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ABSTRACT

Sarcopenia, obesity and their coexistence, obese sarcopenia (OBSP) as well as atherosclerosis-related cardio-
vascular diseases (ACVDs), including chronic heart failure (CHF), are among the greatest public health concerns
in the ageing population. A clear age-dependent increased prevalence of sarcopenia and OBSP has been regis-
tered in CHF patients, suggesting mechanistic relationships. Development of OBSP could be mediated by a
crosstalk between the visceral and subcutaneous adipose tissue (AT) and the skeletal muscle under conditions of
low-grade local and systemic inflammation, inflammaging. The present review summarizes the emerging data
supporting the idea that inflammaging may serve as a mutual mechanism governing the development of sar-
copenia, OBSP and ACVDs. In support of this hypothesis, various immune cells release pro-inflammatory
mediators in the skeletal muscle and myocardium. Subsequently, the endothelial structure is disrupted, and
cellular processes, such as mitochondrial activity, mitophagy, and autophagy are impaired. Inflamed myocytes
lose their contractile properties, which is characteristic of sarcopenia and CHF. Inflammation may increase the
risk of ACVD events in a hyperlipidemia-independent manner. Significant reduction of ACVD event rates,
without the lowering of plasma lipids, following a specific targeting of key pro-inflammatory cytokines confirms
a key role of inflammation in ACVD pathogenesis. Gut dysbiosis, an imbalanced gut microbial community, is
known to be deeply involved in the pathogenesis of age-associated sarcopenia and ACVDs by inducing and
supporting inflammaging. Dysbiosis induces the production of trimethylamine-N-oxide (TMAO), which is im-
plicated in atherosclerosis, thrombosis, metabolic syndrome, hypertension and poor CHF prognosis. In OBSP, AT
dysfunction and inflammation induce, in concert with dysbiosis, lipotoxicity and other pathophysiological
processes, thus exacerbating sarcopenia and CHF. Administration of specialized, inflammation pro-resolving
mediators has been shown to ameliorate the inflammatory manifestations. Considering all these findings, we
hypothesize that sarcopenia, OBSP, CHF and dysbiosis are inflammaging-oriented disorders, whereby in-
flammaging is common and most probably the causative mechanism driving their pathogenesis.

1. Introduction

are major public health concerns and economic burden. Demographic
trends show that the incidence and prevalence of sarcopenia, obesity

Among the aging population of the developed world, sarcopenia, and ACVDs in the elderly are increasing at unprecedented rates, setting
obesity and atherosclerosis-related cardio-vascular diseases (ACVDs) a challenge for the health system in the immediate future (Kaeberlein
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et al.,, 2015; Kim and Choi, 2015). Obesity and sarcopenia may act
synergistically, resulting in detrimental health outcomes (Barazzoni
et al., 2018; Batsis and Villareal, 2018; Goisser et al., 2015; Hamer and
O’Donovan, 2017; Zamboni et al., 2019). This chronic condition is
called sarcopenic obesity; the concomitant accumulation of fat com-
bined with abnormal age-dependent loss of muscle mass and strength
(Morley et al., 2001).

Despite immense attempts to decipher the mechanisms of sarco-
penia, obesity and thus sarcopenic obesity, therapeutic success is far
from reaching its goal. The pleiotropic functions of the molecules and
pathways are presumably involved in the development of these condi-
tions, which consequentially make it challenging to develop effective
treatments (Kob et al.,, 2015; Sakuma et al., 2015). Sarcopenia and
obesity are multifactorial syndromes with various overlapping causes
and feedback mechanisms. Supposedly, they are strongly inter-
connected and reciprocally aggravating each other (Barazzoni et al.,
2018; Batsis and Villareal, 2018; GBD 2015 Obesity Collaborators;
Goisser et al., 2015; Hamer and O’Donovan, 2017). Moreover, a high
level of age-associated comorbidities often leads to confounding results
(Batsis and Villareal, 2018; Juilliere et al., 2018; NCD Risk Factor
Collaboration (NCD-RisC), 2017). We have recently suggested the ex-
istence of a crosstalk between the inflamed adipose tissue (AT) and the
inflamed skeletal muscle, which establishes, in turn, an age-associated,
detrimental vicious cycle. Low-grade, chronic local (AT and skeletal
muscle, via paracrine/autocrine regulation) and systemic inflammation
(via endocrine regulation) represent inflammaging, which is therefore
the major conjoining mechanism of sarcopenic obesity (Kalinkovich
and Livshits, 2017). Under this condition, the seemingly vulnerable AT
depots display pro-inflammatory immune cell infiltration, which is then
exacerbated into systemic inflammaging (Kwon and Pessin, 2013). Ec-
topic accumulation of free fatty acids (FFAs) also contributes to skeletal
muscle inflammation (Kelley and Goodpaster, 2015; Trouwborst et al.,
2018). In addition, AT inflammation dominates over skeletal muscle
inflammation, thus redirecting the vector of processes from traditional
“sarcopenia — obesity” to “obesity — sarcopenia”. We therefore pro-
posed that this condition should be defined as “obese sarcopenia”
(OBSP), which more accurately reflects the actual nature and order of
events in the pathogenesis of this disorder (Kalinkovich and Livshits,
2017).

Atherosclerosis, a chronic inflammatory process of lipid-laden lesion
growth in the vascular wall, is a major cause of myocardial infarction
leading to the development of congestive heart failure (HF), and
especially chronic HF (CHF). CHF, characterized by the significant de-
terioration of the heart-pumping function, is a major cause of morbidity
and mortality in the elderly (Hackam and Anand, 2003). Its epide-
miological incidence after 55 years of age doubles approximately every
10 years, and the numbers of afflicted people are expected to rise with
increased overall life expectancy (Bozkurt, 2018; Cleland et al., 2019;
Savarese et al., 2019; Springer et al., 2017; Tsao et al., 2018). Sarco-
penia has been identified as a co-morbidity and a poor prognosis factor
in patients with CHF, affecting ~ 20 % of older adults with CHF
(Fiilster et al., 2013; Suzuki et al., 2018; Shinmura, 2016; von Haehling
et al., 2010). It has been shown that CHF patients with sarcopenia also
have an increased risk for clinical complications (Steinbeck et al.,
2015), which may be related to insufficient diet, which may lead to
nutrient malabsorption (Saitoh et al., 2016).

A paradigm shift in our understanding of HF from a hemodynamic/
neurohormonal (Packer, 1992) to a cytokine-mediated condition (Seta
et al., 1996) placed chronic low-grade inflammation at the center of HF
pathogenesis (Bellumkonda et al., 2017; Ferrucci and Fabbri, 2018;
Paulus and Tschope, 2013; Van Linthout and Tschope, 2017; Wilson
et al., 2017; Zhang et al., 2017). Noteworthy, pro-inflammatory path-
ways were found to be specifically up-regulated in HF patients with
preserved ejection fraction (HFpEF) (Borlaug, 2014; Paulus and
Tschope, 2013; Tromp et al., 2018), which also display a high pre-
valence of OBSP (Narumi et al., 2015; Saitoh et al., 2017). In addition,
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gut dysbiosis has been shown to be deeply involved in the development
of sarcopenia (Ticinesi et al., 2019), obesity (Avolio et al., 2019) and
CHF (Rogler and Rosano, 2014; Tang et al., 2019). Increased prevalence
of sarcopenia (Mayhew et al., 2019), OBSP (Batsis and Villareal, 2018;
Zamboni et al., 2019), CHF (Beltrami and Fumagalli, 2019) and dys-
biosis (Rinninella et al., 2019) in the elderly imply a clear involvement
of inflammaging in the pathogenesis of these conditions (Ferrucci and
Fabbri, 2018; Frasca et al., 2017; Kalinkovich and Livshits, 2017;
Prattichizzo et al., 2018; Wilson et al., 2017). This raises an important
question on whether inflammaging unifies these chronic conditions
mechanistically, suggesting a causative link. This review follows the
recognition of this connection and extensive research efforts in deci-
phering the underlying mechanisms.

2. Inflammaging is a common mechanism that regulates the
development of sarcopenia, CHF and obesity

2.1. Inflammaging

Since its launch in 2000, the concept of inflammaging has evolved
significantly — from a chronic, systemic, low-grade inflammatory status
that contributes to age-associated diseases (Franceschi et al., 2000), to
"garb-aging", in which endogenous, misplaced, or altered molecules
originating from damaged and/or dead cells, recognized by receptors of
the innate immune system were suggested as a main triggers of in-
flammaging, thus considering it as an auto-inflammatory process
(Franceschi et al., 2017). Further theoretical evolution suggested the
existence of a combination of inflammaging with "metaflammation"
(the inflammation accompanying metabolic diseases), in which dys-
biosis was proposed to play an aggravating role by releasing in-
flammatory products (Franceschi et al., 2018). Lastly, the traditional
view that inflammaging and immunosenescence, an age-associated
immunocompromised condition, are responsible for most of the age-
related diseases, such as recurrent infections, cancer, autoimmune
disorders and chronic inflammatory diseases, has been altered. This
new concept states that the coupling of immunosenescence-inflamma-
ging might be responsible for both the shortening and extension of the
human lifespan. For example, its activity may serve detrimental for
responses to new antigens in most circumstances, but, conversely, may
be necessary for an adequate response to known antigens (Fulop et al.,
2018). Obviously, this paradoxical notion requires solid validation.
Nevertheless, inflammaging is now considered to serve as a biomarker
for accelerated ageing and one of the hallmarks of ageing biology
(Campisi et al., 2019).

