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ARTICLE INFO ABSTRACT

Keywords: Genetic and pharmacological intervention studies have identified evolutionarily conserved and functionally
Aging interconnected networks of cellular energy homeostasis, nutrient-sensing, and genome damage response sig-
Mitochondria naling pathways, as prominent regulators of longevity and health span in various species. Mitochondria are the
DNA repair primary sites of ATP production and are key players in several other important cellular processes. Mitochondrial
E;:;izn dysfunction diminishes tissue and organ functional performance and is a commonly considered feature of the
Metabolism aging process. Here we review the evidence that through reciprocal and multilevel functional interactions,

mitochondria are implicated in the lifespan modulation function of these pathways, which altogether constitute
a highly dynamic and complex system that controls the aging process. An important characteristic of these
pathways is their extensive crosstalk and apparent malleability to modification by non-invasive pharmacolo-
gical, dietary, and lifestyle interventions, with promising effects on lifespan and health span in animal models
and potentially also in humans.

1. Introduction

Human life expectancy has been increasing worldwide since the
nineteenth century. This is an impressive achievement, but the in-
creasing elderly population entails major health and socioeconomic
challenges in the years ahead. Meeting these challenges requires mul-
tidisciplinary approaches and increased knowledge about the under-
lying biochemical mechanisms of aging.

Aging is commonly described as a progressive decline in organismal
function over time associated with an increasing risk of disease and
death. Aging is complex, involves multiple and interconnected pro-
cesses, is arguably universal, and shows similarities but also variation
both in rate and in physiological traits across and within species (Jones
et al., 2014; Lopez-Otin et al., 2013). In humans, longevity is influenced
by heredity, as well as, diverse environmental factors such as nutrients,
lifestyle, pollution, medical care, childhood stress, and socioeconomic
status (Blackburn et al., 2015; Ridout et al., 2017).

At the molecular level, aging is thought to be a consequence of a
lifelong accumulation of stochastic damage to tissues and cellular
components such as DNA, proteins, and lipids (Kirkwood, 2005). Ge-
netic studies in model organisms have identified signaling pathways

that can influence the rate of aging and lifespan across species, with
prominent features of these pathways being evolutionarily conserved
and having extensive functional interactions. These pathways likely
evolved early in the evolutionary history of living cells as part of an
adaptation mechanism to integrate key biological processes in response
to the availability of the intra- and extracellular nutrients and energy
substrates. However, a key question that has long interested biologists
is how evolutionary forces could have acted upon these pathways to
favor an aging process that is obviously not maximally beneficial to the
fitness of the individual.

Although it has sometimes been suggested that aging is directly
programmed, e.g. as a mechanism to sacrifice the individual in favor of
kin, careful analysis shows such arguments to be generally untenable
(Kowald and Kirkwood, 2016). Instead, the evolution of aging is ex-
plained through the fact that natural selection is relatively weak in its
control of gene actions in later life and by the principle of optimization
of allocation of resources between, on the one hand, growth and re-
production, and on the other hand, maintenance and repair (Kirkwood
and Austad, 2000). In particular, the “disposable soma theory” of aging
recognizes that under pressure of natural selection in the wild, where
individuals mostly die relatively young, the optimal allocation of
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Nomenclature

AMPK  Adenosine monophosphate kinase
ATM Ataxia telangiectasia mutated
ATP Adenosine 5°-triphosphate

BER DNA base excision repair

C. elegans Caenorhabditis elegans
DDR DNA damage response

DR Dietary restriction

D. melanogaster Drosophila melanogaster

ETC Mitochondrial electron transport chain
ELK ETS-Like 1 protein

ERK1/2 Extracellular signal-regulated kinase 1/2
FOXO  Forkhead box O

GH Growth hormone
s Insulin and insulin-like-growth factor (IGF-1) signaling
MAPK  Mitogen-activated protein kinase

mtDNA  Mitochondrial DNA

mTOR  Mechanistic target of rapamycin

NAD™* Nicotinamide adenine dinucleotide (oxidized)
NMN Nicotinamide mononucleotide

OXPHOS Oxidative phosphorylation

PGCl-a Peroxisome proliferator-activated receptor-gamma co-ac-
tivator-la

ROS Reactive oxygen species

SOD Superoxide dismutase

TCA cycleTricaboxylic acid cycle

nutrients and energy would have placed a limited priority on the long-
term maintenance of soma when balanced against the more urgent
priorities of growth and reproduction. Accordingly, longer-lived spe-
cies, which generally have adaptations (wings, shells etc.) enabling
better survival in the wild, allocate more resources on maintenance
than short-lived species. The significance of this theory is that it pro-
vides a direct connection between evolutionary understanding of why
aging occurs with the extensive evidence for how aging is regulated
through the signaling pathways that sense nutrient and cellular energy
availability to control cell metabolism and energy production accord-
ingly. In line with this view, the lifespan extension effects of dietary
restriction and of pharmacological treatments including central

Box 1

regulators of metabolism in organisms as diverse as yeast and mice
often converge on these signaling pathways one way or another.

If aging is driven by damage, the key challenges are to identify
which cellular components are most likely to be implicated among the
primary mechanisms underlying functional decline, and how the highly
networked pathways involving damage and repair can best be dissected
and understood. Mitochondria are essential for normal cellular and
organismal function, and defects in the pathways that control mi-
tochondrial DNA (mtDNA) maintenance and mitochondrial function are
pathogenic (DeBalsi et al., 2017). Proper mitochondrial function and
maintenance require the action of multiple mechanisms (Box 1). Subtle
alterations and irregularities in these processes impair mitochondrial

The intricate mechanisms of maintaining mitochondrial function and homeostasis.

Nicholls et al., 2018).

(Bacman et al., 2009; Tadi et al., 2016).

Scaglia, 2013).

cargo (mitophagosome) have been identified (Rodger et al., 2018).

(Sebastian et al., 2017).

Mitochondria are the primary sites for the production of cellular ATP, and also play a central role in several other key cellular processes such as
apoptosis (Gahl et al., 2016), cytoplasmic calcium buffering (Drago et al., 2012), and reactive oxygen species (ROS) mediated signaling
pathways (Shadel and Horvath, 2015). The dual location of mitochondrial genes, the dynamic nature of mitochondria, the bidirectional
mitochondria-nucleus signaling, together with the mechanisms for the degradation of dysfunctional mitochondria, form an intricate and
interconnected network important for normal mitochondrial and cellular functions.

Each mitochondrion contains multiple copies of "16.6 kb circular mtDNA molecules. mtDNA contains 37 genes that code for two ribosomal
RNAs (rRNAs), 22 transfer RNAs (tRNAs), and 13 proteins. mtDNA is crucial for organismal development, normal function, and survival.

