

Review

Development of new treatments for Alzheimer's disease based on the modulation of translocator protein (TSPO)

B.D. Arbo^{a,b,c,*}, M.F. Ribeiro^{c,d}, L.M. Garcia-Segura^{e,f}^a Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil^b Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil^c Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil^d Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS) – Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil^e Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain^f Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain

ARTICLE INFO

Keywords:

Neurosteroids
Neuroprotection
Peripheral benzodiazepine receptor (PBR)
Neurodegenerative diseases
Neuroinflammation
4'-chlorodiazepam

ABSTRACT

The increase in life expectancy of the world population is associated with a higher prevalence of neurodegenerative diseases. Alzheimer's Disease (AD) is the most common neurodegenerative disease, affecting currently 43 million people over the world. To date, most of the pharmacological interventions in AD are intended for the alleviation of some of its symptoms, and there are no effective treatments to inhibit the progression of the disease. Translocator protein (TSPO) is present in contact points between the outer and the inner mitochondrial membranes and is involved in the control of steroidogenesis, inflammation and apoptosis. In the last decade, studies have shown that TSPO ligands present neuroprotective effects in different experimental models of AD, both *in vitro* and *in vivo*. The aim of this review is to analyze the data provided by these studies and to discuss if TSPO could be a viable therapeutic target for the development of new treatments for AD.

1. Introduction

The increase in life expectancy of the world population is associated with a higher prevalence of neurodegenerative diseases. Alzheimer's disease (AD) is the most common neurodegenerative disease and the major cause of dementia in people aged 60 years or older, affecting around 43 million patients over the world (Querfurth e LaFerla, 2010; GBD 2016 Disease and Injury Incidence and Prevalence Collaborators, 2017). In the USA, the estimated cost of the care and treatment of patients with dementia, including non-AD associated dementia, is of 290 billion dollars for the year 2019 (Alzheimer's Association, 2019).

Despite the great impact caused by AD in the society, currently there are no available therapies that act on the pathogenic mechanisms of the disease to avoid its progression. The pharmacological treatment of AD is currently based on the use of two different drug classes: acetylcholinesterase inhibitors (e.g. rivastigmine, galantamine and donepezil) and the NMDA receptor antagonist memantine. However, the benefit associated with the use of these drugs is small, and they are only able to help in the control of some of AD symptoms (Sugino et al., 2015). Consequently, while the mortality rates associated with

cardiovascular diseases and stroke in the USA have decreased by 11% and 16%, respectively, in the period between 2000 and 2015, the mortality rate associated with AD has increased by 123% in the same period. These numbers show that the available treatments for AD patients are ineffective. Indeed, AD is currently the sixth major cause of death in the USA and the fifth cause in people over 65 years old (Alzheimer's Association, 2019). Therefore, it is necessary to find new strategies for the treatment of AD and other diseases associated with dementia.

In the last decade, several clinical trials were performed trying to identify the efficacy of new drugs in the treatment of AD. However, despite the large investment, no disease-modifying drug for AD has been approved. Examples of drugs that presented promising effects in preclinical studies but that have failed when tested in phase 3 clinical trials include verubecestat (Egan et al., 2018) and semagacestat (Doody et al., 2013), which inhibit, respectively, β -secretase and γ -secretase, which are the enzymes involved in A β production, and the anti-A β antibodies bapineuzumab (Salloway et al., 2014; Vandenberghe et al., 2016) and solanezumab (Honig et al., 2018). Several factors have been associated with the failures of these trials, such as the inclusion of

* Corresponding author at: Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Campus Carreiros - Av. Itália, km 8, 96203-900, Rio Grande, RS, Brazil.

E-mail addresses: brunoarbo@gmail.com, brunoarbo@furg.br (B.D. Arbo).

patients in late stages of AD in these trials, as well as an inadequate understanding of AD pathophysiology, leading to the selection of wrong treatment targets (Anderson et al., 2017). Therefore, in addition to studies aiming to increase our understanding of AD pathophysiology, it is important to search for agents acting not only in the amyloid cascade and in the reduction of A β accumulation, but also in other molecular mechanisms involved in AD progression, including neuroinflammation, oxidative stress and mitochondrial dysfunction.

Translocator protein (TSPO) is a mitochondrial membrane protein that participates in several cellular functions, including the regulation of inflammation, apoptosis, and mitochondrial respiration (Papadopoulos and Lecanu, 2009). TSPO is also involved in the regulation of the cholesterol transport inside the mitochondria, which is the rate limiting step in steroidogenesis (Rone et al., 2012; Fan et al., 2015; Barron et al., 2018; Fan et al., 2018).

In the last decade, several studies have reported that TSPO ligands are neuroprotective in different experimental pathological conditions, including models of traumatic brain injury and neurodegenerative diseases (Arbo et al., 2015). Specifically, considering AD, different research groups have shown that TSPO ligands are neuroprotective in both *in vitro* (Arbo et al., 2016b, 2017) and *in vivo* experimental models of this disease (Barron et al., 2013; Ma et al., 2016; Christensen and Pike, 2018). The aim of this review is to discuss recent findings regarding TSPO function and whether the modulation of this protein could be used for the development of new treatments for AD.

2. TSPO structure and functions

TSPO is an 18 kDa protein located in contact sites between the outer and inner mitochondrial membranes. It was formerly known as peripheral benzodiazepine receptor (PBR) due to its capacity of binding to diazepam (Papadopoulos et al., 2006). TSPO is formed by 169 amino acids that are arranged in five alpha-helical domains and presents a high affinity for cholesterol, due to the presence of a cholesterol recognition amino acid consensus (CRAC) domain in its C-terminal region (Li and Papadopoulos, 1998; Jaremko et al., 2014). It is important to mention that TSPO sequence is well conserved among different species (Jaremko et al., 2014), and this may have a positive impact on translational approaches towards the development of therapeutic agents targeting this protein.

Experimental studies have shown that, in healthy states, TSPO is expressed by several peripheral organs, including the gonads, adrenal, lung, kidney, spleen, liver and heart (Banati et al., 2014; Wang et al., 2016). In the brain, however, TSPO expression is relatively low, with this protein being found especially in glial cells and at lower levels in neurons (Chen and Guilarte, 2008; Papadopoulos and Lecanu, 2009; Betlazar et al., 2018). On the other hand, it is known that TSPO expression increases in reactive astrocytes and microglia at sites of neuroinflammation associated with pathological conditions, as for example in AD (McNeela et al., 2018).

Functionally, one of the most studied functions of TSPO is its role in cholesterol transport inside the mitochondria, thereby regulating steroidogenesis. In this context, studies have shown that TSPO associates with other mitochondrial proteins, such as the voltage-dependent anion channel (VDAC), the ATPase family AAA Domain-containing protein 3 (ATAD3) and steroidogenic acute regulatory protein (StAR), forming a structure called transduceosome, which regulates cholesterol transport into the mitochondria and its metabolism (Midzak et al., 2011; Rone et al., 2012). Recent studies based on crystal structure of TSPO have suggested that cholesterol transport by this protein complex may involve a sliding mechanism on the external protein surface (Li et al., 2015), challenging previous studies that hypothesized that TSPO could function as a channel (Lacapère and Papadopoulos, 2003).