2.2. Inflammaging and sarcopenia

Depending on the diagnostic criteria, the prevalence of sarcopenia
in the general population is strongly associated with age and sex, and
even by most conservative estimates affects > 50 million people cur-
rently and is estimated to affect > 200 million in the next 40 years
(Dhillon and Hasni, 2017). This is accompanied by the sarcopenia-re-
lated morbidity rate that comprises 5-13 % of the 60- to 70-year-old
individuals, and 11-50 % of those above 80-years-old (von Haehling
et al., 2010). Considered as an immanent component of frailty syn-
drome (Morley et al., 2001; Vanitallie, 2003), sarcopenia has been
shown to be responsible for the rise in the incidence of falls and the risk
of fractures in the elderly, and is therefore linked to physical disability,
morbidity, increased mortality and health care costs (Filippin et al.,
2015; Murphy et al., 2014; Szulc et al., 2016). Sarcopenia has been
recently redefined as “a muscle disease/failure, rooted in adverse
muscle changes that accrue across a lifetime and is common among
adults of older age, but can also occur earlier in life" (Cruz-Jentoft et al.,
2019). The inter-individual variation of muscle mass and its rate of loss
have a significant genetic component and are governed by a complex
interplay of genetic and epigenetic factors (Korostishevsky et al., 2016;
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Livshits et al., 2016; Shafiee et al., 2018). However, the mechanisms
underlying the etiology and progression of sarcopenia remain poorly
understood.

The main proposed triggers of sarcopenia include decreased phy-
sical activity, malnutrition, age-related decline in the levels of systemic
hormones, such as growth hormone, insulin-like growth factor-1, tes-
tosterone and estrogen (Collamati et al., 2016; Keller, 2019), disturbed
production of muscle growth regulators, in paerticular myostatin, ac-
tivins, irisin and bone morphogenetic proteins (Kalinkovich and
Livshits, 2015), and an age-associated neuromuscular junction dys-
function (Gonzalez-Freire et al., 2014; Rudolf et al., 2014). Sarcopenia
is also associated with the activation of catabolic pathways in the
skeletal muscle, which are composed of three main protein degradation
systems: the ubiquitin-proteasome system (UPS), the autophagy-lyso-
some system and apoptosis (von Haehling et al., 2017). These pathways
lead to mitochondrial dysfunction, muscle fiber reorganization and
denervation, myofibril degeneration and myocyte death (von Haehling
et al., 2017; Gonzalez-Freire et al., 2018; Hood et al., 2019). In the
mitochondria, the UPS regulates the turnover of most short-lived cy-
tosolic proteins (Bragoszewski et al., 2017). The UPS is involved in
mitophagy (Desai et al., 2018), energy metabolism (Lavie et al., 2018),
proteolytic regulation of fusion/fission-mediating factors in mitochon-
drial membranes (Ali and McStay, 2018) and in other functional mi-
tochondrial activities (Livnat-Levanon and Glickman, 2011). Disturbed
mitochondrial protein synthesis/degradation machinery in sarcopenia
is associated with an impaired signaling through the mechanistic tar-
geting of the rapamycin (mTOR) pathway, which is the major regulator
of protein synthesis in skeletal muscle. The mTOR pathway induces the
activation of p70 S6K, the inhibition of 4e-binding protein (4e-BP1) and
the activation of eukaryotic translation initiation factor-4e (EIF-4e), all
of which increase protein translation. The activation of these pathways
stimulates cell growth, involving primarily myofibrillar proteins (Re-
viewed in Coen et al., 2019). In addition, low muscle quality was found
to be characterized by the impaired transport of amino acids, especially
branched chain amino acids (BCAAs), across the muscle cell membrane
(Fouré and Bendahan, 2017). At low BCAA concentrations, mTOR
senses the limited substrate availability for protein synthesis/recycling
and inhibits p70S6K phosphorylation, hindering normal protein re-
cycling, thus allowing ‘wear and tear’ protein damage to accumulate.
BCAA deficiency can reduce the expression of sirtuin 1 (SIRT1) and
genes that regulate oxidative phosphorylation, such as peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-la),
nuclear respiratory factor-1 (NRF1), and mitochondrial DNA (mtDNA)
transcription factor A (TFAM), all of which lead to impaired mi-
tochondrial biogenesis and reduced energy production in the muscle
(Reviewed in Coen et al., 2019; Gonzalez-Freire et al., 2018; Hood
et al., 2019). It was also shown that PGC-1a suppresses FOX03-medi-
ated transcription of various E3 ubiquitin ligases, thereby attenuating
protein degradation and muscle atrophy during aging and sarcopenia
(Brault et al., 2010). Recently, a number of unfolded protein response
(UPR) pathways have been implicated in the development of sarco-
penia. For example, ATF6a is a transcription factor associated with the
regulation of chaperones linked to UPR pathways in the endoplasmic
reticulum (ER), the absence of which results in exercise intolerance
(Bohnert et al., 2016; Wu et al., 2011). Notably, mitochondrial reactive
oxygen species (ROS) release was shown to inhibit protein synthesis by
decreasing phosphorylation of 4e-BP1 and impairing mTOR assembly,
thus inducing muscle atrophy in preclinical studies (Reviewed in Mason
and Wadley, 2014). Increased mitochondrial ROS production stimulates
proteolytic degradation pathways (autophagy and proteasome system)
and energetic stress (reduced ATP production), which can activate the
AMP kinase (AMPK)-FOXO03 pathway. In turn, this pathway triggers the
UPS and the lysosome-autophagy system that significantly contribute to
disturbed mitochondrial fission and muscle remodeling, displaying
muscle atrophy (Romanello and Sandri, 2016).

Defective mitochondrial function is also connected to ageing-
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associated neuromuscular junction (NMJ) remodeling, consequently
leading to motor unit loss, specifically in type II fibres, and muscle fibre
atrophy (Gonzalez-Freire et al., 2014). In sarcopenic rats with altered
NMJ integrity, the expression of genes and proteins implicated in mi-
tochondrial energy metabolism is downregulated (Ibebunjo et al.,
2013). Mice lacking UPS proteins, such as the ubiquitin ligases muscle
atrophy f-box (Atroginl/MAFbx) and muscle ring finger-1 (MuRF1), are
resistant to muscle atrophy induced by denervation (Bodine and Baehr,
2014). Moreover, overexpression of PGC-1a, a transcription factor that
promotes mitochondrial biogenesis, helps to maintain NMJ integrity
during ageing (Gouspillou et al., 2013), whereas oxidative damage of
NMJ promotes the loss of skeletal muscle proteostasis (Vasilaki et al.,
2017).

Concerning potential involvement of chronic inflammation in the
mitochondria-sarcopenia link, it was shown that ROS over-generation
by mitochondria might be mediated by activation of the NOD-like re-
ceptor family pyrin domain containing 3 (NLRP3) inflammasome and
promotion of IL-1 secretion (Yu and Lee, 2016). In addition to ROS,
some other mitochondrial components, such as mtDNA, cardiolipin,
mitofusins, and cathepsins are involved in the recruitment and docking
of NLRP3 inflammasome into the mitochondria (Gurung et al., 2015;
Picca et al., 2018b). It is also known that NLRP3 inflammasome is ac-
tivated by cell debris and misplaced self-molecules, followed by the
production of IL-1, IL-18, and IL-33 (Kufer et al., 2016). In the mouse
skeletal muscle, it has been shown that accelerated NLRP3-dependent
caspase-1 activity within the mouse skeletal muscle results in decreased
myofiber size (McBride et al., 2017), mitochondrial damage, nuclear
fragmentation, tubular aggregates formation, reduced locomotor ac-
tivity and increased frailty index, further deteriorating with age (Sayed
et al., 2019). Deep involvement of the inflammasome pathway in sar-
copenia suggests that innate immunity plays a significant role in its
pathogenesis. Indeed, the expression of many innate immune receptors,
such as MYD88, NLRX1, NAIP, TLR4 and NLRC5 was detected in human
skeletal muscle biopsies (Pillon and Krook, 2017). In addition, skeletal
muscle deficiency of the nuclear erythroid-related factor 2 (Nrf2), a key
regulator of innate immunity (Mohan and Gupta, 2018), exacerbates
sarcopenia progression in aging, as shown by impaired mitochondrial
biogenesis and dynamics (Huang et al., 2019) and enhanced mi-
tochondrial oxidative stress (Kitaoka et al., 2019).

A strong relationship between sarcopenia and the altered adaptive
immune system is well established (Marcos-Pérez et al., 2018). For
example, in a study that followed old women for 3.5-years, increased
IL-6 levels predict a significantly higher risk of developing physical
disability and reduced muscle strength and motor performance
(Ferrucci et al., 2002). In a recent meta-analysis sarcopenia was shown
to be clearly associated with significantly higher serum levels of various
pro-inflammatory molecules, especially highly-sensitive C-reactive
protein (hsCRP) and IL-6 levels, compared with the levels recorded in
non-sarcopenic participants (Soysal et al., 2016). In another study, a 70
% increase in serum levels of IL-6 and the 75-kDa soluble TNF-a re-
ceptor II was detected in sarcopenic subjects in comparison to non-
sarcopenic participants.

Alterations of the ageing adaptive immune system include both
quantiative changes and cell functional deteriorations (Pansarasa et al.,
2019), such as a decrease in the naive T cell count, accompanied by a
reduction in the T-cell receptor (TCR) repertoire, a decline in antibody-
producing B cells and an increase in memory T cells (Ventura et al.,
2017; Yanes et al., 2017).