The mechanism of mtDNA replication is complex, and several models have been proposed (Holt and Reyes, 2012). The enzymes critical for
mtDNA replication (mtDNA replisome) in vitro, are the heterodimer mtDNA polymerase y, DNA helicase Twinkle, mitochondrial single-strand
DNA-binding protein (mtSSB), mitochondrial RNA polymerase (POLRMT), topoisomerase 3a and DNA ligase III (Holt and Reyes, 2012;

mtDNA is organized into structures called nucleoids in close association with the mitochondrial inner membrane (Brown et al., 2011).
Because the mitochondrial inner membrane is a major site of mitochondrial ROS production, (Cadenas and Davies, 2000) mtDNA is expected
to constantly undergo oxidative damage. DNA base excision repair (BER) is the prominent DNA repair pathway for repair of oxidative DNA
damage, and likely to be the most active DNA repair pathway in human mitochondria (Sykora et al., 2012). Other DNA repair activities in
mammalian mitochondria have been reported, including mismatch repair (de Souza-Pinto et al., 2009), and double-strand break repair

mtDNA repair and replication require a steady supply of nucleotides that are recycling inside the mitochondria, as well as those imported
from the cytoplasm. Defects in genes that regulate the supply of mitochondrial nucleotides cause mtDNA depletion syndromes (MDS) char-
acterized by severe reduction in mtDNA content and impaired mitochondrial function that usually affect one or several organs (El-Hattab and

Mitochondria form interconnected networks, and adapt cell-type specific morphology and undergo fusion and fission (Giedt et al., 2016).
The major factors in the fusion process include mitofusin 1(MFN1), mitofusin 2 (MFN2), and optic atrophy type 1 (OPA1). The central fission
proteins include the dynamin-related protein 1 (DRP1), mitochondrial fission factor (MFF), mitochondrial fission 1 protein (Fis1), and mi-
tochondrial dynamic proteins MiD49, and MiD51 (Chan, 2012; Loson et al., 2013). Mutations in MFN2 and OPA1 cause neurological disorders,
Charcot-Marie-Tooth disease (Zuchner et al., 2004), and Autosomal Dominant Hereditary Atrophy (ADOA) (Delettre et al., 2000), respectively.
Diminished expression of OPA1 has been reported in cells from ataxia with oculomotor apraxia type 1 (AOA1) patients (Zheng et al., 2019).

Autophagy is the mechanism for targeting cytoplasmic material from endogenous and exogenous sources to lysosomes for degradation,
such as protein aggregates and organelles (Galluzzi et al., 2017). Selective autophagic elimination of mitochondria is called mitophagy.
Mitophagy is an important control system for the removal of damaged mitochondria (Rodger et al., 2018), during development and differ-
entiation (Schweers et al., 2007), and other conditions (Al Rawi et al., 2011; Fang et al., 2019). PTEN-induced putative kinase 1 (PINK1) and
Parkin, a cytosolic E3 ligase, are key factors in mediating mitophagy. Mutations in PINK1 and Parkin are linked to the hereditary form of
Parkinson disease (Kitada et al., 1998; Valente et al., 2004). A number of factors and receptors for the initiation and formation of mitophagy

The processes of fusion, fission, and mitophagy are tightly connected and collectively determine mitochondrial morphology and dynamics
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homeostasis and function with age (Kwong and Sohal, 2000), and are
linked to age-associated functional declines such as sarcopenia
(Ibebunjo et al., 2013; Marzetti et al., 2013), insulin resistance
(Petersen et al., 2003), and brain aging (Mattson and Arumugam,
2018).

In this review, we discuss the highly dynamic processes that connect
mitochondrial homeostasis to DNA metabolism and the conserved sig-
naling pathways that control lifespan. We also discuss some frequently
reported non-invasive life style changes and pharmacological inter-
ventions that extend lifespan and health span in a range of organisms by
acting on those processes.

2. The apparent dichotomy of mitochondrial stress and ROS in
disease and longevity

For mitochondria to respond properly to local energy need and
because of their other key functions, signal transduction lines of com-
munication have evolved between mitochondria and the nucleus called
anterograde (nucleus to mitochondria) and retrograde (mitochondria to
nucleus). Such signaling can be enhanced in response to nuclear DNA
damage (Fang et al., 2016b), mtDNA damage (Chae et al., 2013), and
mitochondrial stress, such as accumulation of misfolded proteins within
mitochondria (Zhao et al., 2002). The key mediators of the mitochon-
drial retrograde signaling pathways include ROS, Ca®™, and the cellular
AMP/ATP ratio.

High levels of ROS are generated in abnormal mitochondria, but
also ROS produced under regular physiological conditions can generate
oxidative damage to cells and tissues, and have long been considered a
significant driving force in the aging process, a concept known as the
“free radical theory” of aging (Harman, 1956). Emerging evidence,
however, has resulted in a more nuanced view and ROS are now re-
cognized as important signaling molecules in a number of key biolo-
gical processes (Sena and Chandel, 2012), including longevity (Schulz
et al.,, 2007). For example, while severe defects in mitochondrial
function are the primary cause of a number of human diseases
(Schapira, 2012), in C. elegans mild mitochondrial stress and modest
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increase in mitochondrial ROS levels seem to increase lifespan (Feng
et al., 2001; Lee et al., 2003b). This is reminiscent of hormesis, the
concept based on observations that exposure to low doses of a toxin
might have beneficial effects for the organisms, for instance, by acti-
vating cellular defense systems against stress (Mattson, 2008). Ac-
cordingly, uncritical use of antioxidant supplementation to lower ROS
levels seems to have adverse effects on health and may even be linked
to increased mortality (Bjelakovic et al., 2014; Ristow et al., 2009). On
the other hand, in longer living animal models, multiple studies have
shown that enhanced mitochondrial antioxidant capacity can extend
lifespan and health span and may even explain the exceptional long-
evity of the naked mole rat (Munro et al., 2019; Schriner et al., 2005;
Shabalina et al., 2017). These results illustrate the challenging work of
understanding the complex nature of the antioxidant system and mi-
tochondrial ROS-mediated signaling and their role in health and aging,
which are further complicated by the study design, type of model
system (i.e. intact cells vs. isolated mitochondria, cell lines vs. animals,
short-lived vs. long-lived animals, type of tissue studied), and the lim-
itations of the available techniques (Kalyanaraman et al., 2012; Munro
et al., 2019; Sanz, 2016).

3. Key nutrient and energy sensing signaling pathways that
control longevity in laboratory animal models

3.1. The somatotropic axis

Genomic and intervention studies in humans and other animals
have identified the evolutionarily conserved somatotropic axis con-
sisting of growth hormone (GH), insulin and insulin-like-growth factor
1(IGF-1) signaling (IIS), and their receptors and downstream effectors,
as a key signaling pathway in delaying aging and in promoting long-
evity across species (Brown-Borg, 2015; Kenyon et al., 1993; Morris
et al., 1996; Tatar et al., 2001) (Fig. 1).