As previously mentioned, the transport of cholesterol into the mitochondria is the first and the rate-limiting step in steroidogenesis. Since TSPO is thought to regulate the cholesterol entrance into the

mitochondria, it is expected that this would lead to the regulation of steroidogenesis (Midzak et al., 2011; Rone et al., 2012). Indeed, this role was confirmed by studies showing decreased steroid formation after the knockout or silencing of TSPO in cell lines (Papadopoulos et al., 1997; Kelly-Hershkovitz et al., 1998; Hauet et al., 2005). Although TSPO is not essential for basal steroidogenesis in gonads and the adrenals (Banati et al., 2014; Tu et al., 2014; Fan et al., 2015), it is necessary for the action of the mechanisms that regulate steroidogenesis (Fan et al., 2015, 2018), its mutations in rats and a polymorphism in humans are associated with impaired steroidogenesis (Owen et al., 2017) and its deletion causes steroidogenic abnormalities that become exacerbated with aging (Barron et al., 2018).

TSPO is also involved in the control of other mitochondrial functions, including mitochondrial respiration, apoptosis and cell proliferation (Hirsch et al., 1989; Azarashvili et al., 2007; Veenman et al., 2007; Corsi et al., 2008). In addition, it has been suggested that TSPO participates in the opening of the mitochondrial permeability transition pore (MPTP) (Sileikyte et al., 2011), although some studies have questioned this function (Sileikyte et al., 2014). Although further research is required for a better understanding on TSPO functions, TSPO ligands have shown neuroprotective activity in different experimental models of neurodegenerative disease, suggesting that the modulation of this protein could represent a viable molecular target for the development of new treatments for AD.

3. TSPO as a molecular target for the development of new treatments for AD

The idea that TSPO could be used as a target for neuroprotective strategies is directly related with its location and functions. Compounds that act on the mitochondria have been suggested as potential therapeutic agents in neurodegenerative diseases, since the most prominent roles of this organelle are the regulation of cellular metabolism and energy production, which are essential to keep the integrity of brain structure and function (Lin and Beal, 2006; Lee, 2016). Indeed, mitochondrial dysfunction has been reported as an early event that leads to compromised energy supply and antioxidant response, contributing to neurodegeneration in AD (Hall et al., 2017).

Both *in vitro* and *in vivo* studies have been performed in order to evaluate the neuroprotective actions of TSPO ligands in experimental models of AD. Two studies *in vitro* have tested the neuroprotective activity of the TSPO ligand 4'-chlorodiazepam (4'-CD, also known as Ro5-4864) against A β neurotoxicity (Arbo et al., 2016b, 2017). In the first study, it was demonstrated that 4'-CD protects SH-SY5Y neuroblastoma cells against A β neurotoxicity (Arbo et al., 2016b). More recently, it has been shown that 4'-CD also protects organotypic hippocampal cultures against A β (Arbo et al., 2017).

The neuroprotective activity of 4'-CD has been also demonstrated in an *in vivo* model of AD. Actually, the first study suggesting that TSPO ligands could be neuroprotective against AD is the study of Barron et al. (2013). In this study, the authors have shown that the administration of 4'-CD attenuated hippocampal A β accumulation and decreased gliosis in 3xTgAD mice of 7 and 24 months of age. These changes were associated with improved spontaneous alternation behavior in the Y-maze, a hippocampal-dependent measure of attention and working memory, in 3xTgAD mice of both ages. The idea that TSPO may be associated with the regulation of A β levels has been also suggested by Tan et al. (2018), which showed that decreased levels of TSPO are associated with increased A β deposition in rats chronic treated with lorazepam.

Recently, Christensen and Pike (2018) showed that PK11195 presented anxiolytic effects and improved spontaneous alternation behavior in the Y-maze in female 3xTgAD mice. The study from Christensen and Pike (2018) is important since it extended to females the beneficial actions exerted by TSPO ligands against AD-related pathology. In addition, the fact that another TSPO ligand also presented beneficial effects in this experimental model of AD reinforces the idea that this

protein could be a viable target for the development of new drugs for the treatment of this disease. In this regard, it is important to mention that other TSPO ligands are also neuroprotective *in vitro* against A β neurotoxicity (Kim et al., 2017a, b).

Kim et al. (2017a, b) performed a series of studies involving the screening of the potential neuroprotective actions of a significant number of TSPO ligands in HT22 mouse hippocampal cells exposed to A β . The authors have shown that the thienopyrrolotriazine derivatives bind to TSPO in a similar way to 4'-CD, however, despite the excellent neuroprotective *in vitro* activity of some of these compounds, they presented a poor liver microsomal stability, and due to this reason, they were not evaluated *in vivo* (Kim et al., 2017a).

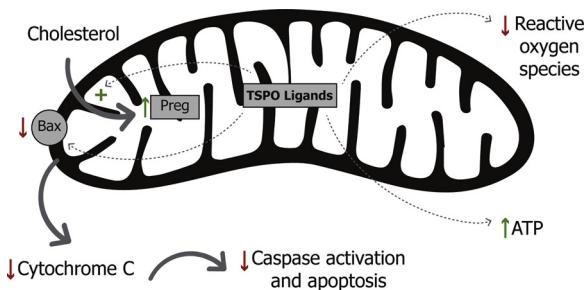
On the other hand, after a screening *in vitro* two benzimidazole derivatives (compounds 25 and 38) were evaluated in a mouse AD model, in which animals were treated with intracerebroventricular injections of A β . In this context, it was observed that the intraperitoneal administration of the two benzimidazole compounds for 6 days significantly improved the cognitive function of AD mice in the Y-maze spontaneous alternation test (Kim et al., 2017b). In addition, the authors orally administered one of these compounds (compound 25) to transgenic AD mice (APPswe/PSEN1 dE9 2X), and observed that it only partially restored fear-associated learning and memory. It should be mentioned that pharmacokinetic studies showed that this compound is BBB permeable, but presents a low oral bioavailability (3.7%), and this could explain its lower efficacy when orally administered, in comparison to its superior protective activity after intraperitoneal administration (Kim et al., 2017b). Therefore, further studies involving the development of potent thienopyrrolotriazine and benzimidazole derivatives with a more favorable pharmacokinetic profile may provide novel candidate compounds for the treatment of AD.

4. Potential cellular mechanisms involved in the neuroprotective actions of TSPO ligands

4.1. Cholesterol homeostasis

Although the brain represents only 2% of the total body mass, it contains almost 25% of the total amount of free cholesterol in the human body (Vance et al., 2006; Giudetti et al., 2016). Due to the presence of the blood-brain barrier (BBB), which prevents the import of cholesterol from the periphery, most of brain cholesterol is locally synthesized (Vance et al., 2006). Although it has been shown that neurons can synthesize cholesterol, astrocytes are the main source of cholesterol in the brain, delivering it to neurons through a cholesterol shuttle (Orth and Bellosta, 2012; Zhang and Liu, 2015).

Several studies have shown that changes in cholesterol levels and turnover may be involved in the development of AD. One key protein involved in cholesterol homeostasis is apolipoprotein E (apoE), which is also able to regulate A β aggregation and clearance in the brain (Sparks et al., 1996). The apoE gene presents three major alleles in humans: apoE ϵ 2, apoE ϵ 3, apoE ϵ 4. Jiang et al. (2008) showed that apoE promotes the proteolytic degradation of A β , however, apoE ϵ 4 seems to be less effective than other isoforms in the promotion of A β clearance, being particularly important in AD etiology. Therefore, the presence of copies of this allele increases the risk of developing AD. In fact, at least 50% of patients with AD present at least one apoE ϵ 4 allele (Vergheese et al., 2011; Liu et al., 2013; Giudetti et al., 2016).