Senescent cells (SCs), despite their cell-cycle arrest, remain viable,
are resistant to apoptosis and, most importantly, are metabolically ac-
tive (Sapieha and Mallette, 2018). SCs are capable of secreting nu-
merous pro-inflammatory cytokines and chemokines, growth factors
and extracellular matrix (ECM) degrading proteins (Davalos et al.,
2010), thus creating the so-called senescence-associated secretory
phenotype (SASP). SASP is not just a consequence of cell senescence,
but also induces senescence in surrounding normal cells (Hubackova
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et al., 2012), mainly via secretion of TGFf and IL-1a, which induce
DNA damage and increased expression of p53 and p21CIP1 in targets
cells (Acosta et al., 2013). SASP is thought to have evolved as a signal
which recruits and activates immune cells to the vicinity of SCs in order
to mediate their clearance (Krizhanovsky et al., 2008). Moreover, SCs
accumulate in a range of tissues with age (Biran et al., 2017) and at sites
of various chronic age-associated diseases (reviewed in Habiballa et al.,
2019). Importantly, abundance of SCs has been shown to causally
contribute to the ageing process, since their removal resulted in sig-
nificant improvements in the health span during ageing and age-related
diseases (Baar et al., 2018; Roos et al., 2016; Xu et al., 2018). Of note,
the skeletal muscle of mice, which were genetically engineered for
accelerated ageing, showed increased expression of senescence mar-
kers, such as cyclin-dependent kinase inhibitors p16™%42 and p192*, as
well as the SASP components Igfbp2, Mmp13 and Pail (Baker et al.,
2008). Complementary deletion of p16™*2 in this mouse model re-
duced expression of SASP components, increased proliferation and at-
tenuated sarcopenia (Baker et al., 2016). Taken together, these ob-
servations indicate that inflammaging may play a central role in both
induction and maintenance of sarcopenia (Collins et al., 2018; Fulop
et al., 2015; Wilson et al., 2017; Wu et al., 2015).

2.3. Inflammaging and ACVDs

Like sarcopenia, the prevalence of ACVDs increases with age, even
with higher rates (Benjamin, 2019; Lind et al., 2018). ACVDs in general
and CHF in particular are a major cause of morbidity and mortality in
the ageing (Dunlay et al., 2017; Taylor et al., 2019). Sarcopenia is
common in CHF patients (Emami et al., 2018), particularly in advanced
CHF stages (Carbone et al., 2019; Tyrovolas et al., 2016). Notably,
sarcopenia is an independent risk factor for ACVDs (Abe et al., 2012)
and a predictive prognostic factor for HF (Yamada et al., 2015). This
clearly indicates the existence of a close link between these two con-
ditions. It has been observed that age-associated sarcopenia develops
early in patients with HF, and with the progress of the disease, while
both conditions concurrently worsen each another (von Haehling et al.,
2017). Classical atherosclerosis risk factors, such as total serum cho-
lesterol and hsCRP are also highly significantly associated with the risk
for sarcopenia (Hida et al., 2018). These findings raise a question on the
existence of a common mechanism underlying the development of both
diseases. Inflammaging may serve as such a mechanism. In support of
this notion, an increased age-associated expression of muscle growth
inhibitor myostatin and elevated levels of pro-inflammatory cytokines
(mainly, TNFa, IL-1f3, and IL-6), promote the generation of ROS and
induce activation of NF-kB signaling. As a result, this inflammatory
pathogenesis leads to mitochondrial dysfunction, muscle fibre re-
organization, denervation of type II fibres, myofibril degeneration and
myocyte death (von Haehling et al., 2017). This cascade of events also
promotes coronary microvascular endothelial activation that con-
tributes to the development of adverse effects, such as diastolic left
ventricular (LV) dysfunction and HFpEF. Enhanced endothelial-to-me-
senchymal transition (EMT) is known to be associated with cardiac fi-
brosis and diastolic dysfunction. Increased pro-inflammatory cytokines,
such as TNFa and IL-13, mediate EMT via renin-angiotensin activation.
This, in turn, favors elevated collagen production combined with in-
filtration of inflammatory cells, suggesting a direct influence of in-
flammation on HF development (De Angelis et al., 2019). Con-
comitantly, HF can provoke inflammation in various tissues, including
the skeletal muscle and myocardium itself, in both a direct (in-
flammation) and indirect (hemodynamic) manner (Van Linthout and
Tschope, 2017). Stress-induced myocardial cells may release a variety
of inflammatory mediators capable of affecting the skeletal muscle.
During HF, activated neurohormonal mechanisms, such as the renin-
aldosterone system and the 3-adrenergic nervous system, which trigger
and/or enhance inflammation in different organs including the skeletal
muscle. This HF-mediated inflammation has been proposed to be
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related to cellular senescence, increased oxidative stress, reduced au-
tophagy and mitophagy, increased DNA damage and mitochondrial
dysfunction leading to muscle cell death. The latter activates the innate
immune system to produce inflammatory cytokines, which further ex-
acerbate the cell death-inducing processes (Bellumkonda et al., 2017).

Noteworthy, the activity of NLRP3 inflammasome was found to be
enhanced in the human atrial tissue of CHF patients with long-lasting
atrial fibrillation (AF), presumably via increased diastolic sarcoplasmic
reticulum release of Ca2™ (Yao et al., 2018). Altered IL-6 expression
was associated with supraventricular arrhythmias including AF (Pan
et al., 2018), therefore leading to increased rates of ACVD events and
death in CHF patients (Aulin et al., 2015). Moreover, increased IL-6
levels (along with TNFa) have been attributed to persistent in-
flammation in the atrial myocardium, thus disrupting ion channel
function and cardiomyocyte electrical activity. (Reviewed in Ali et al.,
2019; Vonderlin et al., 2019). This suggests an important functional
link between inflammation and supraventricular arrhythmias. In addi-
tion, in a large cohort study, elevated IL-6 levels were found in more
than 50 % of the HF patients; these were associated with reduced LV
ejection fraction, AF and poor clinical outcomes (Markousis-
Mavrogenis et al., 2019).

About 30 % of patients with HF have inspiratory muscle weakness
associated with exercise intolerance, suggesting that sarcopenia of the
diaphragm may be one of the causes of their physical frailty (Kelley and
Ferreira, 2017; Miyagi et al., 2018). The known etiology of CHF-asso-
ciated diaphragm insufficiency includes the development of abnorm-
alities in the phrenic nerve, neuromuscular junctions and myocytes. The
abnormal myocytes show intrinsic changes in the quantity and quality
of contractile proteins, accelerated fiber atrophy, and shifts in fiber type
distribution. All of these abnormalities are likely supplementary factors
in the simultaneous development of sarcopenia (Fogarty et al., 2019;
Greising et al., 2018; Keller, 2019). Noteworthy, overexpression of
TNFa or IL-6 has been shown to cause a significant weakening of the
muscle force and atrophy of fiber types I, Ila, IIb in the diaphragm
(Greising et al., 2018). Collectively, these findings suggest that in-
flammation and HF are not only strongly interconnected, but they also
affect the skeletal muscle, thus supporting and worsening sarcopenia.

Whether inflammation is a cause or consequence of HF and or
sarcopenia, however, remains uncertain (Bellumkonda et al., 2017; Van
Linthout and Tschope, 2017; von Haehling et al., 2017; Westermann
et al., 2011). The alternative view of atherosclerosis as an inflammatory
disease (Hansson, 2005; Libby et al., 2011) is supported by the evidence
that anti-inflammatory therapies could be effective. For example, a
recent study shows that targeting IL-1[3 by its specific inhibitor, cana-
kinumab, significantly reduces ACVD event rates, diminishes the cir-
culating levels of IL-6 levels and the downstream clinical biomarker
hsCRP, but does not affect lipid levels or blood pressure (Ridker, 2017).
In contrast, administration of TNF or IL-6 antagonists was revealed
inconsistent data in HF patients (Holte et al.,, 2017; Hori and
Yamaguchi, 2013; Ridker, 2019), although there are ongoing discus-
sions concerning forthcoming trials involving these inhibitors in ACVDs
(Aday and Ridker, 2019). In this regard, a small-scale study with ana-
kinra, an IL-1 receptor antagonist, revealed potential benefits of low-
ering inflammatory biomarkers in patients with HF (Abbate et al.,
2013). Using IL-17 blockade has been shown to prevent coronary
plaque expansion in psoriatic patients (Elnabawi et al., 2019). Selective
NLRP3 inflammasome inhibitor MCC950 has been found to inhibit the
development of atherosclerotic lesions (van der Heijden et al., 2017)
and reduce infarct size, preserving LV function (van Hout et al., 2017)
in animal models of atherosclerosis.

Since atherosclerosis is a disorder driven by both lipid accumulation
and inflammation, an intensive concomitant targeting cholesterol pro-
duction and the pro-inflammatory cytokine network has been proposed
as a successful therapeutic method for successfully treating ACVDs
(Ridker, 2019). An example for the proposed combinatory therapy is a
combination of anti-IL-1 and anti-IL-6 drugs together with statins
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(Cholesterol Treatment Trialists’ Collaboration, 2019) and PCSK9
(proprotein convertase subtilisin/kexin type 9) inhibitors (Sabatine,
2019; Wong and Shapiro, 2019). The latter is presumably a powerful
cholesterol-lowering agent (Ridker, 2019). This proposed combination
could also become a new therapeutic option in treating hypertension,
where a clear association of increased blood pressure and/or end-organ
damage was registered with the increased serum levels of pro-in-
flammatory cytokines, such as IL-1(3, IL-6, -8, -17, -23 and TNFa
(Tanase et al., 2019).