GH, also called somatotropin, is a peptide hormone produced and
secreted by somatotrope cells in the anterior lobe of the pituitary gland.
A key function of GH is the stimulation of IGF-1 production by the

Fig. 1. Mitochondrial homeostasis and sig-
naling pathways that regulate longevity and
health span. Signaling pathways that are acti-
vated by insulin and insulin-like growth factor
1 receptors (IR/IGF-1R) includes PI3K-Akt and
Ras-Raf-ERK-MAPK pathways leading to the
retention of FOXO in cytoplasm, cell growth
and proliferation (1), and stimulation of
mTOR, and inhibition of autophagy/mito-
phagy (2). Inhibition of IR/IGF-1R stimulates
pathways that regulate mitochondrial main-
tenance and leads to the translocation of FOXO
into the nucleus where it controls the expres-
sion of a number of genes including those in-
volved in stress response and immunity (3).
Rapamycin (4) and activated AMPK, following

FOXO

Rapamycin (4)

W

mtDNA
integrity

<@ increased AMP/ATP ratio (5), inhibit mTOR
e and stimulate mitochondrial maintenance.
Mlijt:ghaag; I NAD™ over-consumption following DNA da-

mage, and increased PARylation, reduces
SIRT1 activity and mitochondrial biogenesis
and maintenance (6). Damage to telomeres
may impair mitochondrial biogenesis through
activation of p53 and reduced PGCl-a activity
7).
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hepatic cells. Circulating IGF-1 is mainly produced by liver cells, but is
also produced locally in other tissues acting in paracrine and autocrine
manners. IGF-1 inhibits the release of GH from the pituitary gland
through a negative-feedback (Bartke et al., 2013). The amount of cir-
culating GH and IGF-1 decline with age (Junnila et al., 2013). In-
dividuals carrying loss of function mutation in the GH receptor are
characterized by a high level of circulating GH, dwarfism and obesity,
known as Laron dwarfism (Godowski et al., 1989).

Binding of insulin and IGF-1 to their receptors results in the acti-
vation of the phosphoinositide 3-kinase (PI3K), serine threonine Akt
kinase, and phosphorylation of the forkhead box protein O (FOXO)
transcription factor (Fernandez and Torres-Aleman, 2012) resulting in
its retention in the cytoplasm. Inhibition of IGF-1 signaling results in
the nuclear localization of FOXO and activation of the expression of its
target genes that are involved in various cellular processes including
autophagy, apoptosis, and stress responses (Lee et al., 2003a; Murphy
et al., 2003). Activated Akt suppresses autophagy by stimulating mTOR
and inhibiting tuberous sclerosis complex 2 (TSC2). The Ras-Raf-ERKs-
MAPK pathway is another central pathway activated by insulin and
IGF-1 that promotes cell growth and proliferation (Fernandez and
Torres-Aleman, 2012) (Fig. 1).

3.1.1. IIS pathway in aging

The influence of IIS signaling on longevity was first demonstrated in
long-lived daf-2 and age-1 C. elegans mutants (Friedman and Johnson,
1988; Kenyon et al., 1993). The effect of daf-2 mutation on aging was
suppressed in worms by an additional mutation in the daf-16 gene,
revealing that DAF-2 and DAF-16 function in the same pathway
(Dorman et al., 1995; Kenyon et al., 1993). Later works showed that
DAF-2 is a homologue of the human insulin and IGF-1trans-membrane
tyrosine kinase receptors (Kimura et al., 1997), and that AGE-1 is a
worm homolog of human PI3K, and DAF-16 a human FOXO homolog
acting downstream to DAF-2 and AGE-1 (Lin et al., 1997; Ogg et al.,
1997). DAF-16 regulates the expression of a number genes involved in
the stress-response and antioxidant defense systems, metabolism, and
antimicrobial system, a sort of immune response, (Honda and Honda,
1999; Murphy et al., 2003). C. elegans and D. melanogaster have a single
FOXO homolog gene, but mammals have four; FOXO1, FOX03, FOX04,
and FOX06 (Martins et al., 2016).

Two closely related types of mice, the Ames dwarf mice and the
Snell dwarf mice carry mutations in Propl (Prophet of Pit-1), a tran-
scription factor that regulates the expression of PIT-1 that drives the
differentiation of the anterior pituitary gland (Sornson et al., 1996).
These mice are deficient in GH, prolactin, and thyroid-stimulating
hormone (TSH), have reduced levels of IGF-1 and insulin, and increased
life-expectancy.

The lifespan extension effect of diminished IIS signaling has been
demonstrated in yeast (Fabrizio et al., 2001), D. melanogaster (Clancy
et al., 2001), and mice (Brown-Borg, 2015; Holzenberger et al., 2003;
Mao et al., 2018), indicating that IIS is as an evolutionarily conserved
pathway integral to the aging process.

A key question is at what time-point in life targeting IIS signaling
can have beneficial effects on health and lifespan. Treating 18 months
old mice with an antibody against the IGF-1 receptor improved health
span and increased median lifespan by 9% in female mice (Mao et al.,
2018), suggesting that inhibition of IIS signaling can delay aging even
when applied in advanced age, at least for females.

The role of IIS signaling in human aging is complex and not fully
understood. There is, however, some evidence suggesting that reduced
IIS signaling extends lifespan and health in humans as well. The GH
secretion rate was found to be lower and tightly controlled in the off-
spring of long-lived families (van der Spoel et al., 2016). Moreover,
genetic variants of the IIS signaling pathway have been identified in
long-lived individuals maybe linking the IIS pathway to longevity or to
a healthy life span (Milman et al., 2014; Suh et al., 2008).
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3.1.2. Mitochondria in IIS signaling

Biochemical and cell biological studies in animal models have
identified an intricate interplay between mitochondrial physiology and
IIS signaling. Inhibition of the C. elegans DAF-2 leads to the nuclear
translocation of the DAF-16 transcription factor and the expression of
the DAF-16 target genes including those involved in the regulation of
cellular stress-responses and metabolism (Honda and Honda, 1999;
Murphy et al., 2003). Extensive overlap was identified in the gene ex-
pression profile of daf-2 mutants and some long-lived mitochondrial
mutant strains of C. elegans (Senchuk et al., 2018), suggesting the
convergence of daf-2 and mitochondria retrograde signaling on the
same lifespan controlling pathway(s). Protein synthesis is a highly en-
ergy consuming process in the cell. DAF-2 deficiency was accompanied
by an overall slower protein turnover rate, which was particularly more
significant for mitochondrial proteins (Dhondt et al., 2016). In a sepa-
rate study, several mitochondrial parameters were markedly different
in daf-2 worms such as increased abundance of OXPHOS proteins,
higher reserve respiration capacity, and higher membrane potential
(Brys et al., 2010). Thus, in C. elegans, IIS inhibition appears to influ-
ence mitochondrial bioenergetics and biogenesis by reducing the half-
life of mitochondrial proteins and by enhancing the expression of the
nuclear encoded mitochondrial genes.

Mitochondrial respiration progressively declines in adult C. elegans,
but the rate of decline was slower in daf-2 mutant worms, concomitant
with more mitochondrial ROS production although without detectable
adverse effect on mtDNA integrity and protein oxidative damage (Brys
et al., 2010). Acute inhibition of IIS in adult C. elegans transiently in-
creased ROS levels, which in turn induced the expression of ROS neu-
tralizing enzymes superoxide dismutase (SOD) and catalase followed
with reduced ROS levels (Zarse et al., 2012). These results suggest that
the regulation and improvement of mitochondrial function together
with ROS-mediated adaptive response contribute to the life extension
effect of IIS signaling impairment in C. elegans.

Mitochondrial shape, size and network are largely determined by
the rates of fission and fusion, and alter in response to internal and
external cues such as metabolic demand, and stress. Neuronal mi-
tochondria in C. elegans undergo changes in density, morphology and in
axonal transport frequency and distance with age (Morsci et al., 2016).
In daf-2 mutants, the age-associated decline in mitochondrial mor-
phology and density was significantly delayed and the axonal traf-
ficking rate of mitochondria was maintained during adulthood (Morsci
et al., 2016). This study demonstrated that the status of mitochondrial
dynamics and distribution are closely linked to the IIS signaling and the
aging process in worms.