TSPO influences cholesterol homeostasis in the brain by its role in steroidogenesis, facilitating the metabolism of cholesterol to synthesize neuroactive steroids. In addition, TSPO may protect cell viability by decreasing intracellular cholesterol accumulation and regulating its intracellular distribution, reducing its accumulation in the mitochondria (Taylor et al., 2014; Musman et al., 2017). For instance, TSPO ligands induce the redistribution of intracellular cholesterol in astrocytes, promoting its accumulation in lipid droplets in parallel to a decrease in cholesterol esterification (Falchi et al., 2007). In this regard,

it is important to mention that A β homeostasis is affected by the balance between free and cholesterol esters. In the brain, cholesterol can be esterified by the enzyme acyl-CoA cholesterol acyltransferase (ACAT), and the accumulation of cholesterol-esters is able to increase A β release, while genetic ablation or pharmacological inhibition of ACAT is associated with decreased levels of A β (Puglielli et al., 2001; Hutter-Paier et al., 2004; Bhattacharyya and Kovacs, 2010). Therefore, the reduction of the esterification of cholesterol by TSPO ligands may be involved in the action of these molecules in decreasing A β -levels in animal models of AD (see below).

4.2. Regulation of mitochondrial functions, oxidative stress and apoptosis

Mitochondrial dysfunction and oxidative stress are key etiopathological components of AD and aging-associated dementias (Ganguly et al., 2017; Hallé et al., 2017; Cheignon et al., 2018). Mitochondria play a central role in the control of death signals and mitochondrial dysfunction under uncontrolled production of reactive oxygen species (ROS) may result in the stimulation of apoptosis signaling pathways. In addition, studies have shown that increased production of A β is associated with impairments in cellular respiration, energy production, and mitochondrial chain complex activities (Rhein et al., 2009; Hallé et al., 2017).

TSPO is involved in the control of cellular bioenergetics, ROS production and apoptosis (Lin et al., 2014; Repalli, 2014; Baez et al., 2017; Hallé et al., 2017) and the neuroprotective action of TSPO ligands in models of AD may in part be mediated by the regulation of these cellular events (Fig. 1). For instance, A β promotes mitochondrial dysfunction through the decrease of the mitochondrial membrane potential and ATP production and by the increase of the generation of ROS, while some thienopyrrolotriazine and benzimidazole derivatives with a high binding affinity for TSPO were able to rescue these parameters (Kim et al., 2017a, b). Similar results were reported by Hallé et al. (2017), which showed that several TSPO ligands, including XBD173 and some new imidazoquinazolinone derivatives can increase ATP production in

Fig. 1. Mitochondria as a target for the neuroprotective actions of TSPO ligands in Alzheimer's Disease (AD). AD-related neurodegeneration is closely associated with mitochondrial dysfunction. Typical mechanisms involved in the progression of AD include decreased mitochondrial membrane potential and ATP production and increased generation of reactive oxygen species (ROS), as well as increased expression of pro-apoptotic proteins such as Bax, which is associated with increased cytochrome C release, caspase activation and apoptosis. TSPO ligands could exert neuroprotective actions in AD by increasing ATP production and decreasing ROS generation in the mitochondria. In addition, TSPO ligands could decrease the expression of Bax and the release of cytochrome C, inhibiting caspase activation and apoptosis. The modulation of steroidogenesis is another mechanism possibly involved in the neuroprotective actions of TSPO ligands, since some *in vitro* studies demonstrated that the overexpression of amyloid precursor protein (APP) is associated with a decreased production of pregnenolone that could be at least partially restored by TSPO ligands. Pregnenolone then can be converted in other steroids with well-documented neuroprotective activity, such as estradiol, progesterone and allopregnanolone. Finally, it is important to mention that the neuroprotective actions of TSPO ligands in AD may involve other mechanisms not illustrated in this figure, including the regulation of neuroinflammation and A β deposition.

neuroblastoma cells overexpressing APP. In addition, the neuroprotective actions of 4'-CD against β -amyloid in organotypic hippocampal cultures seem to involve antioxidant effects (Arbo et al., 2017). Furthermore, TSPO regulates the antioxidant response pathway in different cells, decreasing ROS production and increasing the resistance against oxidative stress under different conditions (Carayon et al., 1996; Wang et al., 2014; Tu et al., 2016; Bonsack and Sukumari-Ramesh, 2018). These data are supported by a recent study from Lejri et al. (2019) showing that imidazoquinazolinone TSPO ligands improve mitochondrial respiration, reduce ROS and oxidative stress-induced cell death in neuroblastoma cells overexpressing APP.

The regulation of apoptosis by TSPO has implications for the development of TSPO-related drugs to promote apoptosis in cancer cells, such as gliomas (Veenman et al., 2014). However, some TSPO ligands, such as the new ligand 2-(2-chlorophenyl) quinazolin-4-yl dimethylcarbamate (2-Cl-MGV-1), have been shown to reduce neuronal apoptosis in different neurodegenerative models (Chen et al., 2017). In addition, *in vitro* studies have shown that the TSPO ligand 4'-CD protect SH-SY5Y neuroblastoma cells against A β neurotoxicity by a mechanism that involves an increased expression of anti-apoptotic proteins, such as survivin, and a decreased expression of pro-apoptotic proteins, such as Bax (Arbo et al., 2016b), which is related with increased cytochrome C release, caspase activation and apoptosis.

4.3. Regulation of neuroinflammation

As previously mentioned, although TSPO expression in the brain is low in healthy states, its expression increases in reactive astrocytes and microglia at sites of neuroinflammation associated with pathological conditions, as for example in AD (McNeela et al., 2018). The increase in TSPO expression in reactive glial cells has allowed the use of TSPO ligands as image markers of neuroinflammation, with a positive correlation with amyloid load and TSPO ligand binding (Parbo et al., 2017; Passamonti et al., 2018). Indeed, Tournier et al. (2019) recently demonstrated that the brain levels of TSPO increase before the apparition of amyloid deposits in the 3xTgAD mouse model of AD, and that there is a positive correlation between TSPO levels and amyloid deposits in the subiculum and the dorsal hippocampus of these animals.

Studies by Barron et al. (2013) have shown that the treatment of 3xTgAD mice with the TSPO ligand 4'-CD results in the downregulation of gliosis in the hippocampus, in parallel with a decrease in A β accumulation. In agreement with these findings, other authors have also shown that 4'-CD decreases reactive gliosis and presents neuroprotective actions in other experimental models, such as kainic acid excitotoxicity (Veiga et al., 2005).