2.4. Inflammaging, obesity and ACVDs

The strong connection between age and obesity (Pérez et al., 2016;
Zamboni et al., 2019) as well as between AT and musculoskeletal
(Batsis and Villareal, 2018; Collins et al., 2018; Kalinkovich and
Livshits, 2017; Kob et al., 2015; Tyrovolas et al., 2016) and cardio-
vascular systems (Apostolopoulos et al., 2016; Carbone et al., 2019) are
well established. In obesity, excessive lipids in the form of FFAs outflow
the AT and accumulate ectopically in the skeletal muscle and myo-
cardium, where they and their derivatives, such as long-chain acyl CoA,
diacylglycerols, triacylglycerols, and/or ceramides can induce a lipo-
toxic effect (D’Souza et al., 2016; Ferrara et al., 2019; Nakamura and
Sadoshima, 2019; Neeland et al., 2018; Ortega-Loubon et al., 2019;
Shulman, 2014). The main lipotoxic effect is the marked impairment of
the mitochondria characterized by enhanced ROS production (oxidative
stress) (Marzetti et al., 2013), disturbed mitophagy (Bravo-San Pedro
et al., 2017; Ferrucci et al., 2018) and reduced biogenesis. This is ac-
companied by significant function disturbances, such as reduced lipid
B-oxidation of FFAs and lipolysis (Shulman, 2014), resulting in an in-
sulin resistance (IR) state, dysregulated autophagy, excessive apoptosis
and cell death (Gonzalez-Freire et al., 2018; Kob et al., 2015; Romanello
and Sandri, 2016; Sergi et al., 2019; Tsushima et al., 2018). Interest-
ingly, the escape of mtDNA from autophagy has been shown to cause
myocardial inflammation via TLR9 activation (Oka et al., 2012;
Rodriguez-Nuevo and Zorzano, 2019) and is presumably involved in
skeletal muscle atrophy (Picca et al., 2018b; Pillon and Krook, 2017).
Interaction of TLR9 with mtDNA activates nuclear factor kappa B (NF-
kB) signaling and increases the expression of various pro-inflammatory
cytokines (Yu and Bennett, 2016). Changes in mitochondrial dynamics,
such as mitochondrial fusion and fission, have been considered to be
closely related to IR (Filippi et al., 2017). In particular, mitochondrial
tafazzin, a phospholipid acyltransferase involved in cardiolipin synth-
esis, was shown to promote mitochondrial fission and impair insulin
signaling in the hearts of mice under high fat diet (Chang et al., 2019).
Barth syndrome develops due to a mutation in the tafazzin gene, and is
characterized by mitochondrial dysfunction, dilated cardiomyopathy
and muscle weakness (Barth et al., 2004), thus further suggesting the
coupling of cardiomyopathy and sarcopenia.

In addition, ectopic FFAs induce NLRP3 inflammasome formation to
trigger caspase-1, which subsequently activates IL-1f3 and IL-18, pro-
moting inflammation and IR (Wen et al., 2011). Moreover, ectopic FFAs
supposedly attract immune cells that activate pro-inflammatory skewed
M1 macrophages resident in the skeletal muscle and the myocardium
(Rivas et al., 2016). These macrophages release TNFa, IL-1f3, IL-6, MCP-
1, and TGFp, which stimulate differentiation of fibroblasts into myofi-
broblasts. As a result, collagen production is increased, the secretion of
protease inhibitors is inhibited, and the extracellular matrix is degraded
via activation of both canonical (Smad-dependent) and non-canonical
(Smad-independent) signaling pathways (Bandet et al., 2019; Ferrara
et al., 2019; Kitessa and Abeywardena, 2016; Montgomery et al., 2019;
Nishida and Otsu, 2017; Ortega-Loubon et al., 2019). These events lead
to skeletal and cardiac fibrosis (Michalska-Kasiczak et al., 2018), thus
contributing to the development of sarcopenia and cardiomyopathy
(Fig. 1).

It is also well known that in obesity, adipocytes undergo hyper-
trophy and hyperplasia, accompanied by the recruitment of M1-skewed
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macrophages as well as lymphocytes and mast cells. In the AT itself,
these immune cells produce pro-inflammatory cytokines, including
IFNy, TNFa, IL-1B, IL-6, -7, -8, -17, -21 and IL-22 in AT (Caér et al.,
2017; Castoldi et al., 2016; Exley et al., 2014; Liu and Nikolajczyk,
2019; Wensveen et al., 2015). In the AT of obese individuals, various
chemokines that recruit macrophages and other immune cells have
been detected (Xue et al., 2019). Other innate and adaptive immune
cells, in particular, neutrophils, dendritic cells (Sundara Rajan and
Longhi, 2016), and B cells, play a role in obesity-induced AT in-
flammation (Apostolopoulos et al., 2016; Frasca and Blomberg, 2017;
Grant and Dixit, 2015). AT-resident B cells, which are localized around
macrophage clusters, were shown to have a predominant pathogenic
role in obesity-related IR in mice. These pathogenic B cells activate
IFNy-producing CD4* and CD8* T cells and/or IL-17-secreting Thl
cells within the visceral AT, presumably through LTB4/leukotriene-B4
receptor 1 (LTB4R1) signaling (DeFuria et al., 2013; Winer et al., 2014).
B cells were also found to promote the expansion of a senescent po-
pulation of visceral AT-resident CD4 " CD153*"PD-1" T cells, which, in
turn, secrete osteopontin that promotes IgG production by B cells and
suppresses IL-10 secretion (Shirakawa et al., 2016).

In ageing, the pro-inflammatory milieu created by immune and
other senescent cells, such as fibroblasts and endothelial cells, is the
source of SASP. This is characterized by the increased secretion of pro-
inflammatory molecules (cytokines, chemokines, micro-RNAs) and
various growth factors and proteases (Campisi, 2011). In general, SASP
participates in inducing and/or exacerbating sarcopenia (Habiballa
et al.,, 2019) and cardiomyopathy (Lewis-McDougall et al., 2019;
Shimizu and Minamino, 2019). Of note, markers of SASP are highly
expressed in B cells of elderly individuals, especially in the double
negative (DN) CD19*IgD-CD27- memory B cells (Frasca et al., 2017).
This DN B cell subset, which has been reported to express SASP mar-
kers, expands in the blood of healthy elderly individuals and in patients
with autoimmune and infectious diseases (Reviewed in Bernard, 2018).
Importantly, DN B cells are transcriptionally active and negatively af-
fect the microenvironment by secreting pro-inflammatory mediators,
which in turn sustain and propagate the inflammatory response (Frasca
et al., 2017).

In close association with AT inflammation, several potentially pro-
inflammatory molecules, such as leptin, CRP, osteopontin, chemerin,
resistin, PEDF and myostatin are found in abundance in obese AT
subjects (Mancuso, 2016; Nicholson et al., 2018). In particular, a ge-
netic knockdown of myostatin, which is a critical autocrine/paracrine
inhibitor of skeletal muscle growth and development (McPherron et al.,
1997), suppressed body fat accumulation and protected against diet-
induced IR (Dong et al., 2016). Additionally, serum myostatin levels
were found to be elevated in obese individuals in a correlation with IR
(Amor et al., 2019), thus emphasizing the close relation between
myostatin and obesity. Moreover, end-stage CHF subjects demonstrate
elevated myocardial expression of myostatin (Ishida et al., 2017). Re-
leased from the myocardium, myostatin has been reported to be causal
for skeletal muscle atrophy in a CHF mouse model (Heineke et al.,
2010). In the myocardium, myostatin exerts a pro-fibrotic effect, as-
sociated with reduced cardiac function during ageing (Breitbart et al.,
2011). In addition, serum myostatin levels were found to reflect the
severity of CHF, presumably serving as a predictor of poor prognosis in
CHF patients (Chen et al., 2019a, b). Interestingly, an age-associated
deficiency of adiponectin in HF has been found to exacerbate LV hy-
pertrophy and diastolic dysfunction. Furthermore, CHF patients have
been shown to develop adiponectin resistance in myocardial and ske-
letal muscle cells. The mechanism involves an increase in oxidative
stress and modulation of intracellular calcium-handling regulatory
proteins (Krause et al., 2019; Sente et al., 2016; Tanaka et al., 2014).
Increased myocardial oxidative stress was shown to modify epicardial
AT (EAT) secretory profile by releasing more antioxidant adipokines,
such as adiponectin, in an attempt to protect the heart from oxidative
damage (Antonopoulos et al., 2016).
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Fig. 1. Hypothesized mechanism of an age/
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EAT is a relatively small visceral fat depot with unique anatomic,
biomolecular and genetic features. It regulates crucial physiological and
pathological properties in the heart, such as the myocardial redox state,
intracellular Ca2™ cycling, the contractile and electrophysiological
properties of cardiomyocytes, cardiac fibrosis as well as coronary
atherosclerosis progression (Ansaldo et al., 2019; Ferrara et al., 2019;
Iacobellis and Barbaro, 2019; Neeland et al., 2018; Packer, 2019). A
study describing the underlying mechanistic relationship between EAT
and cardiomyopathy (Reviewed in Antonopoulos and Antoniades,
2017; Iacobellis and Barbaro, 2019; Madonna et al., 2019) revealed a
consistent, clear similarity with those described in the visceral and
subcutaneous AT. However, due to the anatomical proximity to the
myocardium, EAT acts as a metabolic transducer for various mediators
as part of a paracrine crosstalk with the myocardium (Antonopoulos
and Antoniades, 2017; Patel et al., 2017). Through this paracrine ac-
tivity, EAT-derived cytokines diffuse across the interstitial fluid or the
arterial wall layers to directly interact with the myocardium. Alter-
natively, EAT-derived cytokines could be released directly into the vasa
vasorum of the coronary arterial wall (Yudkin et al., 2005;
Antonopoulos and Antoniades, 2017). In obese-associated enlargement
of EAT, pro-inflammatory cytokines, such as IL-1f3, IL-6, IL-8, MCP-1,
TNFa, leptin, plasminogen activator inhibitor-1, resistin and RANTES,
diffuse into the vessel wall and the coronary circulation, whereby they
exert their pathophysiological effects. These include the changes in the
vascular tone and vascular remodeling, increased LV mass, abnormal
right ventricle geometry, enlarged atria chemotaxis, foam cell forma-
tion, smooth muscle cell proliferation and migration as well as plaque
destabilization (Antonopoulos and Antoniades, 2017; Berg et al., 2019;
Greulich et al., 2012; Guzik et al., 2017). Moreover, secretion of pro-
fibrotic adipokines from EAT can induce atrial fibrosis, presumably via
adipogenic differentiation of epicardial mesenchymal cells, leading to a
development of fibro-fatty phenotype in the atrial myocardium (Suffee
et al., 2017). Also, a positive correlation between EAT volume index,
the degree of myocardial fibrosis and impaired LV systolic function has
been observed (Ng et al., 2018). As for specific atherogenic activity,
lipase G (LIPG), solute carrier family 7 member 5 (SLC7A5) and solute
carrier family 16 member 10 (SLC16A10), all of which are involved in
lipid metabolism and nutrient transport, were found to be among the
top upregulated genes in diabetic EAT (McAninch et al., 2015).

