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ARTICLE INFO ABSTRACT

Ghrelin, which has many important physiological roles, such as stimulating food intake, regulating energy
homeostasis, and releasing insulin, has recently been studied for its roles in a diverse range of neurological
disorders. Despite the several functions of ghrelin in the central nervous system, whether it works as a ther-
apeutic agent for neurological dysfunction has been unclear. Altered levels and various roles of ghrelin have
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;ailtlochon drial deficits been reported in Alzheimer’s disease (AD), which is characterized by the accumulation of misfolded proteins
Neuroinflammation resulting in synaptic loss and cognitive decline. Interestingly, treatment with ghrelin or with the agonist of

ghrelin receptor showed attenuation in several cases of AD-related pathology. These findings suggest the po-
tential therapeutic implications of ghrelin in the pathogenesis of AD. In the present review, we summarized the
roles of ghrelin in AD pathogenesis, amyloid beta (AB) homeostasis, tau hyperphosphorylation, neuroin-
flammation, mitochondrial deficit, synaptic dysfunction and cognitive impairment. The findings from this review
suggest that ghrelin has a novel therapeutic potential for AD treatment. Thus, rigorously designed studies are
needed to establish an effective AD-modifying strategy.

1. Introduction Roberson et al., 2011; Selkoe, 1991; Spires-Jones and Hyman, 2014).

AD has been the focus of numerous researchers and studied ex-

Alzheimer’s disease (AD) is the most common type of irreversible
dementia and accounts for 50-77% of all cases of dementia (Barker
et al., 2002; Francis et al., 1999; Holtzman et al., 2011). AD is a
chronic progressive neurodegenerative disease that is characterized
by cognitive impairment with pathological changes including the
abnormal accumulation of amyloid plaques composed of amyloid
beta (AP) and neurofibrillary tangles (NFT) containing aggregated
tau protein in the brain (Brier et al., 2016; Haass and Selkoe, 2007;

tensively for over a century; numerous research has been conducted
on the pathophysiology (Durazzo et al., 2014; Kumar et al., 2015;
Lindsay et al., 2002; Swerdlow, 2007), clinical criteria (Cummings,
2004; Forstl, 1998; Nervi et al., 2008; Nestor et al., 2004), and ge-
netic factors of AD (Bird, 2008; Van Cauwenberghe et al., 2016). So
far, some extensively researched AD therapeutic approaches are in-
cluding cholinesterase inhibitors, N-methyl D-aspartate (NMDA) re-
ceptor antagonists (Birks, 2006; Butterfield and Pocernich, 2003;
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McGleenon et al., 1999; Parsons et al., 2013), immunotherapies
(Adolfsson et al., 2012; Imbimbo et al., 2012; Malpass, 2013; Panza
et al., 2012), and preventive therapies (Bateman et al., 2011). Cur-
rently, the cholinesterase inhibitors and NMDA receptor antagonists
are the only therapeutic approaches approved by the Food and Drug
Administration. Unfortunately, they can only delay the progression
of AD pathogenesis (Grossberg, 2003; Rountree et al., 2009). More-
over, studies have shown that the immunotherapies may lead to
adverse effects such as meningoencephalitis (Gilman et al., 2005)
and microhemorrhage in the brain (Wilcock et al., 2007, 2004).
Despite the aforementioned efforts, a disease-modifying therapy has
not been established yet (Huang and Mucke, 2012). Therefore, there
is a need to establish a safe and substantial treatment strategy for AD.

Ghrelin is an orexigenic hormone that binds to its growth hor-
mone secretagogue-receptor (GHS-R) and regulates food intake
(Nogueiras et al., 2008). Ghrelin is a 28-amino-acid peptide that is
mainly released from stomach when induced by hunger (Stengel and
Tache, 2012). Although, several studies have reported the expression
of ghrelin in the central nervous system (CNS), inconsistency exists
among the findings regarding the expression of ghrelin in the CNS
(Cabral et al., 2017). In the hypothalamus, ghrelin regulates energy
homeostasis, metabolism, and body weight (Nogueiras et al., 2008).
In addition, ghrelin has various extra-hypothalamic functions as well
as pathophysiological roles (Andrews, 2011). As a multi-functional
hormone, ghrelin is involved in the stimulation of growth hormone
release, insulin sensitivity, muscle homeostasis, cardio-protection,
and bone metabolism (Chollet et al., 2009; Pradhan et al., 2013).
Native ghrelin (des-acyl-ghrelin) undergoes post-translational acy-
lation by ghrelin O-acyltransferase (GOAT) to be converted into
acylated ghrelin (acyl-ghrelin) (Al Massadi et al., 2011). Although
the receptor of des-acyl-ghrelin is unknown, it is the most abundant
form in the circulatory system (Delporte, 2013). Only acyl-ghrelin is
an endogenous ligand for GHS-R1la (Delporte, 2013; Gauna et al.,
2007; Staes et al., 2010), and the neuronal function of ghrelin is
mediated by GHS-R1a (Lopez Soto et al., 2015; Ribeiro et al., 2014;
Yang et al., 2011). In arcuate nucleus of the hypothalamus, ghrelin
binds to GHS-R1a receptors and stimulates appetite (Cowley et al.,
2003; Howick et al., 2017). Furthermore, while promoting the food
intake, ghrelin modulates the synaptic input organization and ac-
tivity of midbrain dopamine neurons (Abizaid et al., 2006). This
stimulation is very similar to the ghrelin-induced interoceptive cues
during the caloric restriction (Dhurandhar et al., 2013).

Interestingly, numerous studies have reported that ghrelin and
ghrelin agonists improve diverse AD-related pathogenesis such as Ap
burden, tau hyperphosphorylation, synaptic loss, neuroinflamma-
tion, and cognitive dysfunction in several animal model of AD (Chen
et al., 2010; Dhurandhar et al., 2013; Eslami et al., 2018; Jeong et al.,
2018; Kang et al., 2015; Kunath et al., 2015; Moon et al., 2014;
Santos et al., 2017). Therefore, therapeutic strategies using ghrelin
are gaining considerable attention for their neuroprotective and
possible additional beneficial effects on the AD pathogenesis (Dos
Santos et al., 2013; Eslami et al., 2018; Gahete et al., 2010; Sevigny
et al., 2008). Additionally, ghrelin modulates the tau phosphoryla-
tion, which is another major cause of AD pathogenesis in the hip-
pocampal neurons (Chen et al., 2010). Most importantly, despite the
accumulation of this evidence, no clinical trials have evaluated the
efficacy of ghrelin on the AD pathogenesis (Collden et al., 2017;
Seminara et al., 2018). Therefore, reviewing the effects of ghrelin in
AD may provide an attainable treatment that affects the AD pro-
gression. In this review, we included and summarized recent dis-
coveries regarding the roles of ghrelin and its receptor agonists in the
attenuation of several AD-related pathologies. In addition, we dis-
cussed the potential therapeutic applications of ghrelin and its re-
ceptor agonists in the AD treatment.
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2. The relevance of ghrelin and its receptor in AD
2.1. Ghrelin