In contrast, Christensen and Pike (2018) showed that the treatment of female 3xTgAD mice with another TSPO ligand, PK11195, was associated with increased glial activation, including increased levels of IL-6 (Christensen and Pike, 2018), a pro-inflammatory cytokine that has been associated with increased A β phagocytosis (Chakrabarty et al., 2010). It is important to mention, however, that PK11195 seems to play a complex role in the regulation of neuroinflammation. Actually, Ma et al. (2016) showed that PK11195 reduces neuroinflammation and A β generation and protects against the cognitive dysfunction induced by the systemic administration of lipopolysaccharide (LPS), a molecule found in the cellular wall of Gram-negative bacteria that is widely used for the experimental induction of inflammation. Moreover, Veiga et al. (2007) also reported that PK11195 decreases reactive gliosis in animals treated with LPS, corroborating the idea that this TSPO ligand may decrease glial activation under some circumstances. More recently, Lee et al. (2016) demonstrated that different TSPO ligands reduce the pro-inflammatory response elicited by toll-like receptors (TLR) ligands, with more pronounced effects on microglial cells than astrocytes. These data were actually confirmed by Azrad et al. (2019), which showed that PK11195 and other TSPO ligands are able to suppress the inflammatory response of BV-2 microglial cells exposed to LPS, decreasing the levels

of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nitric oxide (NO). Therefore, the data from these studies suggest that TSPO may present a dual role in the regulation of glial activation. Finally, the study of Baez et al. (2017) indicates that TSPO ligands, such as 4'-CD, activate protective mechanisms in glial cells to preserve its metabolic activity under pathological conditions. Since the impaired homeostatic response of astrocytes and microglia participates in the progression of AD-associated neuronal damage (Dzamba et al., 2016; Chun and Lee, 2018; Hansen et al., 2018), the neuroprotective action of TSPO ligands may be in part mediated by the maintenance of a proper adaptive functionality and immune response of glial cells, rather than by the control of the amount of reactive gliosis.

4.4. Regulation of brain steroidogenesis

TSPO has been classically associated with the regulation of steroidogenesis. Indeed, this protein is highly expressed in steroid-synthesizing tissues, such as the gonads and adrenals (Papadopoulos et al., 2006). The regulation of steroidogenesis seems to be highly relevant for the neuroprotective actions of TSPO ligands, since the brain is a steroidogenic tissue (Guennoun et al., 2015; Liere et al., 2017) and neuroactive steroids, such as estradiol, progesterone, allopregnanolone and dehydroepiandrosterone (DHEA) are neuroprotective under different conditions (Irwin and Brinton, 2014; Arevalo et al., 2015; Arbo et al., 2016a; Cspedes Rubio et al., 2018; De Nicola et al., 2018; Powrie and Smith, 2018; Bourque et al., 2019; Guennoun et al., 2019; Stein and Sayeed, 2019).

The modulation of neuroactive steroid levels by TSPO ligands is associated with its neuroprotective action in different experimental pathological conditions, including rodent models of peripheral nerve regeneration (Lacor et al., 1999), central and peripheral experimental diabetic neuropathy (Giatti et al., 2009; Mitro et al., 2012), neuroinflammation and cognitive dysfunction (Ma et al., 2016) and affective disorders (Costa et al., 2011). However, although 4'-CD modulates the production of neuroactive steroids under some of the studied conditions, there is not a clear correlation between the levels of these steroids with the neuroprotective actions of 4'-CD in a mouse model of AD (Barron et al., 2013), and more studies are needed to clarify if the neuroprotective actions of TSPO ligands in experimental models of this disease are related with the regulation of steroidogenesis. Indeed, trying to clarify this question, Hallé et al. (2017) reported that APP overexpression in neuroblastoma cells is associated with a remarkable decrease in pregnenolone production. Moreover, the authors found that different TSPO ligands, including 4'-CD, XBD173 and some imidazoquinazolinone derivatives are able to improve cellular bioenergetics and increase pregnenolone production (the first steroid that is produced in the steroidogenic pathway after the cholesterol import into the mitochondria) in these cells, corroborating a potential neuroprotective effect of TSPO ligands in AD (Fig. 1). However, it should be mentioned that there was a significant discrepancy in the active concentrations of TSPO ligands for the observation of these effects, since nanomolar concentrations were able to increase ATP production, but pregnenolone production was increased only in the micromolar range (Hallé et al., 2017). Finally, it would be essential to identify which specific steroids could be mediating the neuroprotective actions of TSPO ligands, since some compounds, such as some glucocorticoids, could be neurotoxic under some conditions (Virgin et al., 1991; Wolkowitz et al., 2007).

4.5. Regulation of A β accumulation

AD is a pathology characterized by two major neuropathological findings: the senile plaques, formed by the aggregation of amyloid-beta (A β) peptide, and the neurofibrillary tangles, formed by the aggregation of hyperphosphorylated Tau protein (Querfurth and LaFerla, 2010). The A β peptide is formed by the sequential cleavage of the amyloid precursor protein (APP) by the enzymes β - and γ -secretase (Querfurth and

LaFerla, 2010). The amyloid cascade hypothesis for the pathogenesis of AD is receiving increasing support from experimental and genetic studies (Barage and Sonawane, 2015; Luo et al., 2016; Selkoe and Hardy, 2016). Therefore, it is important to determine whether TSPO ligands reduce β -amyloid load in experimental models of AD.

Barron et al. (2013) have shown that in 3xTgAD mice of 7 and 24 months of age, the administration of 4'-CD attenuates hippocampal $\text{A}\beta$ accumulation. Similar results have been obtained by Christensen and Pike (2018), which showed that PK11195 decreased $\text{A}\beta$ deposition in some brain regions of female 3xTgAD mice. These studies suggest that the neuroprotective action of 4'-CD in AD mouse models may be associated with a reduction in β -amyloid load. Furthermore, PK11195 has also been shown to reduce $\text{A}\beta$ accumulation in a mouse model of cognitive dysfunction induced by peripheral LPS administration (Ma et al., 2016). Finally, Lejri et al. (2019) recently demonstrated that several TSPO ligands, including XBD173, SSR-180575 and imidazoquinazolinone derivatives are able to decrease $\text{A}\beta$ in HEK SWE APP cells. All these findings suggest that regulation of $\text{A}\beta$ may be one of the main mechanisms involved in the neuroprotective actions of TSPO ligands for AD.

5. Conclusion and future directions

In summary, findings from *in vitro* and *in vivo* preclinical studies suggest that TSPO could be a viable target for the development of neuroprotective drugs for the treatment of AD. Although the therapeutic effects of TSPO ligands in AD patients have not been investigated, the fact that TSPO sequence is well conserved among different species may encourage further clinical trials addressing this question. Since TSPO expression is higher in sites of inflammation, targeting this protein could be an interesting strategy for the treatment of diseases related to inflammation, including AD. TSPO activation by its ligands could be associated with decreased $\text{A}\beta$ accumulation and AD-related neuroinflammation and mitochondrial dysfunction, leading to improved cognition. It is important to mention that other mechanisms of action may be also associated with the neuroprotective actions of TSPO ligands. More specifically, one important question to be answered by further studies is if the regulation of steroidogenesis is involved in the neuroprotective effects elicited by TSPO activation.

Another important aspect that needs to be adequately addressed is the possible sex differences in the neuroprotective actions of TSPO ligands in AD animal models, since most *in vivo* studies have used male animals. Although it was recently shown that TSPO ligands may be also neuroprotective in females (Christensen and Pike, 2018), more studies evaluating possible sex differences in the actions of TSPO ligands are needed before the conduction of possible clinical trials. Finally, as observed in the studies by Kim et al. (2017a, b), it is important the search and development of new compounds with high binding affinity to TSPO and good safety and pharmacokinetic profiles in order to increase the chances of success of possible clinical trials designed to test their efficacy in AD patients.

Declaration of Competing Interest

None.

Acknowledgements

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq – Chamada Universal 429639/2018-0) and the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS – APE 18/2551-00011058-8). Maria Flávia Ribeiro received a CNPq 1D Researcher Productivity Grant. The authors thank Gabrielli Tiburi Soares Pires for helping in the preparation of the figure.

References

Alzheimer's Association, 2019. 2019 Alzheimer's disease facts and figures. *Alzheimers Dement.* 15, 321–387.