Epicardial fat is also highly enriched in secretory type II phospholipase
A2 (sPLA2-IIA or PLA2 G2A), which contributes to lipid build up in the
coronary arteries (Gaborit et al., 2017). The lipogenic effect of EAT has
also been attributed to the increase of fatty acids in EAT (Pezeshkian
and Mahtabipour, 2013). Given rapid metabolism and simple objective
measurability of size, EAT may represent a usable risk factor and
modifiable therapeutic target (Iacobellis, 2016; Packer, 2019; Neeland
et al., 2018; Ferrara et al., 2019). Indeed, EAT was shown to be sig-
nificantly affected by thiazolidinediones, which are insulin sensitizers
acting as agonists of peroxisome proliferator-activated receptors, glu-
cagon like peptide 1 receptor agonists, dipeptidyl peptidase-4 inhibitors
and lipid-lowering statins (Iacobellis, 2016). For example, treatment of
coronary artery disease-afflicted diabetic patients with pioglitazone, a
commonly used thiazolidinedione, was associated with reduced ex-
pression of IL-13 and other pro-inflammatory genes in EAT (Sacks et al.,
2011). Not only that the application of pleiotropic statins leads to re-
duction of AT inflammation (Diamantis et al., 2017) in type 2 diabetic
patients (Park et al., 2010), in hyperlipidemic post-menopausal women
(Alexopoulos et al., 2013) and in arterial stenosis patients (Parisi et al.,
2019), it also resulted in reduced EAT thickness. In the latter study,
beneficial effects of atorvastatin were significantly associated with EAT
thickness and its pro-inflammatory status. Moreover, atorvastatin
showed a direct anti-inflammatory effect on EAT-derived cells in vitro
(Parisi et al., 2019). Simvastatin and pioglitazone significantly reduced
plasma levels of IL-6, leptin, resistin, TNFa and matrix metalloprotei-
nase-9 in patients showing signs of coronary artery disease and meta-
bolic syndrome (Grosso et al., 2014). In this study, a combinatory ap-
plication further reduced these markers along with an elevation in
plasma levels of adiponectin and a decrease in hsCRP levels. Thus,
modulating the EAT inflammation-oriented transcriptome with targeted
pharmacological agents may open new possibilities in the therapy of
cardio-metabolic diseases.

In conclusion, obesity-mediated infiltration of immune cells into the
skeletal muscle and myocardium in concert with activated myocytes
and cardiomyocytes induce local inflammation. In an autocrine/para-
crine/endocrine manner, this affects the functionality of both the ske-
letal muscle and the myocardium, thereby triggering, supporting and
worsening AT inflammation (Conte et al., 2019; Costamagna et al.,
2015; Duchesne et al., 2017; Londhe and Guttridge, 2015; Wu and
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Ballantyne, 2017). In this detrimental, vicious cycle, AT inflammation
presumably plays a prevailing role, governing the development of sar-
copenia and cardiomyopathy (Kalinkovich and Livshits, 2017) (Fig. 1).

3. Dysbiosis regulates the development of sarcopenia, CHF and
OBSP in an inflammaging-dependent manner

3.1. Dysbiosis and age

The observations and ideas discussed above clearly indicate that
inflammaging governs the major common mechanisms responsible for
the development of sarcopenia and cardiomyopathy and particularly
obesity. In addition, accumulating evidence indicates that dysbiosis
plays a very important role in the pathogenesis of these disorders,
especially among the elderly, by demonstrating characteristic changes
in gut microbiota (Grosicki et al., 2018; Lakshminarayanan et al., 2014;
Lynch et al., 2015; Nagpal et al., 2018). These include an extreme
variability in microbiota composition among individuals, reduced intra-
individual diversity and prevalence of pathogens vs commensals, all in
associated with a balanced health status (Biagi et al., 2010; Claesson
et al., 2012). It has been additionally found that the gut microbial
composition is associated with nature and levels of circulating cyto-
kines and parameters of health in the elderly, such as measures of
frailty, comorbidity, and nutritional status (Claesson et al., 2012). In
addition, the observed intestinal permeability, which leads to bacterial
translocation and endotoxemia, is accompanied by enhanced systemic
inflammation in a feed-forward process that increases with age (Scott
et al., 2017). In concordance, dietary interventions have been shown to
improve anti-bacterial immunity by reducing age-associated in-
flammation and macrophage immunosenescence (Clements and
Carding S, 2018; Vaiserman et al., 2017). Oral supplementation with
the probiotic, Bifidobacterium, restores phagocytosis and lymphocyte
proportions in the circulation (Gill et al., 2001), while probiotic Lac-
tobacillus rhamnosus GG supplementation exerted anti-inflammatory
effects (Ludwig et al., 2018; Pagnini et al., 2018). However, there is an
answered question of whether dysbiosis is a driving force of immune
dysfunction or its consequence. It has been recently observed that mice
under germ-free (GF) conditions are protected from age-associated in-
flammation, and co-housing GF mice with old conventionally-raised old
mice triggers an inflammatory response, suggesting a causal relation-
ship between age-associated inflammation and dysbiosis (Thevaranjan
et al., 2017).

3.2. Dysbiosis and sarcopenia

There is some evidence that dysbiosis, in particular reduced mi-
crobiota diversity and disturbed Bifidobacteria/Proteobacteria ratio, af-
fects the emergence of age-associated sarcopenia. Presumably, this is
mediated via reduced bioavailability of dietary proteins, short-chain
fatty acids (SCFAs) and vitamin synthesis, and disturbed bio-
transformation of nutrients and bile acids (Casati et al., 2019; de Sire
et al., 2018; Picca et al., 2018a; Ticinesi et al., 2017). Leakage of li-
popolysaccharide (LPS) from the dysbiotic gut into the circulation is
accompanied by a significant elevation in TNFa and IL-6 levels in the
blood (Frost et al., 2002), These pro-inflammatory cytokines are known
to induce IR and affect skeletal muscle structure and functional activity
(Ghosh et al.,2015; Kawamura et al., 2019; Ono and Sakamoto, 2017),
mainly in an age-dependent manner (Grosicki et al., 2018), thus con-
necting age, dysbiosis and sarcopenia via inflammaging (Franceschi
et al., 2018). Notably, supplementation of prebiotics increases the
strength and endurance of muscles in older, frail adults (Buigues et al.,
2016; Theou et al., 2019), and the supplementation of probiotic L.
plantarum TWK10 (LP10) in mice increases muscle mass and muscle
function after acute exercise challenge (Chen et al., 2016). Although
these findings indicate dysbiosis as a potential risk factor for age-related
sarcopenia, they are still inconclusive, thus demanding further research
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aimed at deciphering the pathways involved in the gut microbiota-
sarcopenia axis.