Mitophagy is a central process in maintaining the cellular content of
functional mitochondria by removing malfunctioning mitochondria.
Mitophagy was markedly enhanced in daf-2 deficient C. elegans
(Palikaras et al., 2015), and exposure to mitophagy enhancers increased
lifespan in worms (Fang et al., 2017b; Ryu et al., 2016). Dct-1 is a
nematode ortholog of the mammalian mitophagy receptors NIX/
BNIP3L (Palikaras et al., 2015). DCT-1 impairment markedly shortened
lifespan in daf-2 mutants, demonstrating a functional connection be-
tween mitophagy and the observed lifespan extension following IIS
impairment in C. elegans (Palikaras et al., 2015).

In long-living Ames dwarf and GHR-KO mice with defects in GH/
IGF-1 signaling, there was a metabolic shift to B-oxidation and sig-
nificantly higher oxygen consumption rate, lower respiratory quotient
(RQ), and a higher level of PGCl-a expression and more abundant
OXPHOS proteins (Brown-Borg et al., 2012), connecting IIS signaling
impairment in mammals to a significant shift in mitochondrial meta-
bolism and more efficient mitochondrial biogenesis and function
(Bartke and Westbrook, 2012).

Insulin signaling in adipose tissue regulates lipid and glucose me-
tabolism. Fat-specific insulin receptor knockout mice (FIRKO) were
lean and had increased lifespan (Bluher et al., 2003). The expression of
genes involved in glycolysis, TCA cycle, B-oxidation, and OXPHOS
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proteins, were all higher in FIRKO mice with age, while they declined in
control mice (Katic et al., 2007), suggesting the involvement of mi-
tochondrial metabolism in the life extension effect of insulin signaling
deprivation in the fat tissue. Disruption of the insulin receptor in adi-
pose and muscle tissue in adult mice, however, failed to increase life
expectancy (Merry et al., 2017), indicating the complex role of the
mammalian IIS signaling on lifespan.

Data on mitochondrial gene expression profiles in long-lived hu-
mans with genetic variants in GH/IGF-1 pathway (Milman et al., 2014;
Suh et al., 2008), and in the offspring of long-living families with re-
duced circulating GH hormone (van der Spoel et al., 2016), are not
available and this warrants further investigation.

3.2. Mechanistic target of rapamycin (mTOR) signaling pathway

mTOR signaling is an evolutionarily conserved pathway that con-
trols cell growth and metabolism in response to nutrients, growth fac-
tors, and cellular energy levels. mTOR is present in two functionally
distinct complexes; mTOR complex 1 (mTORC1) and mTOR complex 2
(mTORC2) with distinct and overlapping interacting partners, and in-
puts and output signaling. Central to both complexes is the serine-
threonine kinase mTOR, a phosphoinositide 3-kinase related protein
kinase (Saxton and Sabatini, 2017).

The activity of mTORC1 is regulated in response to the availability
of nutrients (amino acids, lipids, cholesterol, and glucose), growth
factors (for instance insulin and insulin-like growth factors), and also
the cellular energy status, i.e. AMP/ATP ratio. Activated mTORC1
promotes cell growth (accumulation of cell mass) by promoting protein,
lipid and nucleotide synthesis and suppressing autophagy (Ben-Sahra
et al., 2013; Ganley et al., 2009; Hosokawa et al., 2009; Peterson et al.,
2011). mTORC2 controls cell growth, proliferation and cell survival by
regulating lipogenesis, glucose metabolism, the actin cytoskeleton, and
apoptosis (Hagiwara et al., 2012; Jacinto et al., 2004). mTOR and IIS
signaling pathways functionally interact. mMTORC2 phosphorylates and
activates Akt (Sarbassov et al., 2005), a key protein in IIS-PI3K-Akt
signaling pathway that promotes cell survival and growth in part
through phosphorylation and cytoplasmic retention and inhibition of
FOXO transcription factors (Fig. 1).

3.2.1. mTOR in aging

Genetic and pharmacological studies have consistently shown that
inhibition of mTOR increases lifespan in yeast (Kaeberlein et al., 2005),
C. elegans (Vellai et al., 2003), D. melanogaster (Kapahi et al., 2004), and
in mice (Harrison et al., 2009; Wu et al., 2013b), indicating that the
lifespan expansion function of the mTOR pathway is a highly conserved
mechanism.

Rapamycin is an antibiotic macrolide with immunosuppressive,
antifungal, anticancer, and cell proliferation inhibitory properties (Yoo
et al., 2017). Rapamycin binds to its intracellular receptor FK506-
binding protein 12 (FKBP12). The rapamycin-FKBP12 complex inhibits
mTOR by directly binding to the FRB (FKBP12-rapamycin-binding)
domain of mTOR inhibiting raptor binding mTORC1 (Brown et al.,
1994; Sabatini et al., 1994; Shimobayashi and Hall, 2014; Zoncu et al.,
2011). Rapamycin also inhibits mTORC2 following prolonged exposure
(Sarbassov et al., 2006), which may account for the observed toxicity of
chronic rapamycin treatment such as glucose intolerance and insulin
resistance (Lamming et al., 2012). Rapamycin has been consistently
shown to prolong lifespan in various species ranging from worm to
mouse (Bjedov et al., 2010; Harrison et al., 2009; Miller et al., 2011;
Robida-Stubbs et al., 2012).

Key mechanisms for the increased longevity effects of mTORC1
inhibition are thought to include an overall reduction of mRNA trans-
lation and protein synthesis, and enhanced autophagy flux (Beretta
et al., 1996; Kim et al., 2011b; Saxton and Sabatini, 2017; Selman et al.,
2009). The serine-threonine kinase ULK1 controls the formation of
autophagosoms and autophagic flux. mTORC1 actively suppresses
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autophagy by phosphorylating ULK1 (Kim et al., 2011b). mTORC]1 also
regulates autophagy in part through phosphorylation and cytoplasmic
retention of transcription factor EB (TFEB), that regulates the expres-
sion of lysosomal and autophagy genes (Martina et al., 2012; Settembre
et al., 2011).

mTOR signaling controls many cellular processes and functions in a
highly age and tissue-specific manner. For example, mice with adipose-
specific depletion of raptor had significantly less adipose tissue, did not
develop obesity and showed improved insulin sensitivity and increased
mitochondrial respiration in adipose tissue (Polak et al., 2008). Dis-
ruption of raptor in skeletal muscle, on the other hand, resulted in
muscle dystrophy (Bentzinger et al., 2008). In a separate study, un-
controlled mTORC1 activity in skeletal muscle resulted in severe
muscle atrophy because of impaired autophagy (Castets et al., 2013).
These results indicate the importance of tight regulation of the
mTORC1 pathway and careful implementation of mMTORC1 inhibitors in
longevity studies (Arriola Apelo et al., 2016; Kraig et al., 2018).

3.2.2. Mitochondria in the mTOR pathway

Cell growth and proliferation are energy consuming processes, so, as
could be expected, mTOR has been found to control mitochondrial
function at several levels (Bao et al., 2015; Bentzinger et al., 2008; Betz
et al., 2013; Cunningham et al., 2007; Khan et al., 2017; Lu et al., 2015;
Morita et al., 2013; Polak et al., 2008; Ramanathan and Schreiber,
2009).