Anderson, R.M., Hadjichrysanthou, C., Evans, S., Wong, M.M., 2017. Why do so many clinical trials of therapies for Alzheimer's disease fail? *Lancet.* 390, 2327–2329.

Arbo, B.D., Benetti, F., Garcia-Segura, L.M., Ribeiro, M.F., 2015. Therapeutic actions of translocator protein (18 kDa) ligands in experimental models of psychiatric disorders and neurodegenerative diseases. *J. Steroid Biochem. Mol. Biol.* 154, 68–74.

Arbo, B.D., Benetti, F., Ribeiro, M.F., 2016a. Astrocytes as a target for neuroprotection: modulation by progesterone and dehydroepiandrosterone. *Prog. Neurobiol.* 144, 27–47.

Arbo, B.D., Hoppe, J.B., Rodrigues, K., Garcia-Segura, L.M., Salbego, C.G., Ribeiro, M.F., 2017. 4'-Chlorodiazepam is neuroprotective against amyloid-beta in organotypic hippocampal cultures. *J. Steroid Biochem. Mol. Biol.* 171, 281–287.

Arbo, B.D., Marques, C.V., Ruiz-Palmero, I., Ortiz-Rodriguez, A., Ghorbanpoor, S., Arevalo, M.A., Garcia-Segura, L.M., Ribeiro, M.F., 2016b. 4'-Chlorodiazepam is neuroprotective against amyloid-beta through the modulation of survivin and bax protein expression *in vitro*. *Brain Res.* 1632, 91–97.

Arevalo, M.A., Azcoitia, I., Garcia-Segura, L.M., 2015. The neuroprotective actions of oestra diol and oestrogen receptors. *Nat. Rev. Neurosci.* 16, 17–29.

Azarashvili, T., Grachev, D., Krestinina, O., Evtodienko, Y., Yurkov, I., Papadopoulos, V., Reiser, G., 2007. The peripheral-type benzodiazepine receptor is involved in control of Ca^{2+} -induced permeability transition pore opening in rat brain mitochondria. *Cell Calcium* 42, 27–39.

Azrad, M., Zeineh, N., Weizman, A., Veenman, L., Gavish, M., 2019. The TSPO ligands 2-Cl-MGV-1, MGV-1, and PK11195 differentially suppress the inflammatory response of BV-2 microglial cell to LPS. *Int. J. Mol. Sci.* 20.

Baez, E., Guijo-Veja, G.P., Echeverria, V., Sandoval-Rueda, D.A., Barreto, G.E., 2017. 4'-Chlorodiazepam protects mitochondria in T98G astrocyte cell line from glucose deprivation. *Neurotox. Res.* 32, 163–171.

Banati, R.B., Middleton, R.J., Chan, R., Hatty, C.R., Kam, W.W., Quin, C., Graeber, M.B., Parmar, A., Zahra, D., Callaghan, P., Fok, S., Howell, N.R., Gregoire, M., Szabo, A., Pham, T., Davis, E., Liu, G.J., 2014. Positron emission tomography and functional characterization of a complete PBR/TSPO knockout. *Nat. Commun.* 5, 5452.

Barage, S.H., Sonawane, K.D., 2015. Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer's disease. *Neuropeptides.* 52, 1–18.

Barron, A.M., Garcia-Segura, L.M., Caruso, D., Jayaraman, A., Lee, J.W., Melcangi, R.C., Pike, C.J., 2013. Ligand for translocator protein reverses pathology in a mouse model of Alzheimer's disease. *J. Neurosci.* 33, 8891–8897.

Barron, A.M., Ji, B., Kito, S., Suhara, T., Higuchi, M., 2018. Steroidogenic abnormalities in translocator protein knockout mice and significance in the aging male. *Biochem. J.* 475, 75–85.

Betlazar, C., Harrison-Brown, M., Middleton, R.J., Banati, R., Liu, G.J., 2018. Cellular sources and regional variations in the expression of the neuroinflammatory marker translocator protein (TSPO) in the normal brain. *Int. J. Mol. Sci.* 19, 2707.

Bhattacharyya, R., Kovacs, D.M., 2010. ACAT inhibition and amyloid beta reduction. *Biochim. Biophys. Acta* 1801, 960–965.

Bonsack, F., Sukumari-Ramesh, S., 2018. TSPO: an evolutionarily conserved protein with elusive functions. *Int. J. Mol. Sci.* 19, 1964.

Bourque, M., Morissette, M., Di Paolo, T., 2019. Repurposing sex steroids and related drugs as potential treatment for Parkinson's disease. *Neuropharmacology.* 147, 37–54.

Carayon, P., Portier, M., Dussossoy, D., Bord, A., Petitprêtre, G., Canat, X., Le Fur, G., Casellas, P., 1996. Involvement of peripheral benzodiazepine receptors in the protection of hematopoietic cells against oxygen radical damage. *Blood.* 87, 3170–3178.

Céspedes Rubio, Á., Pérez-Alvarez, M.J., Lapuente Chala, C., Wandosell, F., 2018. Sex steroid hormones as neuroprotective elements in ischemia models. *J. Endocrinol.* 237, R65–R81.

Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., Collin, F., 2018. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. *Redox Biol.* 14, 450–464.

Chen, M.K., Guilarde, T.R., 2008. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. *Pharmacol. Ther.* 118, 1–17.

Chen, Y., Veenman, L., Singh, S., Ouyang, F., Liang, J., Huang, W., Marek, I., Zeng, J., Gavish, M., 2017. 2-Cl-MGV-1 ameliorates apoptosis in the thalamus and Hippocampus and cognitive deficits after cortical infarct in rats. *Stroke.* 48, 3366–3374.

Christensen, A., Pike, C.J., 2018. TSPO ligand PK11195 improves Alzheimer-related outcomes in aged female 3xTg-AD mice. *Neurosci. Lett.* 683, 7–12.

Chun, H., Lee, C.J., 2018. Reactive astrocytes in Alzheimer's disease: a double-edged sword. *Neurosci. Res.* 126, 44–52.

Corsi, L., Geminiani, E., Baraldi, M., 2008. Peripheral benzodiazepine receptor (PBR) new insight in cell proliferation and cell differentiation review. *Curr. Clin. Pharmacol.* 3, 38–45.

Costa, B., Da Pozzo, E., Chelli, B., Simola, N., Morelli, M., Luisi, M., Maccheroni, M., Taliani, S., Simorini, F., Da Settim, F., Martini, C., 2011. Anxiolytic properties of a 2-phenylindolglyoxylamide TSPO ligand: stimulation of *in vitro* neurosteroid production affecting GABA_A receptor activity. *Psychoneuroendocrinology.* 36, 463–472.

De Nicola, A.F., Garay, L.I., Meyer, M., Guennoun, R., Sitruk-Ware, R., Schumacher, M., Gonzalez Deniselle, M.C., 2018. Neurosteroidogenesis and progesterone anti-inflammatory/neuroprotective effects. *J. Neuroendocrinol.* 30.

Doody, R.S., Raman, R., Farlow, M., Iwatsubo, T., Vellas, B., Joffe, S., Kieburtz, K., He, F., Sun, X., Thomas, R.G., Aisen, P.S., Alzheimer's Disease Cooperative Study Steering Committee, Siemers, E., Sethuraman, G., Mohs, R., Semagacestat Study Group, 2013.

A phase 3 trial of semagacestat for treatment of Alzheimer's disease. *N. Engl. J. Med.* 369, 341–350.