3.3. Dysbiosis and ACVDs

The potential detrimental role of dysbiosis in HF pathogenesis and
especially its involvement in chronic inflammation in CHF, has been
discussed for years (Krack et al., 2005; Rogler and Rosano, 2014;
Sandek et al., 2009). Numerous studies have revealed a significant age/
CHF-associated decrease in microbial richness and diversity along with
a pronounced elevation in various pathogenic phyla (e.g., Ruminococcus
gnavus, Clostridium difficile, Collinsella, and others) and a decrease in
health-supporting commensals (e.g., Faecalibacterium prausnitzii, Ak-
kermansia muciniphila and others) (Ahmadmehrabi and Tang, 2017;
Battson et al., 2018; Cui et al., 2018; Dick and Epelman, 2016; Forkosh
and Ilan, 2019; Harikrishnan, 2019; Kasselman et al., 2018). This vig-
orous dysbiosis destroys the gut barrier integrity followed by endotoxin
leakage (mainly, LPS), reduced production of SCFAs, mainly an anti-
inflammatory butyrate (Bach Knudsen et al., 2018; Branca et al., 2019),
impaired synthesis and signaling of bile acids (Vasavan et al., 2018),
thus inducing, maintaining and exacerbating CHF-associated in-
flammaging (Fransen et al., 2017; Shin and Kim, 2018) (Fig. 2). In
addition, HF-associated reduced cardiac output can further lead to a
decrease in intestinal perfusion and mucosal ischemia, subsequently
resulting in a disrupted intestinal mucosa. Structurally, intestinal wall
thickening with edema was observed in patients with HF (Emami et al.,
2018). The collagen content in their mucosal walls is also increased in
proportion to the severity of HF (Arutyunov et al., 2008). Importantly,
bowel wall thickening has been correlated with circulating levels of
hsCRP and increased markers of intestinal permeability (Emami et al.,
2018; Pasini et al., 2016). Intestinal mucosa disruption can in turn lead
to increased gut permeability and subsequent enhanced translocation of
bacteria and bacterial toxins to the blood, contributing to low-grade
systemic inflammation (see below). As discussed earlier, HF-associated
cardiac inflammation is featured by increased cardiac NLRP3 in-
flammasome activity, cardiomyocyte apoptosis and autophagy, hyper-
trophy, stiffness, myofibroblast differentiation, increased collagen
production, EMT and subsequent cardiac remodeling and LV dysfunc-
tion (Shah and Lecis, 2019; Westermann et al., 2011).

Sprouty-related EVH1 domain-containing protein 2 (SPRED2) is an
intracellular repressor of ERK-MAPK signaling that is ubiquitously ex-
pressed in various tissues, including the digestive tract and the heart.
Interestingly, in SPRED2 deficiency resulted in cardiomyocyte hyper-
trophy, cardiac fibrosis, impaired electrical excitability, severe ar-
rhythmias, and shortened lifespan (Ullrich et al., 2019). Mechan-
istically, =~ SPRED2 deficiency-associated HF exhibited ERK
hyperactivation, dysregulated autophagy (e.g., accumulation of ve-
sicles, vacuolar structures and degenerated mitochondria), decreased
expression of key autophagy regulators, such as Atg7, Atg4B and
Atgl6L, and increased expression of autophagosomal adaptors, such as
p62/SQSTM1, NBR1 and lysosomal Cathepsin D (Ullrich et al., 2019).
In another recent study (Ohkura et al., 2019), SPRED2 knockout mice,
fed with a high fat diet, exhibited an augmented body weight gain,
enhanced adipocyte hypertrophy, deteriorated dyslipidemia, accumu-
lation of M1 macrophages surrounding dead adipocytes, aggravated IR
and fatty liver disease. As compared with control mice, the stromal
vascular cells of SPRED2 knockout mice expressed elevated levels of
TNFa and the monocyte chemoattractant protein-1 (MCP-1/CCL2).
These studies suggest that SPRED2 represents a potential therapeutic
tool for the prevention of HF, IR and obesity.

Experimental genetic and pharmacological data as well as GF
models implicate dysbiosis in the development and maintenance of
hypertension (Jama et al., 2019b). Several causative mechanisms have
been proposed, including an abnormal reaction to angiotensin II (Ang
II)-induced cardiovascular stress (Karbach et al., 2016) and reduced
prevalence of SCFAs (Ganesh et al., 2018; Marques et al., 2017). SCFAs
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Fig. 2. Proposed mechanisms underlying the development of dysbiosis-mediated obesity and ACVDs under chronic, low-grade inflammatory settings.
Characterized by a reduced bacterial diversity and increased pathogens/commensals ratio, an age-associated dysbiosis is proposed to be responsible for multiple
pathological effects. Dysbiosis, therefore, triggers, supports or worsens inflammaging, which, as we suggest, governs the development of sarcopenia, obesity, and
ACVDs (mainly, CHF). In the scheme, we depict the consequences of dysbiosis, such as LPS leakage, reduced synthesis of SCFAs, increased gut permeability and
disturbed bile acid metabolism, all of which lead to the induction of chronic low-grade inflammation, IR and lipotoxicity. Eventually, this is manifested by contractile
defects of myocytes and cardiomyocytes that characterize sarcopenia and cardiomyopathy. Dysbiosis-mediated production of TMAO is a main process that results in a
variety of detrimental ACVD events. Further explanations are given in the text.

ACVDs - atherosclerosis-mediated cardiovascular disorders; TMAO — trimethylamine-N-oxide; SCFA — short chain fatty acids; Treg — T regulatory cells; FXR —

farnesoid X receptor; TGR5 — G-protein-coupled bile acid receptor.

normally mediate their homeostatic blood pressure effects via binding
to Olfr78 and GPR41 receptors (Jin et al., 2019). Dietary intake-in-
duced changes in the gut microbiota support a dysbiosis-hypertension
connection, because they modulate blood pressure either beneficially
(e.g., fibre and SCFAs) or detrimentally (e.g., salt) (Jama et al., 2019a).
In a human study, fecal microbiota transplantation (FMT) from hy-
pertensive individuals to GF mice resulted in elevated blood pressure in
the host, suggesting a direct dysbiosis-induced effect (Li et al., 2017).
Interestingly, FMT from normotensive rats to hypertensive rats leads to
reduced blood pressure in the host, accompanied by a restored im-
balance between Th17 and Treg cells in mesenteric lymph nodes. In
contrast, FMT from hypertensive rats to normotensive rats results in a
significant local and systemic T-cell activation, impaired endothelial
function and increased blood pressure. These effects are abolished by a
blockade of co-stimulation of T-cells using CTLA4-Ig and IL-17 neu-
tralizing antibodies, suggesting an involvement of the adaptive immune
system in dysbiosis-mediated hypertension (Toral et al., 2019).
Dysbiosis impacts ACVDs also through other ways, particularly via
diet-derived metabolites. The most noteworthy example of this is the
effect of TMAO on ACVDs. TMAO is produced from diet-derived choline
and other trimethylamine (TMA) moiety-containing nutrients, which
are abundant in Western food products, including meat, eggs and dairy
products. These are subsequently metabolized by TMAO through the
enzymatic activity of microbial choline TMA lyases (Nagatomo and
Tang, 2015). Raised TMAO levels are implicated in endothelial and
smooth muscle cell activation, foam cell formation, myocardial and
renal fibrosis (Brown and Hazen, 2018) and hypertension (Chen et al.,
2019a, b), all of which are associated with the increased risk of cardi-
ovascular morbidity and mortality (Heianza et al., 2017; Schiattarella
et al., 2017). Mechanistically, TMAO stimulates release of cytokines
such as TNFa, which can aggravate myocardial fibrosis and micro-
vascular dysfunction in the heart, independent of its pro-inflammatory,
pro-atherosclerotic and neuro-hormonal derangements (Nagatomo and
Tang, 2015). Moreover, TMAO 1is capable of activating the

inflammasome multiprotein complex in human endothelial vascular
cells, promoting lipid deposition and mitochondrial ROS production
through the inhibition of the sirtuin 3-superoxide dismutase 2 signaling
pathway (Chen et al., 2017). Notably, plasma TMAO levels are elevated
with ageing. Antibiotic treatment in mice lowers TMAO levels in cor-
relation with reversed endothelial dysfunction, arterial stiffening and
oxidative stress (Brunt et al., 2019). These observations suggest that
TMAO inhibition could be a promising anti-ACVD treatment strategy.
Indeed, an administration of TMAO inhibitor 3,3-Dimethyl-1-butanol
(DMB) in mice results in a clear anti-platelet aggregation activity
(Roberts et al., 2018). In this study, the researches supplemented the
diet with small quantities of two choline TMA lyase inhibitors with a
potency roughly 10 000 times greater than that of DMB. Consequently,
the mice display a reversed choline-induced increase in TMAO pro-
duction, accompanied by a significant inhibition of platelet aggrega-
tion, platelet adherence to collagen, and clot formation.

3.4. Dysbiosis and obesity

The scientific community has significantly explored the role of the
gut microbiota in obesity. Overweight individuals maintain a less di-
verse microbiota and express significantly higher levels of gut bacteria
that promote inflammation and weight gain as compared to normal-
weight individuals (Biackhed et al., 2004; Frasca et al., 2017; Gérard,
2017; Kasselman et al., 2018; Trim et al., 2018; Tseng and Wu, 2019).
Although causality in the dysbiosis-obesity axis has yet to be clarified,
studies of GF mice unequivocally demonstrated that the changes in gut
microbiota can trigger obesity. It has been repeatedly shown that GF
mice possess significantly less fat mass than conventional mice
(Béckhed et al., 2004; Gérard, 2017; Stephens et al., 2018; Zhao, 2013).
Moreover, in comparison with their conventional counterparts, GF mice
show resistance to obesity when fed a high fat, sugar-rich diet, thus
displaying improved insulin sensitivity and glucose tolerance (Bickhed
et al., 2007; Rabot et al., 2010).
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Along with these causative microbiota — obesity data observed in
mice, there are many associative (correlation) findings linking dysbiosis
and obesity-associated parameters. These observational studies, how-
ever, do not clarify whether dysbiosis is a pre-requisite factor for obe-
sity, or rather induces obesity (e.g., by a high fat diet), which then leads
to dysbiosis. In this regard, FMT experiments support the notion that
obesity is transmissible by modulation of gut microbiota. For example,
FMT from genetically obese (ob/ob) mice to GF mice leads to a ~2-fold
fat mass gain as compared with the reciprocal FMT from lean donors
(ob+/— or +/+) (Turnbaugh et al., 2006). FMT from obese twins to
GM mice results in an increased fat mass gain as compared with mice
receiving FMT from lean twins. Of note, co-housing of recipient GM
mice with mice that are fed a fiber-rich diet leads to the establishment
of the lean phenotype (Ridaura et al., 2013). These observations in-
dicate the strength of co-housing experiments: sharing bacterial com-
munities from healthy mice is metabolically beneficial, whereas sharing
bacterial communities from obese mice is metabolically harmful.