Several studies have reported an association between ghrelin levels
and AD pathology (Cao et al., 2018; Gahete et al., 2010). It has been
clinically reported that ghrelin mRNA levels decrease in the temporal
lobe of AD patients (Gahete et al., 2010). It has also been found that
circulating acyl-ghrelin is associated with cognitive dysfunction in
predementia AD. While total ghrelin level is not different between
healthy controls and patients with mild cognitive impairment (MCI),
the level of acyl-ghrelin in patients with MCI is significantly increased
compared with that of the controls (Cao et al., 2018). Additionally,
there is a sexual difference in basal ghrelin levels. Although male and
female AD patients show similar levels compared with the controls, the
male AD patients show significantly lower area-under-the-curve for
ghrelin in the oral glucose tolerance test (Theodoropoulou et al., 2012).
Notably, the patients with frontotemporal dementia show significantly
lower levels of ghrelin the patients with AD do not show altered ghrelin
levels (Woolley et al., 2014). In addition, a Japanese population study
reports a genetic relationship between AD and ghrelin nucleotide
polymorphisms (Shibata et al., 2011). Collectively, these findings imply
the need to examine the levels of des-acyl-ghrelin and acyl-ghrelin se-
parately in AD.

2.2. Growth hormone secretagogue-receptor (GHS-R)

In mice and rats, GHS-R is widely distributed in various organs in-
cluding the spinal and dorsal vagal complexes and parasympathetic
preganglionic neurons (Guan et al., 1997; Zigman et al., 2006). In ad-
dition, the expression of GHS-R mRNA is observed not only in the
hippocampus, substantia nigra, and ventral tegmental area but also in
multiple hypothalamic nuclei and the pituitary gland, which are im-
portant for food intake and maintaining body weight (Guan et al., 1997;
Lattuada et al., 2013; Zigman et al., 2006).

In humans, GHS-R1a expression has been reported in the pituitary
gland, hypothalamus, and hippocampus (Guan et al., 1997). Interest-
ingly, unlike ghrelin and GHS-R1b, which are widely distributed in
various peripheral tissues including the stomach, a functional receptor
for acyl-ghrelin (GHS-R1a) is predominantly expressed in the pituitary
gland (Gnanapavan et al., 2002; Guan et al., 1997; Liu et al., 2006;
Zigman et al., 2006). A number of previous studies have suggested that
ghrelin receptors are expressed in the CNS as well as in the peripheral
organs (Fig. 1). When ghrelin binds to GHS-R1la (Bockaert and Pin,
1999; Lattuada et al., 2013), its a-helical transmembrane protein pro-
foundly changes (Camina, 2006). Ghrelin-activated GHS-R1 activates
the extracellular-signal-regulated kinase (ERK) 1/2 through phospho-
lipase C (PLC) and protein kinase C (Mousseaux et al., 2006). The
truncated ghrelin receptor polypeptide does not participate in ERK1/2,
but attenuates the activation of phosphatidylinositol-specific PLC (Chu
et al., 2007). Members of the seven transmembrane receptors are ex-
pressed in the ghrelinergic cells, and some ligands that inhibit the
ghrelin secretion (Engelstoft et al., 2013). In addition, the B1-adre-
nergic receptors expressed in the ghrelinergic cells acts on sympathetic
norepinephrine, causing the ghrelin secretion (Mundinger et al., 2006;
Zhao et al., 2010). In particular, studies using the GHS-R-specific
monoclonal antibody have provided evidence into the role of GHS-R in
neurodegenerative diseases by showing that the expression of GHS-R is
dependent on the developmental stage and brain region (Lattuada et al.,
2013). Remarkably, the expression of GHS-R1a is significantly reduced
in the inferior and superior region of the temporal lobe of AD patients
when compared that of the controls (Gahete et al., 2010). These results
suggest that ghrelin and its receptors may have important roles in AD.
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Fig. 1. Expression of Ghrelin Receptors.
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3. The association of ghrelin with AD-related pathologies
3.1. AB homeostasis

One of the most supported hypotheses for AD pathogenesis is the AR
cascade hypothesis, which postulates that the A} peptide accumulates
excessively to form Af plaques in the brain (Hardy and Higgins, 1992).
Three proteases, a-, B-, and y-secretases, are involved in the cleavage of
the amyloid precursor protein (APP) into A proteins. Sequential
cleavages of APP by - and y-secretases are responsible for the A
protein generation (Cummings, 2004). Especially, the soluble Af oli-
gomers (APO) are deemed to be the primary triggers of AD-related
pathology, such as inflammation, neuronal loss, synaptic dysfunction,
and cognitive deficits (Haass and Selkoe, 2007; Kayed et al., 2003;
Querfurth and LaFerla, 2010; Tanzi, 2005). The degradation or elim-
ination of toxic Af is mediated by proteases such as neprilysin, insulin-
degrading enzyme, matrix metalloproteinase, and plasmin (Querfurth
and LaFerla, 2010; Wostyn et al., 2011). However, the autophagic
pathway, one of the AR degradation mechanisms, is impaired in the
brain of patients with AD and AD animal models; thus, AB-containing
autophagosomes accumulate in the neurons without the A} degrada-
tion through autolysosome maturation (Banerjee et al., 2010; Nixon,
2007; Wolfe et al., 2013; Yu et al., 2005). Because the disruption of A
homeostasis is a risk factor for AD, the process of AP} generation and
degradation has been regarded as an important therapeutic target for
AD (Cummings et al., 2018; Cummings, 2004; Querfurth and LaFerla,
2010).

Interestingly, both ghrelin receptor agonist (LY444711)-treated and
calorically restricted groups show significant decreases in A accumu-
lation and Iba-1 (marker of microglia) immunoreactivity in the hippo-
campus of APPS"® transgenic mice (Dhurandhar et al., 2013). In addi-
tion, AP accumulation, neuroinflammation, and neuronal loss in the
deep cortical layer in AB-overexpressing S5XFAD mice are alleviated by
the administration of MK-0677, an agonist of GHS-R1a (Jeong et al.,
2018). However, inconsistent findings are reported that the adminis-
tration of the ghrelin receptor analog [D-Lys (3)]-growth hormone-re-
leasing peptide 6 (GHRP-6) reduce the levels of AB;4, and acet-
ylcholinesterase (AChE) that are increased in the hippocampus. [D-Lys
(3)]I-GHRP-6 also restores the abnormal levels of metabolites such as

campus, NTS: Nucleus of the solitary tract, SN:
substantia nigra, TL: Temporal lobe, VTA:
ventral tegmental area.

glucose and cholesterol and spatial disorientation in a monosodium L-
glutamate (MSG)-treated obese rat model (Madhavadas et al., 2014).
Unlike ghrelin mimetics, the administration of ghrelin in 5XFAD mice
shows no significant difference in Ap burden despite the increased
hippocampal neurogenesis and reduced microgliosis (Moon et al.,
2014). Remarkably, in several studies, ghrelin has been reported to
exhibit beneficial effects via regulation of autophagy (Bonfili et al.,
2013; Mao et al., 2015b; Tong et al., 2012). Especially, ghrelin deficient
mice (GOAT gene knockout) have reduced microtubule-associated
protein light chain 3-II (LC3-II), implying decreased autophagy (Zhang
et al., 2015). In addition, treatment with ghrelin in the APP gene-
transfected neuronal cell line restores proteasome function, which
promotes the autophagy pathway (Cecarini et al., 2016). These studies
suggest that ghrelin and its receptors may be involved directly or in-
directly in reducing AR accumulation. However, the mechanism in-
volved in AP accumulation and degradation in AD brains is unclear.
Therefore, investigation of the role of ghrelin in A} homeostasis is
necessary to enhance the therapeutic prospects of patients with AD
(Fig. 2).