Dzamba, D., Harantova, L., Butenko, O., Anderova, M., 2016. Glial cells - the key elements of Alzheimer's disease. *Curr. Alzheimer Res.* 13, 894–911.

Egan, M.F., Kost, J., Tariot, P.N., Aisen, P.S., Cummings, J.L., Vellas, B., Sur, C., Mukai, Y., Voss, T., Furtek, C., Mahoney, E., Harper Mozley, L., Vandenberghe, R., Mo, Y., Michelson, D., 2018. Randomized trial of verubecestat for mild-to-moderate Alzheimer's disease. *N. Engl. J. Med.* 378, 1691–1703.

Falchi, A.M., Battetta, B., Sanna, F., Piludu, M., Sogos, V., Serra, M., Melis, M., Putzolu, M., Diaz, G., 2007. Intracellular cholesterol changes induced by translocator protein (18 kDa) TSPO/PBP ligands. *Neuropharmacology* 53, 318–329.

Fan, J., Campioli, E., Midzak, A., Culty, M., Papadopoulos, V., 2015. Conditional steroidogenic cell-targeted deletion of TSPO unveils a crucial role in viability and hormone-dependent steroid formation. *Proc. Natl. Acad. Sci. U. S. A.* 112, 7261–7266.

Fan, J., Wang, K., Zirkin, B., Papadopoulos, V., 2018. CRISPR/Cas9-mediated tspo gene mutations lead to reduced mitochondrial membrane potential and steroid formation in MA-10 mouse tumor Leydig cells. *Endocrinology* 159, 1130–1146.

Ganguly, G., Chakrabarti, S., Chatterjee, U., Saso, L., 2017. Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer's disease and Parkinson's disease. *Drug Des. Devel. Ther.* 11, 797–810.

GBD 2016 Disease and Injury Incidence and Prevalence Collaborators, 2017. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the global burden of disease study 2016. *Lancet* 390, 1211–1259.

Giatti, S., Pesaresi, M., Cavaletti, G., Bianchi, R., Carozzi, V., Lombardi, R., Maschi, O., Lauria, G., Garcia-Segura, L.M., Caruso, D., Melcangi, R.C., 2009. Neuroprotective effects of a ligand of translocator protein-18 kDa (Ro5-4864) in experimental diabetic neuropathy. *Neuroscience* 164, 520–529.

Giudetti, A.M., Romano, A., Lavecchia, A.M., Gaetani, S., 2016. The role of brain cholesterol and its oxidized products in Alzheimer's disease. *Curr. Alzheimer Res.* 13, 198–205.

Guennoun, R., Labombarda, F., Gonzalez Deniselle, M.C., Liere, P., De Nicola, A.F., Schumacher, M., 2015. Progesterone and allopregnanolone in the central nervous system: response to injury and implication for neuroprotection. *J. Steroid Biochem. Mol. Biol.* 146, 48–61.

Guennoun, R., Zhu, X., Fréchou, M., Gaignard, P., Slama, A., Liere, P., Schumacher, M., 2019. Steroids in stroke with special reference to progesterone. *Cell. Mol. Neurobiol.* 39, 551–568.

Hallé, F., Lejri, I., Abarghaz, M., Grimm, A., Klein, C., Maitre, M., Schmitt, M., Bourguignon, J.J., Mensah-Nyagan, A.G., Eckert, A., Bibel, F., 2017. Discovery of imidazoquinazolinone derivatives as TSPO ligands modulating neurosteroidogenesis and cellular bioenergetics in neuroblastoma cells expressing amyloid precursor protein. *ChemistrySelect* 2, 6452–6457.

Hansen, D.V., Hanson, J.E., Sheng, M., 2018. Microglia in Alzheimer's disease. *J. Cell Biol.* 217, 459–472.

Hautet, T., Yao, Z.X., Bose, H.S., Wall, C.T., Han, Z., Li, W., Hales, D.B., Miller, W.L., Culty, M., Papadopoulos, V., 2005. Peripheral-type benzodiazepine receptor-mediated activation of steroidogenic acute regulatory protein on cholesterol entry into Leydig cell mitochondria. *Mol. Endocrinol.* 19, 540–554.

Hirsch, J.D., Beyer, C.F., Malkowitz, L., Beer, B., Blume, A.J., 1989. Mitochondrial benzodiazepine receptors mediate inhibition of mitochondrial respiratory control. *Mol. Pharmacol.* 35, 157–163.

Honig, L.S., Vellas, B., Woodward, M., Boada, M., Bullock, R., Borrie, M., Hager, K., Andreasen, N., Scarpini, E., Liu-Seifert, H., Case, M., Dean, R.A., Hake, A., Sundell, K., Poole Hoffmann, V., Carlson, C., Khanna, R., Mintun, M., DeMattos, R., Selzler, K.J., Siemers, E., 2018. Trial of Solanezumab for mild dementia due to Alzheimer's disease. *N. Engl. J. Med.* 378, 321–330.

Hutter-Paier, B., Huttunen, H.J., Puglielli, L., Eckman, C.B., Kim, D.Y., Hofmeister, A., Moir, R.D., Domnitz, S.B., Frosch, M.P., Windisch, M., Kovacs, D.M., 2004. The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer's disease. *Neuron* 44, 227–238.

Irwin, R.W., Brinton, R.D., 2014. Allopregnanolone as regenerative therapeutic for Alzheimer's disease: translational development and clinical promise. *Prog. Neurobiol.* 113, 40–55.

Jaremk, L., Jaremk, M., Giller, K., Becker, S., Zweckstetter, M., 2014. Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. *Science* 343, 1363–1366.

Jiang, Q., Lee, C.Y., Mandrekar, S., Wilkinson, B., Cramer, P., Zelcer, N., Mann, K., Lamb, B., Willson, T.M., Collins, J.L., Richardson, J.C., Smith, J.D., Comery, T.A., Riddell, D., Holtzman, D.M., Tontonoz, P., Landreth, G.E., 2008. ApoE promotes the proteolytic degradation of abeta. *Neuron* 58, 681–693.

Kelly-Hershkovitz, E., Weizman, R., Spanier, I., Leschner, S., Lahav, M., Weisinger, G., Gavish, M., 1998. Effects of peripheral-type benzodiazepine receptor antisense knockout on MA-10 Leydig cell proliferation and steroidogenesis. *J. Biol. Chem.* 273, 5478–5483.

Kim, T., Son, W.S., Morshed, M.N., Londhe, A.M., Jung, S.Y., Park, J.H., Park, W.K., Lim, S.M., Park, K.D., Cho, S.J., Jeong, K.S., Lee, J., Pae, A.N., 2017a. Discovery of thiopyrrolotetrazine derivatives to protect mitochondrial function against β -amyloid-induced neurotoxicity. *Eur. J. Med. Chem.* 141, 240–256.

Kim, T., Yang, H.Y., Park, B.G., Jung, S.Y., Park, J.H., Park, K.D., Min, S.J., Tae, J., Yang, H., Cho, S., Cho, S.J., Song, H., Mook-Jung, I., Lee, J., Pae, A.N., 2017b. Discovery of benzimidazole derivatives as modulators of mitochondrial function: a potential treatment for Alzheimer's disease. *Eur. J. Med. Chem.* 125, 1172–1192.

LaCaprè, J.J., Papadopoulos, V., 2003. Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis. *Steroids* 68, 569–585.