Specific bacteria strains might play specific roles in the presumed
microbiota-obesity link. The previously observed elevated proportion of
Firmicutes and reduced proportion of Bacteroidetes has not been con-
firmed in further studies in obese humans and animals (Ley et al., 2005,
2006). This reveals a significant inter-study variability in microbiota
composition that may exceed differences between lean and obese in-
dividuals (Duca et al., 2014; Sze and Schloss, 2016; Walters et al.,
2014). These observations suggest that the obesity-associated altered
gut ecology is more complex than a simply considering the imbalance of
commensal phyla, therefore a precise definition of the “obese” micro-
biota may not be feasible (Finucane et al., 2014; Olesen and Alm, 2016;
Reijnders et al., 2016). Thus, studies focusing on the mechanistic un-
derstanding and causative association between gut microbiota and
obesity become more relevant (Gérard, 2017; Meijnikman et al., 2018).

Concerning a possible link between microbiota, obesity and in-
flammation, it has been first shown that a high fat diet induces reduced
expression of host genes encoding the intestinal tight junction proteins
zonula occludens-1 and occludin (Cani and Delzenne, 2009). This re-
sults in LPS leakage from the intestinal lumen into the circulation and
triggers downstream inflammation through the activation of CD14/
TLR4/NF-kB axis, which is involved in the enhanced production of
various pro-inflammatory cytokines eventually promoting the devel-
opment of systemic inflammation, obesity and IR (Aratjo et al., 2017;
Glaros et al., 2013; Graham et al., 2015). Moreover, administration of
LPS also induces elevated IL-6 and TNFa concentrations in right atrium
increasing vulnerability of AF (Chen et al., 2017). It has been also
shown that diet-induced obesity is associated with an abundance of pro-
inflammatory T cells, that produce cytokines, such as IFNy. This is ac-
companied by a reduction in the number and functional activity of
homeostatic immune cells, such as regulatory T cells (Tregs), IL-22-
producing innate lymphoid cells, Th17 cells, IgA-producing B cells
(Lycke and Bemark, 2017; Winer et al., 2014) and regulatory B cells
(Bregs) (Garcia-Hernandez et al., 2018). In particular, a decline in IgA
in obese mice worsens IR and increases intestinal permeability via loss
of mucosal factors, B cell-released cytokines, such as TGF1 and IL-5,
along with a decreased expression of enzymes required for the synthesis
of retinoid acid (Luck et al., 2019). Obesity is also associated with de-
creased levels of mucosal Bregs (Garcia-Herndndez et al., 2018;
Mishima et al., 2019), which function to physiologically prevent in-
flammation by inhibition of Thl cell activation, maintenance of the
Treg cell population and induction of Th17 proliferation and differ-
entiation, mainly via IL-10 (Moore and Loxton, 2019). Of note, Breg
levels were shown to be restored to the pre-surgery level following
bariatric surgery (Zhan et al., 2017). Other important mechanisms that
are deeply involved in the microbiota-obesity-inflammation connection
include the reduced production of SCFAs, which was shown to affect
the mucosal integrity and the anti-inflammatory activity of gut-asso-
ciated immune cells from both the innate and adaptive immune systems
(Barrea et al., 2019; Baxter et al., 2019; Koh et al., 2016; Rooks and
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Garrett, 2016). In particular, dysbiosis-induced decline in SCFA pro-
duction was shown to be associated with reduced number and func-
tional activity of Tregs, leading to the development of mucosal infection
(Bhaskaran et al., 2018). In addition, obesity and dysbiosis lead to
disturbed production of bile acids that activate the farnesoid X receptor
(FXR) and the TGRS receptor (Ding et al., 2016; Parséus et al., 2017).
These bile acids are known to exert anti-inflammatory effects in some
gut-associated inflammatory disorders (Pavlidis et al., 2015; Tiratterra
et al., 2018). As a result of the reduced bile acid production, the
membrane integrity of various gut bacteria, including probiotic Lacto-
bacilli and Bifidobacteria, is disrupted, halting their growth (Kurdi et al.,
2006). Obesity- and dysbiosis-enhanced production of TMAO is well
established (Schiattarella et al., 2017; Tang et al., 2014; van den
Munckhof et al., 2018) as discussed above. All these processes are
schematically presented in Fig. 2.

Concerning the application of probiotics, prebiotics or antibiotics in
attempts to prevent and/or treat ACVDs, there are several encouraging
preclinical data (Reviewed in Battson et al., 2018). However, these have
not been confirmed so far when tested in human subjects (Aquila et al.,
2019; Duan et al., 2019; Ebel et al., 2014; Kiousi et al., 2019; Ma and Li,
2018; Peng et al., 2018; Schiattarella et al., 2019), raising questions
about the true applicability of such intervention in humans. Never-
theless, a recent meta-analysis of 10 studies (385,122 ACVD partici-
pants) has revealed that the intake of fermented dairy foods, especially
yogurt and cheese, is significantly associated with decreased ACVD risk
(Zhang et al., 2019). Thus, the notion of using dysbiosis-modifying
drugs in preventing/treating ACVDs might be still clinically relevant.

4. Inflammation resolution as an emerging approach to attenuate
inflammaging

The current extensive data on the paramount significance of in-
flammaging in the pathogenesis of sarcopenia, obesity, cardiomyopathy
and dysbiosis clearly imply that targeting inflammaging would provide
an efficient pleiotropic therapeutic effect. The chronic, low-grade
nature of inflammaging indicates defective inflammation resolution as a
potential mechanism responsible for its persistence. Being the final
phase of any acute inflammation response, inflammation resolution is
necessary for the restoration of tissue homeostasis, thereby limiting
excessive tissue injury and preventing the development of a chronic
inflammatory state (Serhan, 2017). Accordingly, unresolved (failed)
inflammation can result in ongoing inflammation, fibrosis and loss of
organ function (Bennett and Gilroy, 2016; Fredman and Spite, 2017;
Serhan et al., 2015). Resolution of inflammation is an active and dy-
namically regulated process, in which specialized, pro-resolving med-
iators (SPMs) are involved, comprising of four families - lipoxins, re-
solvins, protectins, and maresins (Serhan, 2017). These small lipid
molecules are physiologically derived from the metabolism of dietary
polyunsaturated fatty acids. The most important property of SPMs is
their ability to exert pro-resolving and anti-inflammatory effects
without a systemic immune suppression of the host (Serhan, 2017). The
main mechanisms of SPM-mediated inflammation resolution include
the inhibition of neutrophil infiltration into tissues along with the
promotion of neutrophil apoptosis by macrophages (efferocytosis) and
the reduction of excessive oxidative stress (Bennett and Gilroy, 2016;
Chiang and Serhan, 2017; Serhan et al., 2015). Efferocytosis, in turn,
has been shown to promote the biosynthesis of SPMs (Elliott et al.,
2017; Yurdagul et al., 2018(. Another important aspect of the physio-
logical SPM activity is their capacity to stimulate tissue reparative/re-
generative programs that participate in the post-inflammation restora-
tion of tissue homeostasis (Serhan et al., 2015). This is exemplified by
the restoration of the functional activities of both the innate and the
adaptive immune cells (Basil and Levy, 2016; Duffney et al., 2018;
Fullerton and Gilroy, 2016). In addition, the inflammation resolution by
SPMs is accompanied by the inhibition of several major atherosclerosis-
associated events, including platelet aggregation (Dona et al., 2008)
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and pathological thrombosis (Cherpokova et al., 2019). Moreover, one
of the major effects of SPMs is the phenotypic conversion of pro-in-
flammatory macrophages into pro-resolving macrophages that suppress
inflammation and promote healing. In advanced atherosclerotic lesions,
the ratio between specialized pro-resolving mediators and pro-in-
flammatory lipids (in particular leukotrienes) is very low, providing a
molecular basis for the defective inflammation-resolution features of
these lesions (Bick et al., 2019; Fredman, 2019). Recent studies have
demonstrated that SPMs are locally synthesized in vascular tissues,
therefore providing a direct beneficial effect on the endothelium and its
interactions with leukocytes (Conte et al., 2018). SPMs increase the
production of protective adipokines, such as adiponectin in white AT
that along with the enhancement of macrophage-clearing functions are
shown to improve metabolic control in obese-prone conditions (Hansen
et al., 2019; Sima et al., 2018; Wang and Colgan, 2017). In addition,
SPMs are capable of preventing gut dysbiosis and maintaining gut
permeability (Sima et al., 2018). They also promote the generation of
antimicrobial peptides and the attenuation of mucosal cytokine re-
sponses through the intestinal mucosa (Wang and Colgan, 2017). No-
tably, SPMs are able to dampen LPS signaling, thus reducing LPS-in-
duced inflammation and the subsequent atrophy of myotubes (Baker
et al., 2018). Moreover, SPMs enhance the functional activity of muscle-
infiltrating macrophages that mediate post-damage skeletal regenera-
tion (Giannakis et al., 2019). Of interest, acute resistance exercise
transiently stimulates skeletal muscle production of metabolites in-
volved in SPM biosynthesis (Vella et al., 2019). Collectively, these ex-
citing findings suggest that failed inflammation resolution might be
involved in the pathogenesis of multiple pathologies, including ather-
osclerosis, obesity, dysbiosis and sarcopenia. In light of these observa-
tions, the capability of SPMs to suppress inflammation in a manner that
does not compromise host defense makes them highly attractive can-
didates for the alleviation of detrimental inflammaging.