Subcellular localization of mTOR complexes is tightly linked to their
function (Betz and Hall, 2013). Mitochondria-associated endoplasmic
reticulum (ER) membranes (MAM) are part of ER that physically con-
nects ER to mitochondria and are important for the movement of lipids
and calcium between these organelles (Rizzuto et al., 1998). Growth
factors stimulate localization of mTORC2 to MAM where it phosphor-
ylates Akt that in turn phosphorylates MAM associated proteins IP3R
and hexokinase II, thereby controlling mitochondrial physiology (Betz
et al., 2013).

An important downstream function of mTORC1 signaling is the
suppression of autophagy.

For example, sustained mTORCI activity in skeletal muscle resulted
in severe muscle atrophy probably as a result of impaired autophagy
(Castets et al., 2013). A general increase in autophagy following
mTORC1 inhibition could also be expected to enhance selective re-
moval of damaged mitochondria by mitophagy. This is supported by
several recent reports. TSC2 is a negative regulator of mTORC1 (Fig. 1).
TSC2~/~ cells showed impaired autophagy and PINK1-mediated mi-
tophagy (Bartolome et al., 2017). Neurons from TSC2 ™/~ mice showed
impaired mitochondrial dynamics and were depleted of axonal and
presynaptic mitochondria. Blocking mTORC1 restored mitochondrial
homeostasis and subcellular distribution of mitochondria (Ebrahimi-
Fakhari et al., 2016). In a separate study, inhibition of mTORC1 in-
duced mitophagy in cytoplasmic hybrid (cybrid) cell lines carrying se-
vere mtDNA defects (Gilkerson et al., 2012). Long term rapamycin
treatment significantly reduced the frequency of mtDNA carrying de-
letion mutations in aging mice probably through stimulation of mito-
phagy (Bielas et al., 2018).

Leigh syndrome is a primary mitochondrial disease caused by
mtDNA deletion. Treatment of a mouse model of Leigh syndrome with
rapamycin improved mitochondrial function and alleviated symptoms
of the disease (Johnson et al., 2013). Moreover, low dose rapamycin
treatment extended lifespan in a mouse model of human mtDNA de-
pletion syndrome probably through systemic changes in metabolism
(Siegmund et al., 2017). mTOR inhibition may therefore represent a
potential therapeutic target in diseases caused by defect in mtDNA
maintenance systems. Collectively, these studies demonstrate that mi-
tochondrial physiology and homeostasis are affected by the mTOR
signaling pathway. We speculate that mitochondrial homeostasis is a
critical mediator of the longevity effects of mTOR inhibition. In-
vestigating this link is important, because of the key roles of mTOR
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signaling and mitochondrial metabolism in aging, and their malleability
to regulation by non-invasive, dietary, and pharmacological interven-
tions.

3.3. Adenosine monophosphate kinase (AMPK)

ATP is the principal energy substrate of the cell. The free energy
released from the hydrolysis of ATP to ADP is harvested to drive almost
all energetically unfavorable reactions in the cell. Therefore, elaborate
systems have evolved to maintain sufficient and continual supply of
cellular ATP. AMPK has been identified as the primary sensor of cellular
ATP levels and a key regulator of cellular energy homeostasis and
metabolism (Hardie et al., 2016; Herzig and Shaw, 2018). AMPK is a
heterotrimer, evolutionarily conserved protein kinase consisting of o}y
subunits (Ross et al., 2016). Phosphorylation of Thr172 within the ki-
nase domain of the a-subunit enhances the protein kinase activity of
AMPK by several orders of magnitude. The tumor suppressor liver ki-
nase B1 (LKB1) and the calcium-sensitive kinase (CAMKK2) are two
major upstream kinases for the Thr172 phosphorylation (Hardie et al.,
2016; Herzig and Shaw, 2018) (Fig. 1). AMPK senses the amount of
available ATP in the form of high AMP/ATP or ADP/ATP ratios that
increases Thr172 dephosphorylation and AMPK activation (Gowans
et al., 2013). Activated AMPK regulates a number of metabolic pro-
cesses (Hardie et al., 2016; Herzig and Shaw, 2018). In general, acti-
vated AMPK alters metabolism towards increased catabolic processes
such as autophagy and down-regulates energy consuming anabolic, and
biosynthetic processes including lipid and protein synthesis, to stimu-
late ATP production and to restore cellular energy homeostasis (Hardie
et al., 2016; Herzig and Shaw, 2018).

3.3.1. AMPK in aging

AMPK may influence aging and lifespan through different me-
chanisms (Burkewitz et al., 2014). The lifespan extension effects of
pharmacological and dietary interventions in model organisms often
implicate autophagy. AMPK activates autophagy by phosphorylating
ULK]1, a critical kinase for autophagy initiation (Egan et al., 2011), and
by suppressing mTORC1 via activation of its negative regulator TSC2
(Inoki et al., 2003), and phosphorylation and inhibition of the mTORC1
subunit, raptor (Gwinn et al., 2008) (Fig. 1).

AMPK also modulates the signaling pathways that promote long-
evity such as those involving FOXOs (Greer et al., 2007) and SIRT1
(Canto et al., 2009).

In addition to rapamycin, multiple studies have shown that com-
pounds such as resveratrol and metformin also increase lifespan in
various organisms. AMPK is involved in mediating the life extension
effects of these molecules (Burkewitz et al., 2014).

Dietary restriction (DR) is the severe reduction of food intake. DR is
one of the most consistent interventions to delay the onset of age-re-
lated diseases and to increase life expectancy in organisms ranging from
yeast to mammals. Long-term and acute DR activates AMPK (Burkewitz
et al., 2014). Like rapamycin, a key outcome of both DR and activated
AMPK is the inhibition and suppression of mTOR signaling, suggesting
a DR mediated lifespan regulatory function of AMPK via inhibition of
mTOR signaling pathway.

In mammals, the three AMPK subunits exists in several isoforms
encoded by different genes (Ross et al., 2016). Changes in the phos-
phorylation and the expression of different isoforms seem to be affected
by age (Salminen et al., 2016), resulting in a decline in the capacity of
AMPK signaling to respond to different stimuli.

AMPK activity is suppressed by IIS via Akt (Kovacic et al., 2003),
and activated AMPK inhibits IIS by phosphorylating insulin receptor
substrate 1 (IRS) (Tzatsos and Tsichlis, 2007), and mTOR signaling
pathways through phosphorylation of TSC2 and raptor (Gwinn et al.,
2008). mTOR in turn activates IIS and is stimulated by IIS (Sarbassov
et al., 2005) (Fig. 1). These examples illustrate the intricate network of
interactions that regulate the longevity pathways.
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3.3.2. AMPK and mitochondria

The central role of AMPK in the regulation of cellular energy me-
tabolism implies close links between AMPK activity and mitochondrial
biology. Consistent with this, different mouse models of AMPK defi-
ciency have demonstrated that AMPK influences various aspects of
mitochondrial biology (Garcia-Roves et al., 2008; Lantier et al., 2014;
O’Neill et al.,, 2011). AMPK regulates mitochondrial biogenesis by
controlling the expression of mitochondrial genes. Early experiments in
mice showed that a reduced ATP/AMP ratio in skeletal muscle induced
the expression of PGCl-a and activated the mitochondrial biogenesis
(Zong et al., 2002). This response was abrogated in mice expressing a
dominant negative mutant of AMPK (Zong et al., 2002). Later work
showed that phosphorylation of PGC1-a by activated AMPK enhances
PGCl-a action and the induction of mitochondrial genes (Jager et al.,
2007).