Lacor, P., Gandolfo, P., Tonon, M.C., Brault, E., Dalibert, I., Schumacher, M., Benavides, J., Ferzaz, B., 1999. Regulation of the expression of peripheral benzodiazepine receptors and their endogenous ligands during rat sciatic nerve degeneration and regeneration: a role for PBR in neurosteroidogenesis. *Brain Res.* 815, 70–80.

Lee, J., 2016. Mitochondrial drug targets in neurodegenerative diseases. *Bioorg. Med. Chem. Lett.* 26, 714–720.

Lee, J.W., Nam, H., Yu, S.W., 2016. Systematic analysis of translocator protein 18 kDa (TSPO) ligands on toll-like receptors-mediated pro-inflammatory responses in microglia and astrocytes. *Exp. Neurobiol.* 25, 262–268.

Lejri, I., Grimm, A., Hallé, F., Abarghaz, M., Klein, C., Maitre, M., Schmitt, M., Bourguignon, J.J., Mensah-Nyagan, A.G., Bibel, F., Eckert, A., 2019. *J. Alzheimers Dis.* <https://doi.org/10.3233/JAD-190127>.

Li, F., Liu, J., Zheng, Y., Garavito, R.M., Ferguson-Miller, S., 2015. Protein structure. Crystal structures of translocator protein (TSPO) and mutant mimic of a human polymorphism. *Science* 347, 555–558.

Li, H., Papadopoulos, V., 1998. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. *Endocrinology* 139, 4991–4997.

Liere, P., Pianos, A., Oudinet, J.P., Schumacher, M., Akwa, Y., 2017. Differential effects of the 18-kDa translocator protein (TSPO) ligand etifoxine on steroidogenesis in rat brain, plasma and steroidogenic glands: pharmacodynamic studies. *Psychoneuroendocrinology* 83, 122–134.

Lin, M.T., Beal, M.F., 2006. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. *Nature* 443, 787–795.

Lin, R., Angelin, A., Da Settimi, F., Martini, C., Taliani, S., Zhu, S., Wallace, D.C., 2014. Genetic analysis of dTSPO, an outer mitochondrial membrane protein, reveals its functions in apoptosis, longevity, and Ab42-induced neurodegeneration. *Aging Cell* 13, 507–518.

Liu, C.C., Liu, C.C., Kanekiyo, T., Xu, H., Bu, G., 2013. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. *Nat. Rev. Neurosci.* 9, 106–118.

Luo, J., Wärmländer, S.K., Gräslund, A., Abrahams, J.P., 2016. Cross-interactions between the Alzheimer disease Amyloid- β peptide and other amyloid proteins: a further aspect of the amyloid cascade hypothesis. *J. Biol. Chem.* 291, 16485–16493.

Ma, L., Zhang, H., Liu, N., Wang, P.Q., Guo, W.Z., Fu, Q., Jiao, L.B., Ma, Y.Q., Mi, W.D., 2016. TSPO ligand PK11195 alleviates neuroinflammation and beta-amyloid generation induced by systemic LPS administration. *Brain Res. Bull.* 121, 192–200.

McNeela, A.M., Bernick, C., Hines, R.M., Hines, D.J., 2018. TSPO regulation in reactive gliotic diseases. *J. Neurosci. Res.* 96, 978–988.

Midzak, A., Rone, M., Aghazadeh, Y., Culty, M., Papadopoulos, V., 2011. Mitochondrial protein import and the genesis of steroidogenic mitochondria. *Mol. Cell. Endocrinol.* 336, 70–79.

Mitro, N., Cermenati, G., Giatti, S., Abbiati, F., Pesaresi, M., Calabrese, D., Garcia-Segura, L.M., Caruso, D., Melcangi, R.C., 2012. LXR and TSPO as new therapeutic targets to increase the levels of neuroactive steroids in the central nervous system of diabetic animals. *Neurochem. Int.* 60, 616–621.

Musman, J., Paradis, S., Panel, M., Pons, S., Barau, C., Caccia, C., Leoni, V., Ghaleh, B., Morin, D., 2017. A TSPO ligand prevents mitochondrial sterol accumulation and dysfunction during myocardial ischemia-reperfusion in hypercholesterolemic rats. *Biochem. Pharmacol.* 142, 87–95.

Papadopoulos, V., Amri, H., Li, H., Boujrad, N., Vidic, B., Garnier, M., 1997. Targeted disruption of the peripheral-type benzodiazepine receptor gene inhibits steroidogenesis in the R2C Leydig tumor cell line. *J. Biol. Chem.* 272, 32129–32135.

Papadopoulos, V., Baraldi, M., Guilarte, T.R., Knudsen, T.B., LaCaprè, J.J., Lindemann, P., Norenberg, M.D., Nutt, D., Weizman, A., Zhang, M.R., Gavish, M., 2006. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. *Trends Pharmacol. Sci.* 27, 402–409.

Papadopoulos, V., Lecanu, L., 2009. Translocator protein (18 kDa) TSPO: an emerging therapeutic target in neurotrauma. *Exp. Neurol.* 219, 53–57.

Parbo, P., Ismail, R., Hansen, K.V., Amidi, A., Mårup, F.H., Gottrup, H., Brændgaard, H., Eriksson, B.O., Eskildsen, S.F., Lund, T.E., Tietze, A., Edison, P., Pavese, N., Stokholm, M.G., Borghammer, P., Hinz, R., Aanerud, J., Brooks, D.J., 2017. Brain inflammation accompanies amyloid in the majority of mild cognitive impairment cases due to Alzheimer's disease. *Brain* 140, 2002–2011.

Passamonti, L., Rodríguez, P.V., Hong, Y.T., Allinson, K.S.J., Bevan-Jones, W.R., Williamson, D., Jones, P.S., Arnold, R., Borchert, R.J., Surendranathan, A., Mak, E., Su, L., Fryer, T.D., Aigbirhio, F.I., O'Brien, J.T., Rowe, J.B., 2018. $[^{11}\text{C}]$ PK11195 binding in Alzheimer disease and progressive supranuclear palsy. *Neurology* 90, e1898–e1906.

Powrie, Y.S.L., Smith, C., 2018. Central intracrine DHEA synthesis in ageing-related neuroinflammation and neurodegeneration: therapeutic potential? *J. Neuroinflammation* 15, 289.

Puglielli, L., Konopka, G., Pack-Chung, E., Ingano, L.A., Berezovska, O., Hyman, B.T., Chang, T.Y., Tanzi, R.E., Kovacs, D.M., 2001. Acyl-coenzyme A: cholesterol acyl-transferase modulates the generation of the amyloid beta-peptide. *Nat. Cell Biol.* 3, 905–912.

Querfurth, H.W., LaFerla, F.M., 2010. Alzheimer's disease. *N. Engl. J. Med.* 362, 329–344.

Orth, M., Bellosta, S., 2012. Cholesterol: its regulation and role in central nervous system disorders. *Cholesterol* 2012, 292598.

Owen, D.R., Fan, J., Campioli, E., Venugopal, S., Midzak, A., Daly, E., Harlay, A., Issop, L., Libri, V., Kalogiannopoulos, D., Oliver, E., Gallego-Colon, E., Colasanti, A., Huson, L., Rabiner, E.A., Suppiah, P., Essagian, C., Matthews, P.M., Papadopoulos, V., 2017. TSPO mutations in rats and a human polymorphism impair the rate of steroid synthesis. *Biochem. J.* 474, 3985–3999.

Repalli, J., 2014. Translocator protein (TSPO) role in aging and Alzheimer's disease. *Curr. Aging Sci.* 7, 168–175.