5. Concluding remarks

A growing number of elderly people is increasingly confronted with
the limitations of modern medicine, requiring a search for new effective
approaches for the prevention and treatment of age-associated dis-
orders. The existence of bidirectional pairs (duos), such as "sarcopenia-
obesity", "sarcopenia— CHF", "obesity — CHF", "obesity-dysbiosis", or "
dysbiosis — CHF" is well-known. However, a thorough study of these
links reveals an evolution into trios like "inflammaging-sarcopenia-
obesity", "inflammaging-sarcopenia — CHF", "inflammaging-
obesity — CHF, "inflammaging-dysbiosis — CHF" etc, among which in-
flammaging is a dominant, driving force. This review provides a volume
of evidence on the existence of a unique, age-related multi-morbid
quintet, comprising of inflammaging, sarcopenia, obesity, CHF, and
dysbiosis. In this ensemble, inflammaging "plays first fiddle", being
responsible for the development and maintenance of other components
of the quintet, thus converting sarcopenia, obesity (and OBSP), CHF,
and dysbiosis into "inflammaging-oriented" disorders (Fig. 3).

Although a succinct decision on the causative role of inflammaging
in the pathogenesis of these chronic conditions has not yet reached a
consensus, we believe that the evidence is substansial in supporting the
casuality hypothesis. Coexistence of inflammaging with a wide variety
of disorders, in addition to sarcopenia, cardiomyopathy, obesity and
dysbiosis (Chung et al., 2019) clearly suggests causative relationships.
In this regard, the existence of low-grade inflammation along with
dysbiosis in the preclinical stages of several chronic diseases also sup-
ports the idea of causative relationships. Probably, the most demon-
strative example of such a link is rheumatoid arthritis and some other
autoimmune and non-autoimmune arthropathies (Kalinkovich et al.,
2018). Gut dysbiosis was observed in preclinical type 2 diabetes mel-
litus (Mokkala et al., 2017). Moreover, chronic inflammation (Aggarwal
et al., 2014; Libby and Crea, 2010) and a pro-inflammatory diet (Davis
et al., 2019) have been suggested as independent causative risk factors

10

Ageing Research Reviews 56 (2019) 100980

for ACVDs. In a longitudinal, prospective study that monitored chil-
dren, chronic oral infections were found to be significantly associated
with further development of ACVD events and obesity during the
middle-aged years (Pussinen et al., 2019). Finally, note that the ex-
periments with laboratory animals repeatedly provided data that could
be best interpreted as causative effects of dysbiosis on obesity (Gérard,
2017; Turnbaugh et al., 2006; Ridaura et al., 2013). Thus, these find-
ings support the hypothesis of the causative relationships between in-
flammaging and inflammaging-oriented sarcopenia, cardiomyopathy,
obesity and dysbiosis.

As such, targeting inflammaging is highly clinically relevant to
healthy ageing. One of the key achievements that support this idea is a
significantly reduced rate of recurrent ACVDs following a clinical trial
that examined the specific elimination of IL-13 (Ridker, 2017). How-
ever, researchers observed a significant elevation in the incidence of
fatal infection and sepsis in the treated group of patients. This shows
that blockage of critical, multi-functional cytokines may suppress life-
threatening host defense mechanisms. Conversely, an efficient and safe
course of therapy is recommended to consider a specific elimination of
senescent cells via established SASP, which considerably contribute to
inflammaging (Prata et al., 2019), frailty (Justice et al., 2018), sarco-
penia (da Silva et al., 2019) and obesity (Burton and Faragher, 2018).
Indeed, the application of "senolytic drugs", such as dasatinib and
quercetin, has been shown to attenuate frailty, to delay the onset of age-
related diseases and to extend the remaining lifespan in older animals
(Reviewed in Prata et al., 2019). Also, this treatment reduced circu-
lating inflammatory mediators and alleviated metabolic and AT dys-
function in obese mice (Palmer et al., 2019), improved established
vasomotor dysfunction (Roos et al., 2016), promoted vascular en-
dothelial repair and slowed atherogenesis in aged and atherosclerotic
mice (Caland et al., 2019; Childs et al., 2016). These data suggest that
senolytic agents hold promise for the prevention and treatment of age-
associated sarcopenia, metabolic disorders, and atherosclerosis, pre-
sumably acting via the mitigation of inflammaging.

However, the most promising therapeutic approach seems to be the
use of inflammation resolving SPMs that represent a paradigm shift -
from the traditional “stop,” anti-inflammatory approaches to a new
tactic that promotes or mimics the mode of action of endogenous pro-
resolution pathways. This approach may include a novel com-
plementary or potentially superior traditional strategy — a regulation of
inflammation and its restoration, rather than merely considering the
suppression of inflammation (Doyle et al., 2018; Fullerton and Gilroy,
2016). As discussed in the review, the potential complementary can-
didates to attenuate inflammaging are SPMs, tailored diet manipula-
tions, senolytic agents and anti-cytokine agents, all of which could be
combined with LDL-lowering drugs. This multilevel approach may be
the future of therapeutic efforts in managing age-related chronic dis-
eases, such as inflammaging-oriented sarcopenia, obesity, ACVDs and
dysbiosis.

Nevertheless, our current challenge consists of cultivating the con-
cept of the causative role of inflammaging in the development of these
conditions, and there are numerous findings favouring this concept.
However, several key questions remain unanswered. What is a
“healthy” microbiota and which (if any) specific alterations in the mi-
crobiota composition might represent a specific signature in age-asso-
ciated chronic disorders? Which of the following is paramount - quality,
quantity or activity of microbes? Although a causative role of some
microbial components, such as LPS in the triggering of inflammaging,
and TMAO in the induction of ACVD events can be considered as suf-
ficiently proven, it is not obvious to what extent the data obtained in
animal models are relevant to humans. Since the ultimate goal of
therapeutic research is to provide a personalized strategy (precision
medicine), “we need to show that differences in the microbiota can be
used to predict or ameliorate disease, and not just show that differences
exist” (Olesen and Alm, 2016).

The detrimental role of obesity in the development of sarcopenia
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Fig. 3. Schematic representation of the hy-
pothesis proposing inflammaging as a
common mechanism that governs the devel-
opment of sarcopenia, obesity, dysbiosis and
cardiomyopathy.

It is well established that the prevalence of
sarcopenia, obesity, dysbiosis and cardiomyo-
pathy (in particular, CHF) is increased in
ageing. Moreover, all these disorders exacer-
bate each other. We suggest that inflamma-
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inflammation is the main triggering, sup-
porting and worsening component in the pa-
thogenesis of these diseases. Obesity is asso-
ciated with AT inflammation leading to an
outflow of various pro-inflammatory cells and
FFAs. Ectopic accumulating of lipids and in-
filtration of pro-inflammatory cells in the
skeletal muscle and myocardium induce a
cascade of events that results in sarcopenia

Obesity

and cardiomyopathy. Ongoing systemic
chronic inflammation is supported by an age/
obesity-associated dysbiosis. Also depicted in

the scheme, dysbiosis-associated mechanisms exacerbate inflammaging and may affect myocardium via TMAO production directly. Additionally, CHF-associated
mechanisms, such as decreased cardiac output, may enhance dysbiosis. Based on these findings, we hypothesize that sarcopenia, obesity, CHF and dysbiosis are
inflammaging-oriented disorders and inflammaging is a common mechanism governing their pathogenesis.

AT - adipose tissue; CHF — chronic heart failure; FFA - free fatty acids; TMAO —trimethylamine-N-oxide; SASP - senescence-associated secretory phenotype; LPS —

lipopolysaccharide; SCFA - short chain fatty acids.

and cardiomyopathy, mainly due to mitochondria-associated lipotoxi-
city and IR induced by FFA excess, suggests that obesity prevention
should be considered as the main target in the prevention/treatment of
chronic musculoskeletal and heart disorders. As discussed, the anti-
obesity efficacy of probiotics, prebiotics and antibiotics is exemplified
by a clear reduction of inflammatory biomarkers, thus very encoura-
ging. However, the causative obesity/sarcopenia/cardiomyopathy re-
lationships remain to be confirmed in longitudinal, prospective, well-
controlled studies.

It should be mentioned that several key questions concerning the
process of inflammaging itself also remain unanswered. What are the
dominant factors that drive inflammaging? Is immunosenescence a key
element in inflammaging? Are the changes in immune cells intrinsic,
reflecting their ageing, or rather extrinsic, i.e. derived from the sur-
rounding aging tissues? Would senolytic drugs that demonstrated great
geroprotective potential in animal models be effective in human stu-
dies? Since clinical trials that prospectively extend to the lifespan or
health span of human subjects are not feasible, new paradigms for
testing senolytics, SPMs or other age-associated prophylaxis/treatment
approaches are required. Because these studies will aim at reducing the
degree of inflammaging, they should include new surrogate endpoints
of aging. Undoubtedly, reducing the degree of inflammaging, the
hallmark and probably the major common ground of age-related dis-
eases, will provide hope for better quality of life in aging people.
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