The dynamic changes in mitochondrial morphology and network
formation by fission and fusion are integral in adaptive cell metabolism,
and in the maintenance of a functional mitochondria population by
mitophagy (Sebastian et al., 2017). Recent studies have implicated
AMPK in an intricate signaling network that controls mitochondrial
quality. An important role of AMPK in mitochondrial homeostasis is
probably linked to its key function in initiating autophagy and mito-
phagic turnover of dysfunctional mitochondria by phosphorylation and
activation of ULK1, as has been demonstrated in human cell lines and in
C. elegans (Egan et al., 2011). Mitochondrial stress promoted mi-
tochondrial fragmentation through phosphorylation of mitochondrial
fission factor, MFF, by AMPK to facilitate elimination of damaged mi-
tochondria by mitophagy in human and mouse embryonic fibroblasts
(MEF) cells (Toyama et al., 2016). In C. elegans, inhibition of mi-
tochondrial dynamics blocked AMPK- and DR-mediated increased
longevity, illustrating the close interplay between mitochondrial dy-
namics and AMPK in regulating longevity (Weir et al., 2017). It now
seems evident that mitochondrial function declines with age (Gonzalez-
Freire et al., 2018). Aging-related reductions in AMPK activity and
signaling may in part contribute to the reduced mitochondrial function
and biogenesis over time (Reznick et al., 2007).

Altogether, evidence indicates that AMPK plays a central role in
different aspects of mitochondrial homeostasis as part of an intricate
signaling network with significant implications on cell metabolism and
longevity.

4. Genome instability

Evidence indicates that DNA damage and mutation accumulate with
age in multiple human and animal tissues, and loss of genome integrity,
i.e. nuclear and mitochondrial DNA, is a hallmark of aging across
species (Bua et al., 2006; Chow and Herrup, 2015; Fakouri et al., 2018;
Fayet et al., 2002; Kalfalah et al., 2015; Li et al., 2017, 2016; Lopez-Otin
et al., 2013; Mattson and Arumugam, 2018; Maynard et al., 2015;
Vaidya et al., 2014; Zhang and Vijg, 2018; Zhang et al., 2015).

DNA is constantly damaged at high frequency by spontaneous hy-
drolytic decay and by various endogenous and environmental causes
(De Bont and van Larebeke, 2004; Lindahl, 1993). DNA damage refers
to any changes to the chemistry of DNA and misincorporated but che-
mically normal nucleotides, e.g. during DNA replication. Structural
DNA damage can give rise to mutation during replication and thus
change the original nucleotide sequence of DNA. While DNA damage
can be repaired by the DNA repair machinery, mutations cannot, and
will become fixed in the genome of the daughter cells (Akbari and
Krokan, 2008). In the case of germ cells, mutations can potentially be
passed on to the progeny, unless the cell dies or the carrier does not
reproduce or dies at a pre-reproductive age (Crow, 1997).

Our genome is organized within the nucleus and mitochondria. The
nuclear genome in a typical haploid cell contains approximately three
billion base pairs and an estimated over 20 000 protein coding genes.
By comparison, mtDNA is a very small "16.6 kb circular DNA, and
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contains only 13 protein coding genes. Despite its small size, however,
mtDNA is crucial for development, normal cell function, and survival
(El-Hattab and Scaglia, 2013). The transformation of mtDNA damage to
mutation seems to occur at a much lower frequency than that of nuclear
DNA (Valente et al., 2016). Thus, mutational load in nuclear and
mtDNA may have distinct origins, and replication error is commonly
considered the major source of mtDNA mutation (DeBalsi et al., 2017).

The preservation of the chemical structure and the original nu-
cleotide sequence of the genome are essential for life. Thus, mechan-
isms have evolved in all living organisms to repair DNA lesions and to
maintain genome stability and integrity (Iyama and Wilson, 2013;
Sykora et al., 2012). Structure distorting lesions, such as UV-light,
generate thymidine dimers that are repaired by the nucleotide excision
repair (NER) pathway (Marteijn et al., 2014). DNA double strand breaks
(DSBs) are repaired by non-homologous end-joining (NHEJ) (Kragelund
et al.,, 2016), and recombination repair (San Filippo et al., 2008)
pathways. Mismatch repair (MMS) is coupled with DNA replication and
corrects wrongly inserted nucleotides during replication (Jiricny,
2006). DNA base excision repair (BER) pathway repairs a number of
different damaged bases and non-coding baseless sites (AP sites)
(Krokan and Bjgrés, 2013). Genotoxic insults that generate breaks in
one of the two DNA strands, called single-strand DNA breaks, often
result in chemically modified 3”- and 5°-termini and are repaired by
single-strand break repair (SSBR) pathway. BER and SSBR are en-
zymatically similar pathways and share proteins.

The expression of DNA repair proteins is up-regulated in long-lived
specifies compared with animals with shorter lifespan (MacRae et al.,
2015), and genetic variation in DNA repair can influence longevity
(Debrabant et al., 2014; Keane et al., 2015; Kim et al., 2011a). These
examples demonstrate the principle of the optimization of allocation of
resources between maintenance and reproduction in the aging process.

Segmental progeroid syndromes, or premature aging syndromes, are
a group of hereditary diseases that are characterized by some but not all
clinical features of normal aging progressing at an accelerated rate
(Carrero et al., 2016). Most cases of progeroid syndromes are causally
linked to defects in DNA repair (Carrero et al., 2016; Kipling et al.,
2004). Although defect in DNA repair does not seem to be a major cause
of age-associated genome instability, premature aging diseases illus-
trate a key role of DNA repair in the aging process. Moreover, evidence
suggests that the catalytic activity of DNA repair proteins alters or de-
clines with age (Atamna et al., 2000; Cabelof et al., 2002; Xu et al.,
2015), which may diminish the capacity of cells to cope with the
burden of DNA damage resulting in the accumulation DNA lesions and
genome instability over time. Although a number of studies on human
materials and in laboratory animals have identified DNA repair as a key
determinant of the rate of aging and lifespan, evidence showing positive
effects of stimulation or increased DNA repair capacity on lifespan is
limited and more work of this sort needs to be conducted in animal
models (Qian et al., 2018).

A less investigated but potentially important source of DNA damage
is the process of DNA repair itself. Alterations in the expression of DNA
repair proteins during aging have been frequently reported for almost
all DNA repair pathways (Gorbunova et al., 2007). Most DNA repair
pathways are multi-enzyme and multistep processes and changes in the
level of proteins can lead to loss of coordination in the repair process
(Fu et al., 2012; Kidane et al., 2014; Senejani et al., 2012). For example,
BER corrects various types of DNA lesions that occur frequently and in
large numbers, which if left unrepaired can be mutagenic and cytotoxic
(Krokan and Bjerés, 2013). However, uncontrolled BER activity, par-
ticularly under conditions of enhanced DNA lesions, can also lead to the
generation of DNA repair intermediates, such as AP-sites and single-
strand nicks, that are often highly mutagenic and cytotoxic (Akbari
et al., 2009), leading to the activation DNA damage response (DDR) and
cell death (Ebrahimkhani et al., 2014; Parrish et al., 2018). Thus the
control and balance of all the individual steps in the DNA repair process
are central to its function and changes that up-regulate or down-
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regulate the DNA repair processes can render the system dysfunctional.