3.2. Tau hyperphosphorylation

Aggregates of hyperphosphorylated tau protein are one of the major
pathological features of AD (Scheltens et al., 2016). Hyperpho-
sphorylated tau proteins detach from the microtubules, resulting in the
destabilization of microtubules and forming aggregated NFT (Avila,
2006; Igbal et al., 2005). Similar to AP, hyperphosphorylated tau in-
termediates cause cytotoxicity and cognitive impairment (Khlistunova
et al., 2006; Santacruz et al., 2005). Various kinases are involved in the
tau phosphorylation, and these kinases interact closely with numerous
factors including glucose metabolism, insulin, and ghrelin (Chen et al.,
2010; Lesort et al., 1999; Planel et al., 2004). Furthermore, AD is as-
sociated with brain insulin-resistance that results in abnormal glucose
utilization (de la Monte, 2012).

Ghrelin reduces abnormal phosphorylation of tau® and mod-
ulates insulin sensitivity by phosphorylation of AKT, which is down-
stream of phosphatidylinositol 3-kinase (PI3-K), and glycogen synthase
kinase (GSK)-3p in a normal or high glucose environment (Chen et al.,
2010). In the AD rat model induced by intracerebroventricular (i.c.v)

er199
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Fig. 2. The Effect of Ghrelin on AR homeostasis.

One of the primary causes of amyloid cascade in AD is considered to be the disruption of Ap homeostasis, a constant process of production and elimination of Ap. The
AP production is mediated through a sequential cleavage of amyloid precursor protein (APP) by B-secretase and y-secretase. AP aggregates into oligomers and fibril
form and later becomes A plaque, one of the histopathological features of AD. These oligomers and intermediates formed in the process are toxic to the synapse and
neurons. AP is removed through autophagic degradation by beclin-1 and microtubule-associated protein light chain 3-II (LC3-II) and enzymatic proteolysis by
insulin-degrading enzyme (IDE) and neprilysin (Nep). GHS-R stimulation through ghrelin and its analogs inhibits the accumulation of AB and promotes the au-
tophagic degradation of AP-containing autophagosome. However, the role of ghrelin in the enzymes involved in AP degradation and amyloidogenic pathway is not
known. AICD: amyloid intracellular domain.

Insulin Neurofibrillary Fig. 3. T%le Effect of Ghrelin on Tau

i L Accumulation.
reSIStan,ce_. <«—sensitivity Hyperphosphorylated tau and its aggregate
(AD brain) neurofibrillary tangle are regarded as patho-
logical features and causes of AD together with
PI3-K m AB. Among the various kinases, glycogen syn-

thase kinase-3p (GSK-3B) is a major mediator
of tau hyperphosphorylation. Ghrelin inhibits
GSK'3B'p hyperphosphorylation of tau by phosphor-

pAkt/PKB —_— 1 ylating GSK-33 through the AMPK pathway

and PI3-K/Akt pathway, respectively. AMPK:
5’ adenosine monophosphate-activated protein

pAMPK

o kinase, GSK-3p: glycogen synthase kinase-33,
GSK-3B PI3-K: phosphatidylinositol 3-kinase, PKB:
l protein kinase B.
Hyperphosphorylation

tau

Microtubule destablllzatlon

regulate the activity of the kinases that are involved in phosphorylation
(Fig. 3). Although several studies have reported the roles of ghrelin in

infusion of AP and acyl-ghrelin, phosphorylation of AMP-induced pro-
tein kinase (AMPK) and GSK-3f3 and glucose metabolism are improved,

and hyperphosphorylation of tau, Ap deposition, and memory impair-
ment are inhibited (Kang et al., 2015). In addition, an intravenous in-
fusion of des-acyl-ghrelin in humans significantly improves glucose
metabolism (Benso et al., 2012). These results suggest that ghrelin may

regulating the activity of a variety of kinases such as mitogen-activated
protein kinase (MAPK) and Ca®* /calmodulin-dependent protein kinase
II (CaMKII), which are associated with tau phosphorylation and their
neurotoxic ability, the direct mechanisms of effects of ghrelin on tau
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Fig. 4. The Effect of Ghrelin on Mitochondrial
Dysfunction in Alzheimer’s Disease.
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hyperphosphorylation is still not fully elucidated (Chen et al., 2011;
Leugers et al., 2013; Wei et al., 2015; Yeh et al., 2005).

3.3. Mitochondrial dysfunction

Mitochondrial dysfunction and oxidative stress are well known as
major causes of apoptosis (Chang et al., 2010; Joza et al., 2001;
Kroemer and Reed, 2000; Wang and Youle, 2009). Notably, mi-
tochondria isolated from patients with AD not only have structural
damage with high levels of oxidative mitochondrial DNA damage but
also have AP accumulation (Hirai et al., 2001; Pinho et al., 2014). Si-
milarly, the distribution of mitochondrial AB in APP-expressing mice is
correlated with the AD-related pathology (Caspersen et al., 2005). AP
attacks the electron transport complex III/IV (succinate-cytochrome c
reductase/cytochrome c oxidase) (Caspersen et al., 2005). In particular,
AP induces potent mitochondrial dysfunction in synapses, leading to a
decrease in synaptic vesicle protein (synaptophysin) and actin
(Mungarro-Menchaca et al., 2002). In addition, tau”*°'" transgenic
mice also showed significantly reduced levels of mitochondrial complex
I/V (NADH-ubiquinone oxidoreductase/ATP synthase) and impaired
mitochondrial function in the brain (David et al., 2005). These key
mitochondrial enzymes damaged by AP and tau impair ATP production
and membrane potential. In addition, overload of superoxide radicals in
the mitochondria cause oxidative stress and release of cytochrome c,
which initiates apoptosis (Aleardi et al., 2005; Caspersen et al., 2005;
Hauptmann et al., 2006; Rhein et al., 2009). These changes are ac-
companied by neuroinflammation and neuronal death that cause pro-
gression of AD.

