. Additionally, organic products can be easily separated from the hydrophilic catalyst and the aqueous solution recycled because catalyst remained on it saving time consuming process. Phosphorylated ligands are crucial for the formation of complexes with different transition metals that produced active catalysts in organic synthesis [48–58]. In recent decades, great attention has been paid to the use of catalysts containing water-soluble phosphine ligands in aqueous media for Suzuki [59], Heck [60], Buchwald-Hartwig [61] and Sonogashira [62] coupling reactions. In fact, water-soluble phosphate ligands, that can be combined with Pd atoms, create hydrophilic catalyst, and leads to an increase in the activity in the aqueous media, is highly attractive.

In this work, we have successfully used an imidazolium-based phosphine-ligated in the presence of suitable amounts of PdCl2 as the recyclable and efficient catalyst in the Suzuki cross-coupling reaction of substituted aryl iodides, bromides and chlorides with various arylboronic acids in water or PEG 200 solvent.
2. Results and discussion

Initially, compound 2 was synthesized by adding n-BuLi and DCM solvent to 1-butyl-1H-imidazole-3-ium hexafluorophosphate 1 and placing the mixture at a temperature of −78 °C and then 3, in orange solid form, was obtained by adding PPh₂Cl₂ to it under the same conditions which was characterized by ¹H NMR, ¹³C NMR and ³¹P NMR (Scheme 1) [63]. Desired ligand 3 is air- and moisture-stable in solid state.

The formation of active Pd(0) species was achieved by reacting of PdCl₂ with 3 in water. The appearance of dark brown color after 1 h indicated the formation of active Pd(0) species [64] (Fig. 1).

Furthermore, the formation of the Pd(0) catalyst was supported by the analysis of the solid state UV–Vis spectra of the powder obtained by drying the aqueous mixture of PdCl₂ and the phosphorous ligand (Fig. 1c). Results indicated that the related peak at 280 nm corresponding to palladium(II) disappeared in the presence of 3 (Fig. 2) [65].

The XRD patterns of this powder, resulted from the evaporation of the aqueous solution of PdCl₂ and II, 3, showed that the characteristic bands of the formation of Pd³⁺ species at (111), (200), (220) and (311) crystallographic planes were detected at 40.2°, 46.7° and 68.2° (Fig. 3a) [66]. The XRD patterns for the Pd nanoparticles showed a wide peak centered at around 40.35°. The average size of the Pd nanoparticles were calculated from the full width at half maximum of the strongest diffraction peak [111] obtained by the Scherer equation (Eq. (1)):

\[
D = \frac{K\lambda}{\beta \cos \theta}
\]

where B is the full width at half maximum, θ is the angle of Bragg diffraction and k is the X-ray wavelength that K is a constant taken as 0.89 [67,68]. The average size of the Pd nanoparticles obtained at around 4.65 nm. The presence of the palladium(0) also was confirmed by XPS analysis (Fig. 3b) the binding energies had shifted with respect to palladium(II) and the maximum intensities corresponded to Pd⁰ 3d₅/₂ and 3d₇/₂ peaks.

To find the optimal conditions, the reaction of 4-idoanisole with phenylboronic acid was selected as the model reaction and the effect of various factors such as temperature, solvents were investigated (Table 1). Initially the reaction was conducted in different solvents such as H₂O, DMF, THF, CH₃CN, and toluene by using K₂CO₃ as a base at 50 °C (Table 1, entries 1–5). Results demonstrated that the best yield (90%) was obtained in water solvent during 24 h (Table 1, entry 6). By increasing reaction temperature to 60 °C and using water as the solvent 90% yield was achieved. It should be noted by reducing the reaction temperature to the room temperature, the product yield was diminished to 40% (Table 1, entry 7). Furthermore, performing reaction in the absence of 3 afforded low yield indicating important role of ligand in the efficiency of the reaction (Table 1, entry 8).