Addition of a methyl group to cytosine (5mC) and its removal
constitute epigenetic DNA modification processes that are important for
the regulation of expression of a number of genes. DNA demethylation
is controlled by the coordinated actions of Ten-eleven translocation
(TET) proteins and BER. TET proteins oxidize 5mC to 5-hydro-
xymethylcytosine (5hmC) and further to 5-formylcytosine (5fC) and 5-
carboxylcytosine (5caC). These bases are excised and repaired by BER
resulting in the conversion of 5mC to C (Wu and Zhang, 2017). DNA
methylation/demethylation processes are dynamically regulated in
brain cells and continually change in response to physiological neu-
ronal activity (Guo et al., 2011). Aberrant and incomplete BER
(Weissman et al., 2007) can result in genome instability at these sites
following cycles of DNA methylation/demethylation (Mahfoudhi et al.,
2016), thus contributing to age-related somatic genome instability and
pathological alteration of gene expression and neurodegeneration
(Leandro et al., 2015).

DNA damage contributes to aging in various ways. DNA lesions can
persist over a long period of time and increase with age (Siddiqui et al.,
2015). Patients with childhood cancer who were treated with DNA
damaging chemotherapeutic agents show signs of accelerated aging
later in life (Ness et al., 2013). DNA lesions can impede transcription,
which is especially highly relevant in long genes (Vermeij et al., 2016).
DNA damage can affect the large number of enhancers that are located
throughout the human genome perturbing normal gene expression
(Andersson et al., 2014; Vijg et al., 2017). Increased amounts of DNA
lesions can result in aberrant cell cycle re-entry in post-mitotic neurons
leading to apoptosis or senescence (Fielder et al., 2017), and cause stem
cell exhaustion (Nijnik et al., 2007; Rossi et al., 2007). DNA lesions such
as bulky adducts, hydrolytic deamination of bases and AP-sites can also
become converted to mutations by various mechanisms (Helleday et al.,
2014). Thus, accumulation of DNA lesions combined with alterations
and decline in DNA repair capacity, contribute to genome instability
and constitute a critical driving force in the aging process.

5. The mitochondrial genome in aging

Progressive alterations in the primary structure of the genomic DNA
(nuclear and mitochondrial DNA) with age can compromise mi-
tochondrial function in various ways. Mitochondria contain “1200
proteins (Calvo et al., 2016), only 13 of which are encoded by mtDNA
and all are components of the OXPHOS system, and are essential for
mitochondrial function (DeBalsi et al., 2017).

A number of pathogenic mtDNA rearrangements and single nu-
cleotide mutations have been reported over the years (Elliott et al.,
2008; http://www.mitomap.org/). A mixture of normal and mutated
mtDNA molecules in a cell is known as heteroplasmy. The proportion of
mutant to normal mtDNA affects mitochondrial function and de-
termines the severity and the progression of the disease and tissue
dysfunction (Schon et al., 2012). mtDNA is exclusively maternally in-
herited, and diseases caused by mtDNA mutation display a maternal
mode of inheritance (Schon et al., 2012).

The amount of mtDNA mutations increases in multiple tissues with
age (Bua et al., 2006; Corral-Debrinski et al., 1992; Fayet et al., 2002;
Greaves et al.,, 2014; Kauppila et al.,, 2017; Kennedy et al., 2013;
Kraytsberg et al., 2006), mostly originating from clonal expansion of
mtDNA replication errors during development and spontaneous dea-
mination of cytosine and adenine (Fayet et al., 2002; Kennedy et al.,
2013). A direct link between mtDNA instability with aging phenotypes
was demonstrated in mice engineered to express a proof-reading defi-
cient variant of mitochondrial DNA polymerase y (Kujoth et al., 2005;
Trifunovic et al., 2004). These mice accumulate mtDNA mutations at
large numbers and show aging features such as weight loss, alopecia,
osteoporosis, and kyphosis (Kujoth et al., 2005; Trifunovic et al., 2004).

mtDNA is organized into structures called nucleoids in close asso-
ciation with mitochondrial inner membrane (Brown et al., 2011).



M. Akbari, et al.

Because the mitochondrial inner membrane is a major site of mi-
tochondrial ROS production, oxidative lesions are expected to occur
frequently in mtDNA (Cadenas and Davies, 2000). Current data, how-
ever, does not support a substantial contribution of oxidative mtDNA
damage to age-related increase in somatic mtDNA mutations (Halsne
et al., 2012; Kauppila et al., 2018; Kennedy et al., 2013).

As discussed in Box1, of several DNA repair activities that have been
reported in mammalian mitochondria, BER is likely the most active
DNA repair pathway in human mitochondria (Sykora et al., 2012).
Alterations in mitochondrial BER activity and protein levels with age
have been identified in different tissues and organisms (Garreau-
Balandier et al., 2014; Gredilla et al., 2010; Szczesny et al., 2003).
These changes may lower mtDNA repair capacity resulting in persistent
mtDNA damage (Canugovi et al., 2014), and create DNA repair im-
balance leading to the generation of genotoxic DNA repair inter-
mediates and compromise mtDNA integrity (Harrison et al., 2005).

A somewhat overlooked consequence of mtDNA damage on aging is
the effect of DNA lesions on mtDNA transcription fidelity. In addition to
oxidative damage to mtDNA from ROS, environmental chemicals and
endogenously produced aldehydes can generate different forms of
mtDNA crosslinks and bulky adducts (Cline, 2012; Valente et al., 2016).
Such DNA lesions can stop the progression of mitochondrial RNA
polymerase (POLRMT) resulting in premature termination of the tran-
script, or the damage can be bypassed by the polymerase but result in
the production of mutated transcripts (Cline, 2012; Cline et al., 2010;
Sultana et al., 2017). In the nucleus, defects in transcription-coupled
DNA damage repair cause Cockayne syndrome, a disease characterized
by severe neurological deficiencies and accelerated aging phenotypes
(Karikkineth et al., 2017), and impaired mitochondrial homeostasis
(Scheibye-Knudsen et al., 2012). Thus, mtDNA transcription failure in
the form of mutations and truncations can, in principle, contribute to
mitochondrial dysfunction and age-associated decline in tissue func-
tion, and warrants investigation.

Damaged deoxyribonucleotide triphosphates (ANTPs) are another
important source of DNA damage and mutation. Spontaneous deami-
nation of dCTP generates dUTP that can be readily incorporated into
DNA opposite adenine. Although U:A is not mutagenic, high levels of
uracil incorporation followed by removal of uracil from DNA by uracil-
DNA glycosylase (UNG) generate potentially mutagenic and cytotoxic
AP-sites (Krokan and Bjgrds, 2013). Deoxyuridine triphosphate nu-
cleotidhydrolase (dUTPase) hydrolyses dUTP to dUMP and pyropho-
sphate. dUTPase is present in both nucleus and mitochondria (Ladner
and Caradonna, 1997).