In hippocampal and hypothalamic cells, ghrelin exerts protective
effects by mitigating mitochondrial dysfunction and oxidative stress
induced by ABO in a GHS-R1a-dependent manner (Gomes et al., 2014;
Martins et al., 2013). The molecular mechanisms of ghrelin on mi-
tochondrial toxicity induced by AP or tau are still debated, but several

Impaired ATP production

mechanisms involved in ghrelin-mediated mitochondrial protection
have been reported (Chung et al., 2007; Lee et al., 2011). In oxygen-
glucose deprivation-induced mitochondrial damage of primary hy-
pothalamic neurons, ghrelin not only increased the Bcl-2/Bax ratio but
also inhibited the release of cytochrome c and the activity of caspase 3
(Chung et al., 2007). In hydrogen peroxide-treated primary oligoden-
drocytes, ghrelin treatment ameliorated apoptosis by increasing acti-
vation of ERK and inhibiting activation of p38MAPK (Lee et al., 2011).
Similarly, des-acyl-ghrelin restored the expression of damaged electron
transport system complexes IV/V via upregulation of optic atrophy type
1 protein in the liver of an ischemia/reperfusion rat model (Rossetti
et al., 2017). In gastric ischemic injury, ghrelin alleviates tissue con-
gestion and ulceration through antioxidant activity demonstrated by
oxidative stress markers such as thiobarbituric acid reactive substance
and glutathione (El Eter et al., 2007). Another study reported that the
neuroprotective effect of ghrelin on the midbrain dopaminergic neurons
in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced
Parkinson's disease (PD) model is dependent on the regulation of mi-
tochondria-derived oxidative stress via uncoupling protein 2 (UCP2)
(Andrews et al., 2009). Furthermore, administration of ghrelin during
ischemic injury of the forebrain protected the hippocampus accom-
panied with upregulation of UCP-2 (Liu et al., 2009). These results
suggest that ghrelin may potentially mitigate mitochondrial dysfunc-
tion and oxidative stress in patients with AD through mitochondrial
protection (Fig. 4). However, clearer demonstration of the molecular
functions of ghrelin in mitochondria is required.

3.4. Neuroinflammation

Over-activated glial cells co-located with AR plaques are the bio-
chemical markers for AD brains (Akiyama et al., 2000). Even prior to
the development of AD symptoms, activated glial cells gather in Af
aggregation sites and A} plaques (Boza-Serrano et al., 2018; Heneka
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Fig. 5. The Effect of Ghrelin on Neuroinflammation in Alzheimer’s Disease.

Microglia and astrocytes degrade and internalize A through phagocytosis and receptors such as LRP, RAGE, and MACRO. However, chronic and excessive sensi-
tization of glial cells by AP induces neuroinflammation though inflammatory cytokines and oxidative stress. Soluble oligomers of AP are known to be the most
neurotoxic form. Neuronal death acts as an activator of glial cells and forms a positive feedback loop for neuroinflammation. Ghrelin, which can cross the blood—brain
barrier (BBB), not only inhibits proinflammatory cytokines and oxidative damage, but also alleviates BBB disruption. a2M: a2-macroglobulin, apo: apolipoprotein,
LRP: lipoprotein receptor-related protein, MACRO: macrophage receptor with collagenous structure, RAGE: receptor for advanced glycation end products.

et al., 2015; Kummer et al., 2014). Microglia and astrocytes that par-
ticipate in neuroinflammation mediates the immune response, leading
to either neuronal death or survival (Wyss-Coray and Mucke, 2002).
Initially, the immune response of microglia degrades cytotoxic sub-
stances such as AP through phagocytosis (Streit, 2002). However, after
chronic stimulation of inflammatory triggers, the activated glial cells
release inflammatory cytokines, chemokines, and reactive oxygen spe-
cies (ROS) (Akiyama et al., 2000). These neurotoxic factors are re-
sponsible for neuronal damage, which causes neuronal death and the
release of microglial activators such as laminin, neuromelanin, matrix
metalloproteinase 3, and a-synuclein to form positive feedback loops of
neurotoxicity (Block et al., 2007). In glial cells, A is directly taken up
via the macrophage receptor with collagenous structure (MACRO) or
the receptor for advanced glycation end products (RAGE), or it is
complexed with apolipoprotein (apo) E to be internalized through the
low density lipoprotein receptor-related protein (LRP)1/a2-macro-
globulin (a2M) (Block et al., 2007; Thal, 2012). Moreover, A and its
aggregates act not only as microglia activators but also as direct neu-
rotoxic factors (Mucke and Selkoe, 2012; Qin et al., 2002). Similarly,
astrocytes stimulated by A} can secrete acute-phase reactants such as C-
reactive protein, al-antichymotrypsin, and a2M, which can either al-
leviate or aggravate AD (Querfurth and LaFerla, 2010).

Ghrelin, which can cross the blood-brain barrier (BBB) (Banks et al.,

2002), exhibits anti-inflammatory effects in various disease models
such as PD and ischemic stroke (Baatar et al., 2011; Bayliss and
Andrews, 2013; Ku et al., 2016; Moon et al., 2009a; Spencer et al.,
2013). Intraperitoneal administration of acyl-ghrelin alleviates neu-
roinflammation, neurodegeneration, and memory deficits induced by
injection of ABO into the hippocampus of mice (Moon et al., 2011).
Furthermore, the treatment with des-acyl-ghrelin in N9 microglia cells
that does not express GHS-R1a significantly reduce interleukin (IL)-6
and IL-13 mRNA expression induced by insoluble fibrillary A3, whereas
human ghrelin is ineffective (Bulgarelli et al., 2009). In addition, the
administration of acyl-ghrelin and MK-0677 (a ghrelin receptor ago-
nist), alleviates AfB;_40-induced acute neuroinflammation and AB-over-
expressed chronic neuroinflammation in mice respectively (Jeong et al.,
2018; Santos et al., 2017). Similarly, the ghrelin administration reduces
secretion of pro-inflammatory cytokines in both chronic sciatic nerve
injury model and acute lipopolysaccharide (LPS) challenge models
(Beynon et al., 2013; Guneli et al., 2010). The administration of des-
acyl-ghrelin, but not acyl-ghrelin, protect from BBB disruption and
oxidative damage induced by ischemic stroke (Ku et al., 2016). Several
studies have suggested that ghrelin reduces the amount of in-
flammatory cytokines through suppression of NF-kB (Li et al., 2004; Qu
et al.,, 2019; Zhou and Xue, 2009), but another study reported that
ghrelin is not involved in the nuclear translocation of NF-kB in LPS-
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Fig. 6. The Effect of Ghrelin on Synaptic Dysfunction in Alzheimer’s Disease.