Having optimized condition in hand, Suzuki coupling reaction of variety of aryl iodides with different organoboronic acids were studied. Reactions of aryl iodides having electron donating groups such as –Me, –OMe as well as iodobenzene proceeded in 24 h and the desired products were isolated in 90–92% yields (Table 2, entries 1–3). Furthermore, reactions of aryl iodides having electron withdrawing groups were satisfactorily performed and afforded biaryls in 96–98% yields (entries 4–9). It should be noted that reaction of 2,5-diiodothiophene as heterocyclic with phenylboronic acid and the reaction of sterically hindered methyl 4-amino-3,5-diodobenzoate with phenylboronic acid were proceeded well and 82 and 80% yields were obtained respectively (Table 2, entries 4 and 10). We have also studied the Suzuki reaction of aryl bromides using these optimal conditions. For this purpose, reaction of 4-bromoanisole with phenylboronic acid was studied and 50% yield was achieved after 24 h at 50 °C. However, when the reaction temperature was increased to 80 °C, 92% isolated yield was obtained. Therefore, we studied the coupling reaction of different aryl bromides with arylboronic acid at 80 °C in water solvent. Generally, the results showed that aryl bromides having both electron-donating or electron-withdrawing groups afforded excellent yields (Table 2, entries 11–20). We further extend application of the present catalyst for the Suzuki reaction of aryl chlorides. However, initial results indicated that reactions of 4-chlorobenzaldehyde under the optimized reaction conditions (80 °C) was sluggish and 21% yield was obtained. Therefore, different reaction conditions were studied. It has been found that using PEG200 at 120 °C afforded 80–87% yields for activated aryl chlorides (Table 2, entries 21–23).
We also investigated the recycling of catalyst for coupling of 4-bromobenzonitrile with phenylboronic acid in water. After completion of the reaction, organic phase was extracted with ethyl acetate and the aqueous phase, which included the catalyst was used in the next reaction. Results indicated that catalyst was recycled successfully for six consecutive runs with small decrease in the activity (Fig. 4).

3. Conclusions

In this work, we have prepared novel water-soluble phosphine as a ligand for Suzuki coupling reaction in water without the use of an organic co-solvent. This ligand is easily prepared in two steps which in combination with PdCl₂ as an efficient catalyst has been applied in Suzuki coupling reaction of aryl iodides and bromides in water solvent. Additionally, this catalyst successfully has been used...
in the Suzuki coupling reactions of wide range of substrates of aryl iodides and bromides including electron-donating and electron withdrawing groups with various arylboronic acids. This catalyst simply recycled and reused for six runs with slight decreasing in catalytic activity.

4. Experimental section

4.1. General

Palladium(II) chloride (PdCl$_2$), arylboronic acids (ArB(OH)$_2$), aryl halides (ArX), potassium carbonate (K$_2$CO$_3$) and chlorodiffractometer (XRD) with Cu K$_\alpha$ radiation. UV-Vis spectra were measured with a Lambda 900 UV-Vis spectrometer. X-ray diffraction data was collected on a Bruker D8 diffractometer using CuK$_\alpha$ radiation. The cryostat was used at 80°C.

4.2. General procedure for performing of Suzuki coupling reaction

PdCl$_2$ (0.01 mmol, 2 mg) was dissolved in 1 mL distilled water by sonication and 0.1 mL of resulting solution was added to a 5 mL flask containing 3 (0.4 mmol, 129 mg) and H$_2$O (1 mL), and the mixture stirred for 1 h at room temperature. Then, aryl halide (0.5 mmol), arylboronic acid (0.75 mmol), K$_2$CO$_3$ (0.75 mmol) were added and the reaction mixture was stirred at 60°C, for ArI, and 80°C for aryl bromides. Progress of the reactions were monitored by GC. Afterwards, crude product was extracted using ethyl acetate and the Generalitat Valenciana (PROMETEO2009/039 and PROMETEOII/2014/017), the University of Alicante.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jorganchem.2019.120941.

References