Rhein, V., Baysang, G., Rao, S., Meier, F., Bonert, A., Müller-Spahn, F., Eckert, A., 2009. Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. *Cell. Mol. Neurobiol.* 29, 1063–1071.

Rone, M.B., Midzak, A.S., Issop, L., Rammouz, G., Jagannathan, S., Fan, J., Ye, X., Blonder, J., Veenstra, T., Papadopoulos, V., 2012. Identification of a dynamic mitochondrial protein complex driving cholesterol import, trafficking, and metabolism to steroid hormones. *Mol. Endocrinol.* 26, 1868–1882.

Salloway, S., Sperling, R., Fox, N.C., Blennow, K., Klunk, W., Raskind, M., Sabbagh, M., Honig, L.S., Porsteinsson, A.P., Ferris, S., Reichert, M., Ketter, N., Nejadnik, B., Guenzler, V., Miloslavsky, M., Wang, D., Lu, Y., Lull, J., Tudor, I.C., Liu, E., Grundman, M., Yuen, E., Black, R., Brashears, H.R., Bapineuzumab 301 and 302 Clinical Trial Investigators, 2014. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. *N. Engl. J. Med.* 370, 322–333.

Selkoe, D.J., Hardy, J., 2016. The amyloid hypothesis of Alzheimer's disease at 25 years. *EMBO Mol. Med.* 8, 595–608.

Sileikyte, J., Blachly-Dyson, E., Sewell, R., Carpi, A., Menabò, R., Di Lisa, F., Ricchelli, F., Bernardi, P., Forte, M., 2014. Regulation of the mitochondrial permeability transition pore by the outer membrane does not involve the peripheral benzodiazepine receptor (Translocator Protein of 18 kDa (TSPO)). *J. Biol. Chem.* 289, 13769–13781.

Sileikyte, J., Petronilli, V., Zulian, A., Dabbeni-Sala, F., Tognon, G., Nikolov, P., Bernardi, P., Ricchelli, F., 2011. Regulation of the inner membrane mitochondrial permeability transition by the outer membrane translocator protein (peripheral benzodiazepine receptor). *J. Biol. Chem.* 286, 1046–1053.

Sparks, D.L., Scheff, S.W., Liu, H., Landers, T., Danner, F., Coyne, C.M., Hunsaker 3rd, J.C., 1996. Increased density of senile plaques (SP), but not neurofibrillary tangles (NFT), in non-demented individuals with the apolipoprotein E4 allele: comparison to confirmed Alzheimer's disease patients. *J. Neurol. Sci.* 138, 97–104.

Stein, D.G., Sayeed, I., 2019. Repurposing and repositioning neurosteroids in the treatment of traumatic brain injury: a report from the trenches. *Neuropharmacology* 147, 66–73.

Sugino, H., Watanabe, A., Amada, N., Yamamoto, M., Ohgi, Y., Kostic, D., Sanchez, R., 2015. Global trends in alzheimer disease clinical development: increasing the probability of success. *Clin. Ther.* 37, 1632–1642.

Tan, S., Metzger, D.B., Jung, M.E., 2018. Chronic benzodiazepine suppresses translocator protein and elevates amyloid β in mice. *Pharmacol. Biochem. Behav.* 172, 59–67.

Taylor, J.M., Allen, A.M., Graham, A., 2014. Targeting mitochondrial 18 kDa translocator protein (TSPO) regulates macrophage cholesterol efflux and lipid phenotype. *Clin. Sci.* 127, 603–613.

Tournier, B.B., Tsartsalis, S., Rigaud, D., Fossey, C., Cailly, T., Fabis, F., Pham, T., Grégoire, M.C., Kövari, E., Moulin-Sallanon, M., Savioz, A., Millet, P., 2019. TSPO and amyloid deposits in sub-regions of the hippocampus in the 3xTgAD mouse model of Alzheimer's disease. *Neurobiol. Dis.* 121, 95–105.

Tu, L.N., Morohaku, K., Manna, P.R., Pelton, S.H., Butler, W.R., Stocco, D.M., Selvaraj, V., 2014. Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis. *J. Biol. Chem.* 289, 27444–27454.

Tu, L.N., Zhao, A.H., Hussein, M., Stocco, D.M., Selvaraj, V., 2016. Translocator protein (TSPO) affects mitochondrial fatty acid oxidation in steroidogenic cells. *Endocrinology* 157, 1110–1121.

Vance, J.E., Karten, B., Hayashi, H., 2006. Lipid dynamics in neurons. *Biochem. Soc. Trans.* 34 (Pt 3), 399–403.

Vandenbergh, R., Rinne, J.O., Boada, M., Katayama, S., Scheltens, P., Vellas, B., Tuchman, M., Gass, A., Fiebach, J.B., Hill, D., Lobello, K., Li, D., McRae, T., Lucas, P., Evans, I., Booth, K., Luscan, G., Wyman, B.T., Hua, L., Yang, L., Brashears, H.R., Black, R.S., Bapineuzumab 3000 and 3001 Clinical Study Investigators, 2016. Bapineuzumab for mild to moderate Alzheimer's disease in two global, randomized, phase 3 trials. *Alzheimers Res. Ther.* 8, 18.

Veenman, L., Gavish, M., Kugler, W., 2014. Apoptosis induction by erucylphosphocholine via the 18 kDa mitochondrial translocator protein: implications for cancer treatment. *Anticancer Agents Med. Chem.* 14, 559–577.

Veenman, L., Papadopoulos, V., Gavish, M., 2007. Channel-like functions of the 18-kDa translocator protein (TSPO): regulation of apoptosis and steroidogenesis as part of the host-defense response. *Curr. Pharm. Des.* 13, 2385–2405.

Veiga, S., Azcoitia, I., Garcia-Segura, L.M., 2005. Ro5-4864, a peripheral benzodiazepine receptor ligand, reduces reactive gliosis and protects hippocampal hilar neurons from kainic acid excitotoxicity. *J. Neurosci. Res.* 80, 129–137.

Veiga, S., Carrero, P., Pernia, O., Azcoitia, I., Garcia-Segura, L.M., 2007. Translocator protein 18 kDa is involved in the regulation of reactive gliosis. *Glia* 55, 1426–1436.

Vergheese, P.B., Castellano, J.M., Holtzman, D.M., 2011. Apolipoprotein E in Alzheimer's disease and other neurological disorders. *Lancet Neurol.* 10, 241–252.

Virgin Jr., C.E., Ha, T.P., Packan, D.R., Tombaugh, G.C., Yang, S.H., Horner, H.C., Sapolsky, R.M., 1991. Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity. *J. Neurochem.* 57, 1422–1428.

Wang, H., Zhai, K., Xue, Y., Yang, J., Yang, Q., Fu, Y., Hu, Y., Liu, F., Wang, W., Cui, L., Chen, H., Zhang, J., He, W., 2016. Global deletion of TSPO does not affect the viability and gene expression profile. *PLoS One* 11, e0167307.

Wang, M., Wang, X., Zhao, L., Ma, W., Rodriguez, I.R., Fariss, R.N., Wong, W.T., 2014. Macrophage-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. *J. Neurosci.* 34, 3793–3806.

Wolkowitz, O.M., Lupien, S.J., Bigler, E.D., 2007. The "steroid dementia syndrome": a possible model of human glucocorticoid neurotoxicity. *Neurocase* 13, 189–200.

Zhang, J., Liu, Q., 2015. Cholesterol metabolism and homeostasis in the brain. *Protein Cell* 6, 254–264.