AP and its intermediates disturb the action of neurotrophic factors and neurotransmitters on receptors. In particular, A promotes endocytosis of AMPAr and NMDAr.
Impaired synaptic transmission leads to synaptic loss and dendritic degeneration, and diminishes synaptic plasticity due to imbalance between LTP and LTD. Ghrelin
enhances synaptic density, restores impaired synaptic plasticity and alleviates AP-induced synaptic degeneration. AMPAr: a-amino-3-hydroxy-5-methyl-4-iso-
xazolepropionic acid receptor, BDNF: brain-derived neurotrophic factor, GLU: glutamate, LTD: long-term depression, LTP: long-term potentiation, NMDAr: N-methyl-
D-aspartate receptor, p75NT: p75 neurotrophin, p75NTr: p75 neurotrophin receptor, TrkB: tropomyosin receptor kinase B.

induced inflammatory responses (Beynon et al., 2013). Interestingly, in
the carrageenan-induced inflammatory paw edema model, the central
and peripheral administration of GHS-R1a agonist EP1572 is not ef-
fective at all while des-ghrelin significantly reduces hyperalgesia and
paw edema in both central and peripheral administration (Sibilia et al.,
2012). These results suggest that ghrelin has therapeutic potential
against neuroinflammation and BBB damage induced by chronic in-
flammation during AD, but further studies on the detailed molecular
mechanisms involved are required for therapeutic applications (Fig. 5).

3.5. Synaptic dysfunction

Synaptic dysfunction may be a major factor closely related to cog-
nitive impairment in dementia including AD (Bereczki et al., 2018;
Selkoe, 2002; Terry et al., 1991). Furthermore, altered synaptic content
in the frontal lobe of AD patients has long been observed and is an early
event in mild AD (Davies et al., 1987; DeKosky and Scheff, 1990;
Masliah et al., 2001; Shankar and Walsh, 2009). AP not only reduces
the action of neurotrophic factors such as brain-derived neurotrophic
factor (BDNF) but also promotes endocytosis of glutamate receptors
(AMPAr and NMDAr), level of tropomyosin receptor kinase B (TrkB)
and activation of p75 neurotrophin receptor (p75NTr)-mediated sig-
naling pathway (Connor et al., 1997; Coulson, 2006; Forner et al., 2017;
Hsieh et al., 2006; Snyder et al., 2005; Querfurth and LaFerla, 2010). In
particular, ABO causes degeneration of dendritic spines and an im-
balance between long-term potentiation (LTP) and long-term depres-
sion (LTD) (Shankar et al., 2007). These studies provide evidence of the
impairment of synaptic transmission and synaptic plasticity by AP in
AD.

Peripherally administered ghrelin enhances synaptic formation and
LTP generation by binding to GHS-R in the hippocampus (Diano et al.,
2006). Both subcutaneous and i.c.v injections of ghrelin enhance
learning and memory (Diano et al., 2006; Ribeiro et al., 2014). The

targeted disruption of ghrelin signaling decreases the number of spine
synapses in the stratum radiatum and then increases rapidly after the
ghrelin administration (Diano et al., 2006). In cultured rat hippocampal
slices, ghrelin promotes the dendritic spine synapse formation. In ad-
dition, synaptic densities are significantly increased in neonate cortical
cultures, in which acyl-ghrelin is treated chronically, and this increase
is higher in the early development stages (Stoyanova and le Feber,
2014). These studies suggest that ghrelin can be a therapeutic target for
the prevention of synaptic degeneration in AD (Dos Santos et al., 2013;
Stoyanova, 2014). The administration of ghrelin in an acute AD mouse
model induced by hippocampal ABO injection preventes synaptic loss
and preserves cholinergic fibers (Moon et al., 2011). Furthermore, the
long-term administration of ghrelin that restores synaptic plasticity and
memory retention in the AB-treated animal model implying that this
effect is mediated by a postsynaptic mechanism (Eslami et al., 2018).
These reports suggest that chronic administration of ghrelin may
mediate synaptic enhancement, improve memory impairment, and al-
leviate cognitive dysfunction in patients with AD (Fig. 6).

3.6. Adult hippocampal neurogenesis

The hippocampus, plays as important role in learning and memory,
and it is affected by AD (Marlatt and Lucassen, 2010; Mu and Gage, 2011).
Changes in adult hippocampal neurogenesis levels are under debate be-
cause the results from the studies examining the levels of neurogenesis in
AD are not consistent. A number of studies have reported decreased
neurogenesis in the hippocampus of AD animal models (Rodriguez and
Verkhratsky, 2011). However, in both patients with AD and animal
models, neurogenesis is enhanced in the hippocampus, which indicates a
compensatory response (Jin et al., 2004a, b). Considering the impaired
neurogenesis causes cognitive deficits in AD (Hollands et al., 2016), the
stimulation of neurogenesis may be a novel therapeutic approach for the
treatment of AD (Marlatt and Lucassen, 2010).
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Several studies have reported about ghrelin-mediated hippocampal
neurogenesis (Moon et al., 2014, 2009b). GHS-R1a-expressing hippo-
campal progenitor cells are co-localized with anti-Ki-67, a precursor
cell proliferation marker of the subgranular zone (SGZ) (Moon et al.,
2009b). In addition, the BrdU-positive cells, a mitotic biomarker in
SGZ, are significantly decreased compared to the controls when animal
models are treated with anti-ghrelin antibody (Moon et al., 2009b).
Moreover, the DCX-positive cells, an early neuronal differentiation
marker, are significantly increased in the ghrelin-treated adult mice in
SGZ of the dentate gyrus (DG) (Christie and Cameron, 2006; Moon
et al., 2009b). Notably, a study reported on the ameliorating effects of
exogenous ghrelin on adult hippocampal neurogenesis in the AD animal
model (Moon et al., 2014).

The targeted deletion of ghrelin reduces SGZ progenitor cell num-
bers in the ghrelin knockout (GKO) mice, which is restored after
treating with ghrelin (Li et al., 2013). Ghrelin administration also re-
stores the decreased number of immature neurons and newly generated
neurons in the GKO mice (Li et al., 2013). Moreover, calorie restriction
increases serum ghrelin levels (Lutter et al., 2008) and enhances adult
neurogenesis in the mice (Lee et al., 2002). Furthermore, ghrelin levels
decrease in elderly subjects compared to young subjects (Rigamonti
et al., 2002), and patients with AD have decreased ghrelin production
compared to the age-matched control individuals (Dos Santos et al.,
2013). Therefore, low ghrelin levels can account for the high frequency
of dementia and decreased hippocampal neurogenesis in the obese and
elderly patients (Li et al., 2013; Lindqvist et al., 2006; Rigamonti et al.,
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Fig. 7. The Effect of Ghrelin on Adult
Hippocampal Neurogenesis in Alzheimer’s
Disease.

Diminished adult hippocampal neurogenesis in
AD is considered a major cause of cognitive
decline and is proposed as a therapeutic target.
Surprisingly, administration of ghrelin was
observed to increase proliferation and neu-
ronal differentiation of hippocampal SGZ cells
in an AD mouse model. The mechanism of
ghrelin-mediated hippocampal neurogenesis
includes several signaling pathways such as
Akt, ERK, Jak2, and STAT3. In addition,
ghrelin increased the expression of E2F1, cy-
clin A, and CDK2, which promote cell cycle
progression to the S phase, and downregulated
the expression of p27 and p57, which arrest the
cell cycle. In contrast, the number of SGZ
progenitor cells decreased when either the
ghrelin gene was knocked-out or an anti-
ghrelin antibody was administered. CDK2: cy-
clin-dependent kinase 2, SGZ: subgranular
zone.
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2002; Tschop et al., 2001). Taken together, these results suggest the
important role of ghrelin in the regulation of hippocampal neurogenesis

The mechanism of action of ghrelin on the hippocampal neuro-
genesis is not well understood, but there are some studies describing the
mechanisms. Ghrelin seems to promote rapid activation of ERK1/2 and
AKT, which is blocked by GHS-R1a antagonist (Xiang et al., 2011). The
activation of STAT3 is also triggered after the ghrelin treatment (Chung
et al., 2013). The specific inhibitors of MEK1, MEK1/2, Akt, mTOR, and
Jak2/STATS3 suppressed the ghrelin-induced proliferation (Chung et al.,
2013). This suggests that ghrelin is involved in the neurogenesis
through several signaling pathways. Furthermore, fluorescence acti-
vated cell sorting (FACS) analysis reveals the cell cycle effects of
ghrelin, as the cell progresses from GO/G1 phase to S phase by in-
creasing the nuclear expression of E2F1 (Chung and Park, 2016). In
addition, ghrelin increases cyclin A and CDK (cyclin-dependent kinase)
2, which promote the cell cycle progression, and it inhibits the ex-
pression of p27 and p57 that promotes an exit from the cell cycle
(Chung and Park, 2016). As aberrant cell cycle re-entry markers can be
observed in several stages in AD patients (Counts and Mufson, 2017)
and the ghrelin-mediated cell cycle restoration can trigger the hippo-
campal neurogenesis (Kim et al., 2017), the ghrelin-induced hippo-
campal neurogenesis enhancement may be considered for the AD
treatment (Fig. 7). Unlike the adult rats, acyl-ghrelin does not alter the
neurogenesis or mitogenesis in the male juvenile rats but rather an
increased immobility time in the tail suspension test (Jackson et al.,
2019). In addition, ghrelin treatment suppresses the proliferation of
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Fig. 8. Therapeutic Implication of Ghrelin in the AB/tau-mediated Pathological Cascade of Alzheimer’s Disease.

Due to disruption of Ap homeostasis, A} accumulation and tau phosphorylation produce hyperphosphorylated aggregates that induce cytotoxicity, synaptic dys-
function, and mitochondrial dysfunction. Inflammatory vicious cycle by excessive immunological reactions induced by glial cells and neurons, apoptotic cell death
through cytochrome C (Cyt C) and caspase 3, and synaptic plasticity impair due to synaptic dysfunction ultimately lead to cognitive impairment. In this AD
pathological cascade, ghrelin inhibits tau hyperphosphorylation through glycogen synthase kinase-3f3 (GSK-3[) inactivation and ameliorates AP} burden through an
unknown pathway. In addition, ghrelin reduces reactive oxygen species (ROS) and inhibits apoptotic mediators such as bcl-2-associated X protein (Bax), Cyt C, and
caspase 3. Furthermore, ghrelin decreases AB-induced cytotoxicity and inflammatory cytokine. Moreover, ghrelin improves synaptic plasticity and cognitive function.
In the AD pathogenesis diagram, the direct effects are colored: Af in red, tau in purple, mitochondrial dysfunction in yellow, and the cascade effect in gray. The
beneficial effects of ghrelin are highlighted in green. AB: amyloid beta, AMPAr: a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, APP: amyloid
precursor protein, BBB: blood-brain barrier, NMDAr: N-methyl-D-aspartate receptor, TrkBr: Tropomyosin receptor kinase B, oyy,: mitochondrial membrane potential.

neural progenitor cells derived from fetal mice, whereas it induces
neuronal differentiation of neural progenitor cells (Watanabe et al.,
2015). Moreover, the subventricular zone (SVZ), another brain region
in which adult neurogenesis is observed, does not express GHS-R, and
SVZ neurogenesis is not modulated by acyl-ghrelin (Ratcliff et al.,
2019). These results suggest that the role of ghrelin in neurogenesis
may be dependent on age and brain area.

3.7. Cognitive dysfunction

The reputable AD pathological hallmarks, AB and Tau, contribute to
cognitive decline due to neuronal alterations such as synaptic dys-
function, synaptic loss, and neuronal death (Brier et al., 2016; Haass
and Selkoe, 2007; Roberson et al., 2011; Selkoe, 1991; Spires-Jones and
Hyman, 2014). Initially, the episodic memory is affected followed by
the deterioration of attention, executive functions, semantic memory,
and visuospatial memory during the progression of AD (Grady et al.,

1988; Hodges and Patterson, 1995; Perry and Hodges, 2000; Perry
et al., 2000).

Ghrelin is a hypothalamus-targeting gastric hormone released
during fasting, eliciting hunger; however, emerging evidence suggests
that ghrelin may also affect memory function (Kang et al., 2015).
Especially, serum ghrelin levels during fasting are positively associated
with verbal learning and memory functions in fit and healthy elderly
(Bellar et al., 2013). Injections of ghrelin into the rat hippocampus,
amygdala, and dorsal raphe nucleus (DRN) increase memory retention
(Carlini et al., 2004). Moreover, ghrelin increases dendritic synapse
formation, LTP generation, and spatial learning and memory (Diano
et al., 2006). Therefore, the ghrelin receptor signaling is suggested as a
therapeutic target for cognitive dysfunction (Cong et al., 2010). In
particular, ghrelin plays a role in the function of the temporal lobe, one
of the most severely affected cognition-related regions in AD (Gahete
et al., 2010). However, some studies suggest that the role of ghrelin in
cognitive function may be controversial. The intra-hippocampal
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The role of ghrelin associated with Alzheimer’s disease in CNS function.
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Memory retrieval

LTP/LTD

Synaptic Function

Hippocampal neurogenesis

Experimental model

AR i.c.v infused AD rat model

Ghrelin or ghrelin receptor knockout animals

Main result

Infusion of acyl-ghrelin in AD-rat prevented the short retention
memory loss and AB deposition

Administration of ghrelin restored performance of behavioral memory
tests

Fasting levels of serum ghrelin were positively associated with verbal learning and memory function

Experimental model

Ghrelin administered peripherally in normal

mice

In vivo ghrelin microinjection into the CA1
subregion of the hippocampus of rats

Experimental model
AP .4p-induced AD model

Ghrelin and ghrelin receptor knockout animals

ABO- intrahippocampal injected rat
Cortical cells from neonatal brains of rats

Rat hippocampal neuron or slice

Experimental model

Anti-ghrelin antibody treated animal model

Main result

Administration of ghrelin promoted neuronal dendritic spine
formation and LTP in the hippocampus

Ghrelin reduced the threshold values to generate LTP in the DG

Main result

Chronic ghrelin administration improves AB-induced synaptic
dysfunction through postsynaptic mechanism

Disruption of ghrelin signaling decreased the number of spine synapses
in the stratum radiatum, and it was restored by ghrelin

Ghrelin can attenuate synaptic loss mediated by ABO

AG affected synaptogenesis and accelerated synaptic activity

GHS-R1a activation enhanced excitatory synaptic transmission and
plasticity

Main result

The number of proliferation and differentiation of cells in SGZ was
significantly decreased in the anti-ghrelin group compared to that in
the control group

Ref.
(Kang et al., 2015)

(Diano et al., 2006)
(Bellar et al., 2013)
Ref.

(Diano et al., 2006)

(Carlini et al., 2010b)

Ref.
(Eslami et al., 2018)

(Diano et al., 2006)

(Moon et al., 2011)
(Stoyanova and le
Feber, 2014)
(Ribeiro et al., 2014)

Ref.
(Moon et al., 2009b)

Ghrelin treated animal model

The number of early neuronal differentiation marker DCX positive

cells significantly increased in the SGZ

GKO mice

Ghrelin restored the decreased number of immature neurons and SGZ

(Li et al., 2013)

progenitor cells in GKO mice

Adult rat hippocampal NSCs

Treatment of ghrelin induced proliferation of adult rat NSCs through

(Chung et al., 2013)

activation of Akt, ERK1/2, and STAT3 pathways

Adult rat hippocampal NSCs

Ghrelin promoted cell cycle progression by upregulation of E2F1,

(Chung and Park,

cyclin A and CDK2, and downregulation of p27 and p57 2016)

injection of ghrelin in the rats improves the long-term memory, but
there is no significant change in the short-term memory (Carlini et al.,
2010a). In addition, the systemic injection of ghrelin increases adult
hippocampal neurogenesis but does not significantly improve spatial
memory. On the other hand, the intra-hippocampal injection of ghrelin
in the mice impairs spatial memory without changes in adult hippo-
campal neurogenesis (Zhao et al., 2014). Furthermore, the acute ad-
ministration of acyl-ghrelin in young male participants does not affect
cognitive test battery (Kunath et al., 2016). These studies suggest that
the effects and mechanisms of ghrelin on cognitive function may be
dependent on the administration route, dose, type of ghrelin, and spe-
cies.

Remarkably, the central ghrelin infusion almost completely pre-
vents short term memory loss even though AP deposition in AD rats
infused with acyl-ghrelin is higher than that of non-AD rats infused with
saline (Kang et al., 2015). In addition, ghrelin also inhibits neuronal
loss caused by ABO in the DG and increases the density of hippocampal
synaptic and cholinergic nerve fibers; ghrelin also decreases ABO-in-
duced microgliosis in the hippocampus (Moon et al., 2011). Further-
more, in rat model of obesity, the injection of ghrelin receptor an-
tagonist [D-lys (3)]-GHRP-6 reduces hippocampal Ap levels and
restores ghrelin levels to the same level as that of the control
(Madhavadas et al., 2014). A recent study using nuclear magnetic re-
sonance for the identification of metabolites shows that the i.c.v ghrelin
administration improves memory and cognitive functions by affecting
oxidative stress, osteoporosis pathways, and vascular risk factors in the
animal model of AD (Goshadrou et al., 2018). In this respect, ghrelin is
able to play a beneficial role in the cognitive dysfunction, which is the
major symptom of AD.

4. Potential of ghrelin receptor agonists as therapeutic agents for
treatment of AD

A number of clinical trials have been conducted using ghrelin

10

receptor agonists in various conditions (Ejskjaer et al., 2009, 2013;
Garcia et al., 2013; Garin et al., 2013; Nass et al., 2008). Ghrelin mi-
metics such as pralmorelin, macimorelin, and tabimorelin have been
tested in clinical trials for the diagnosis of growth hormone deficiency
(Muller et al., 2015). Several studies have examined the effects of the
ghrelin receptor agonists on the pathologies and symptoms of AD.
Administration of LY444711, a ghrelin receptor agonist, enhances
hippocampal dependent cognitive functions in AD mice. However,
LY444711 does not change the microglial activation and A burden
(Kunath et al., 2015). In contrast, another study reports that LY444711
prevents cognitive decline and ameliorates AD pathologies including
the level of AP and microglial activation (Dhurandhar et al., 2013).
There are no changes in AP levels as well as cognitive functions after
the MK-0677 administration in the AD patients (Sevigny et al., 2008).
Interestingly, the ghrelin antagonist [D-Lys (3)]-GHRP-6 reduces Ap
and AChE levels in MSG-induced obese rats (Madhavadas et al., 2014).
One recent study reported that MK-0677 administration reduces the Af3-
related pathologies such as AB deposition, neuroinflammation and
neurodegeneration in mice at the early stage of AD (Jeong et al., 2018).
Therefore, based on these findings that support the beneficial roles of
ghrelin receptor agonists in AD, the ghrelin receptor agonists and
ghrelin mimetics should be considered for therapeutic agents for AD
(Fig. 8). Although the short-term safety of ghrelin administration has
been verified in a number of studies in humans administered with
ghrelin, there is still a lack of research on the long-term safety of ghrelin
(Akamizu et al., 2004; Garin et al., 2013). The introduction of the
ghrelin or ghrelin agonists for the treatment should consider the po-
tential adverse effects since ghrelin can intervene universally in the
pathological features of AD, which require the long-term administra-
tion.

5. Conclusion

Studies on the effects of ghrelin have changed their focus from its
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The association of ghrelin with Alzheimer’s disease-related pathologies.
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A accumulation

Tau accumulation

Mitochondrial deficits

Neuro-inflammation

Cerebral amyloid
angiopathy

Autophagy

Cognitive dysfunction

Experimental model

Long-term administration of ghrelin agonist to APP
transgenic mice (APPSwDI)

Ghrelin receptor antagonist in MSG-induced obese rats

Experimental model
Treatment of hippocampal neurons with ghrelin in
neonatal Sprague-Dawley rats

ApB i.c.v infused AD rat models

Experimental model
Ghrelin injected into primary cultured hippocampal
neurons

Peripheral administration of ghrelin to rats

Ghrelin administration to ABO treated hypothalamic
cells

Administration of ghrelin to acyl- and des-acyl-ghrelin
to a mouse model of stroke

Peripheral ghrelin administration to gastric ischemic
injured rats

Isolated human polymorphonuclear (PMN) cells
incubated with ghrelin

Ghrelin treatment of H,O, treated oligodendrocytes
Ghrelin treatment of hypothalamic neurons exposed to
oxygen-glucose deprivation

Experimental model

Des-acyl-ghrelin, hexarelin, EP 80317 (synthetic GH-
secretagogue) administered into microglia activated
by A fibrils

Ghrelin administration to chronic constriction injury
model of sciatic nerve injury

Pre-treatment of an LPS-stimulated dopaminergic
SN4741 cell line with ghrelin

Ghrelin administration to AP oligomer injected mice
Experimental model

Administration of des-acyl-ghrelin in mice after
transient middle cerebral artery occlusion

Cobalt chloride-induced hypoxic condition in cardiac
H9c2 cells

Experimental model

Treatment of a human colon adenocarcinoma cell line
with ghrelin

C57BL/6 mice fed high-fat diet

GH-infusion to ghrelin-deficient mice

Ghrelin treatment in rat hippocampal neural stem cells
inducing oxygen-glucose deprivation

Experimental model

Injection of ghrelin in the rat hippocampus, amygdala,
and DRN

Injection of [D-Lys (3)]-GHRP-6 in MSG-induced AD
rats.

AR i.c.v infused AD rat model

APP-SwDI mouse model

AP oligomer-injected mice

Main result

Significant reduction of A in DG, and reduction of insoluble Af3-
40 and -42 levels in both groups

Reduction in Af level and increase in AChE level in MSG-
induced obese rats

Main result

Improving neuronal glucose uptake and Tau
hyperphosphorylation partially via the PI3-K/Akt pathway
Ghrelin improved neuronal insulin sensitivity and decreased Tau
hyperphosphorylation in a normal or high glucose environment
Infusion of acyl-ghrelin activated AMPK pathways and then
inhibited GSK-3b promoting hyperphosphorylation of Tau
protein.

Main result

Attenuating A induced superoxide production and
mitochondrial membrane depolarization, eventually increasing
cell survival rate.

Preventing cell death through receptor dependent mechanisms
Increasing mRNA level of mitochondrial UCP2

Inhibiting ROS production, calcium deregulation and
mitochondrial dysfunction

des-acyl-ghrelin decreased infarct, swelling and apoptosis, by
inhibiting superoxide production, NOX activity, and expression
of 3-nitrotyrosine

Ghrelin decreased levels of LDH, TNF-a, and thiobarbituric acid
reactive substance, and increased glutathione level in gastric
tissues

Ghrelin reduced vascular mucosal permeability and INOS
protein level

In human PMN cells, ghrelin attenuated ROS production in a
dose-dependent manner

Ghrelin inhibited cytochrome c release and caspase 3 activation
Ghrelin increased Bcl-2/Bax ratio leading to mitochondrial
transmembrane potential stabilization and inhibition of
apoptotic cell death

Main result

Des-acyl ghrelin, hexarelin and EP80317 reduced mRNA
expression of IL-1f and IL-6

Decreasing TNF-a and IL-1p levels

Ghrelin attenuated IL-6 secretion and prevented dopaminergic
SN nerve cell destruction

Ghrelin significantly reduced ABO-induced neuroinflammation
Main result

Des-acyl-ghrelin reduced BBB disruption and attenuated hyper-
permeability

Ghrelin protected hypoxic injury by inducing autophagy and
inhibiting oxidative stress

Main result

Ghrelin inhibits proteasomes and induces autophagy as a pro-
apoptotic factor

Ghrelin upregulated autophagy via AMPK/mTOR
Ghrelin-deficient mice exhibit decreased hepatic autophagy, and
GH administration restores the decrease in autophagy

Ghrelin suppressed production of autophagosomes and
autophagy activity

Main result

Administration of ghrelin in the hippocampus, amygdala, and
DRN promoted memory retention

Administration of ghrelin receptor antagonist [D-Lys (3)]-GHRP-
6 improved the spatial disorientation

Ghrelin induced less AB deposition in the hippocampus and
prevented cognitive dysfunction in rats infused with A}
Infusion of acyl-ghrelin reduced Tau phosphorylation in AD rats
Long-term administration of ghrelin mimetics LY444711
restored cognitive impairment.

Ghrelin prevented neuroinflammation, neuronal and synaptic
loss, attenuating cognitive impairment

Ref.

(Dhurandhar et al.,
2013)
(Madhavadas et al.,
2014)

Ref.

(Chen et al., 2010)

(Kang et al., 2015)

Ref.
(Martins et al., 2013)

(Barazzoni et al.,
2005)
(Gomes et al., 2014)

(Ku et al., 2016)

(El Eter et al., 2007)

(El Eter et al., 2007)
(Lee et al., 2011)

(Chung et al., 2007)

Ref.
(Bulgarelli et al.,
2009)

(Guneli et al., 2010)
(Beynon et al., 2013)
(Moon et al., 2011)
Ref.

(Ku et al., 2016)

(Tong et al., 2012)

Ref.
(Bonfili et al., 2013)

(Mao et al., 2015a)
(Zhang et al., 2015)

(Chung et al., 2018)

Ref.
(Carlini et al., 2004)

(Madhavadas et al.,
2014)
(Kang et al., 2015)

(Dhurandhar et al.,
2013)
(Moon et al., 2011)

well-known metabolic functions to the neuronal extra-hypothalamic
functions. Roles of ghrelin on CNS functions associated with AD have
been investigated (Table 1). The symptoms or physical responses of AD
and the molecular and biochemical mechanisms involved in AD

including the AP and tau functions are closely related to the ghrelin
actions. Furthermore, ghrelin is involved in changes in the cell cycle,
mitochondria, neuroinflammation, and cognitive functions in AD.
Subsequently, these effects of ghrelin in AD have suggested that the
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ghrelin receptor agonists and ghrelin mimetics may serve as the po-
tential therapeutic agents for AD (Table 2). The experimental evidence
supports the hypothesis that ghrelin and ghrelin receptors may serve as
candidate drug targets. Yet, relatively few studies have examined the
molecular and cellular mechanisms of the ghrelin involvement in AD.
Therefore, future experiments should demonstrate the molecular and
cellular responses underlying the physiological and behavioral re-
sponses. In addition, as the most predominant form of ghrelin in plasma
is des-acyl-ghrelin rather than acyl-ghrelin and the effects of des-acyl-
ghrelin are independent of those of GHS-R1a, future research should
focus on the identification of des-acyl-ghrelin receptors and their en-
dogenous functions. Furthermore, GOAT knockout mice, which lack
acyl-ghrelin, will help confirm the neuronal functions of des-acyl-
ghrelin and expand our knowledge in this area. The present review may
have some limitations since the methodology used in this study was not
a systematic methodology. Thus, it may not thoroughly assure the in-
ternal and external validity. A further study using the systematic
methodology is needed to supplement this limitation. Nonetheless, this
review can provide useful implications in establishing a treatment for
AD by outlining the pathologic roles and therapeutic implications of
ghrelin in patients with AD and related symptoms. A future assignment
for researchers and clinicians is to translate highly promising basic
research of ghrelin into clinical applications. Ghrelin has been de-
monstrated to be a prospective target for disease treatment and pre-
vention in various respects. Particularly, no therapeutic drug that can
substantially cure AD has been developed yet. Thus, as ghrelin is
broadly associated with each step in the AD development, improving
endogenous ghrelin secretion, stimulating GHS-R1a, or antagonizing
ghrelin-restricting mechanisms may be great strategies to control the
pathologies of AD. In addition, the neuroprotective effects of ghrelin
(GHS-R1a agonists) may also improve age-induced neurological dis-
orders. Nevertheless, the potential adverse effects caused by an increase
in ghrelin should be considered. For instance, developing site-specific
therapies are essential in controlling ghrelin levels during the AD
treatment.
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