MTH1 protein hydrolyzes oxidized purine nucleotides such as 8-
0x0-dGTP and 8-oxo-dATP to monophosphates. MTH1 is located in the
cytoplasm, mitochondria and the nucleus (Kang et al., 1995). A very
low amount of oxidized guanine was able to reduce the fidelity of the
mitochondrial DNA polymerase vy resulting in the pre-mutagenic A:8-
0xoG mismatches in DNA (Pursell et al., 2008). Moreover, primary
neurons from mice deficient for Mthl and DNA glycosylase Oggl (re-
moves the oxidative base damage 8-0xoG from DNA) contained high
levels of 8-0xoG in mtDNA, exhibited poor neurite outgrowth, and
mitochondrial dysfunction (Leon et al., 2016). Thus, mitochondrial
nucleotide pool sanitation enzymes play key roles in the preservation of
mtDNA integrity, and exploring their role in the age-associated in-
creased mtDNA damage has not been adequately addressed and merits
investigation.

Ribonucleotides are frequently mis-incorporated into genomic DNA
(Williams et al., 2016). Ribonucleotides in nuclear DNA can cause DNA
replication stress and small and large scale genome instability (Williams
et al., 2016). The presence of ribonucleotides in mtDNA has long been
known (Grossman et al., 1973). The mitochondrial DNA polymerase y
incorporates ribonucleotide into DNA with varying efficiency de-
pending on the incoming nucleotide and the presence of a 3"-terminal
ribonucleotide on a primer (Kasiviswanathan and Copeland, 2011). The
frequency of ribonucleotide incorporation into mtDNA is influenced by
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the availability of nucleotides, and is elevated in cells from individuals
with mutation in genes that regulate mitochondrial nucleotide pool,
suggesting high levels of ribonucleotides in mtDNA might be patho-
genic (Berglund et al., 2017). The biological consequence of ribonu-
cleotides in mtDNA is largely unknown, but seems to decrease the speed
of mtDNA replication (Forslund et al., 2018). In the context of aging, it
will be interesting to investigate the rate of ribonucleotide incorpora-
tion and the level of ribonucleotides in mtDNA in different tissues with
age (Pawar et al., 2018).

5.1. MtDNA variants

mtDNA may influence human biology and aging in subtle ways.
mtDNA has a higher mutation and evolution rate than nuclear DNA,
and mtDNA shows large within-population sequence variability (Elliott
et al., 2008; Wallace, 2015). Non-deleterious, beneficial mutations that
improved adaptation to environmental changes, such as climate and
food, and infectious diseases, were fixed in mtDNA giving rise to dif-
ferent lineages or haplotypes. Further nucleotide sequence changes in
the haplotypes generated clusters of related mtDNA within populations
known as haplogroups (Wallace, 2015). Haplogroups may provide
protection or influence the severity and susceptibility to various dis-
eases (Carelli et al., 2006; Wallace, 2018). There are, however, also
reports that do not support such associations (Goncalves et al., 2018;
Hudson et al., 2012).

The maternal inheritance of mtDNA is predicted to result in a se-
lection asymmetry and increased mtDNA mutation load and reduced
fitness in males (Wolff and Gemmell, 2013). Analysis of data from a
female founder lineage over several generations revealed that an
mtDNA variant had a negative effect on male fitness. Thus, the pre-
dominant maternal transmission of mtDNA has probably contributed to
the reduction of male lifespan (Milot et al., 2017).

Experiments on laboratory models and domestic animals have
shown associations between specific mtDNA variants and various phe-
notypic traits, as well as, functional interactions with the nuclear
genome (Aw et al., 2018; St John and Tsai, 2018; Vivian et al., 2017). A
transgenic mouse harboring nuclear DNA from one strain and homo-
plasmic mtDNA haplotype from another, revealed substantial influence
of mtDNA haplotype on longevity and health span (Latorre-Pellicer
et al., 2016).

These results suggest that mtDNA variants may have subtle effects
on health and aging. Further, experimental studies using different an-
imal models may provide better insight into functional interactions
between mtDNA haplotypes and the longevity signaling pathways.

5.2. mtDNA and inflammation

The induction of acute inflammation is an integral part of the innate
immune response to defend body against pathogens, bacterial and viral
infections, tissue damage and the following healing process. On the
other hand, non-infectious, low-grade, chronic inflammation is a major
risk factor for the development of many age-associated diseases and
frailty (Franceschi et al., 2017; Lopez-Otin et al., 2013; Mattson and
Arumugam, 2018).

The inflammatory response is triggered by the release of mediators
such as cytokines and chemokines by tissue-resident leukocytes and
other cells (Medzhitov, 2008). Non-infectious endogenous sources of
induction of inflammation includes cellular DNA molecules outside
mitochondria and the nucleus, e.g. in the cytoplasm. Such DNA could
be sensed as pathogen-associated molecular patterns (PAMPs) and da-
mage-associated molecular patterns (DAMPs), by specific pattern re-
cognition receptors (PRRs) and activation of immune response
(Medzhitov, 2008; Netea et al., 2017).

The cyclic guanosine monophosphate-adenosine monophosphate
synthase (cGAS) and stimulator of interferon genes (STING) signaling
has been identified as a key sensor of cytoplasmic DNA (Ishikawa and
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Barber, 2008; Li and Chen, 2018; Wu et al., 2013a). ¢cGAS binds to
double-stranded DNA, independent of nucleotide sequence, as a result,
cytosolic self-DNA (e.g. DNA released into the cytosol following nuclear
DNA damage) and foreign DNA activate cGAS-STING signaling that
results in the production of different inflammatory interferon and cy-
tokines (Li and Chen, 2018; Wu et al., 2013a). Defects in the proteins
that prevent the accumulation of cytosolic host DNA have been linked
to Aicardi-Goutiéres syndrome (AGS) (Coquel et al., 2018; Crow et al.,
2006; Rice et al., 2015; Yang et al., 2007), a rare systemic inflammatory
autoimmune disease clinically characterized by early-onset en-
cephalopathy, basal ganglia calcification, cerebral white matter ab-
normalities, and elevated level of type I interferon in serum and cere-
bral spinal fluid (Goutieres et al., 1998).

The release of mtDNA into cytoplasm, e.g. as a result of mitochon-
drial stress and damage, can activate cGAS-STING inflammatory re-
sponse (West et al., 2015; White et al., 2014). Importantly, removal of
damaged or stressed mitochondria by mitophagy inhibited this re-
sponse (Nakahira et al., 2011; Sliter et al., 2018). Mitochondria play
various pivotal roles in the regulation of innate and adaptive immune
responses (Weinberg et al., 2015). Thus, the health beneficial effects of
life style and compounds that stimulate mitophagy and maintain mi-
tochondrial quality (Fang et al., 2019, 2016a; Fang et al., 2017a) are
likely in part also to control chronic inflammation, a major source of
age-related frailty and morbidity.

6. From nuclear DNA damage response to mitochondria
dysfunction and aging

As we discussed in section 4, damage to DNA can cause a number of
unpredictable adverse effects on protein coding genes and transcrip-
tional regulatory regions. However, recent findings that DNA lesions
(nuclear and telomeric) generate signaling responses that influence
mitochondrial function (Fakouri et al., 2018; Fang et al., 2016b; Sahin
et al., 2011), have identified a novel consequence of an overall effect of
stochastic genomic damage on cell function and aging, thus connecting
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genome instability to mitochondrial dysfunction, two hallmarks of
aging (Lopez-Otin et al., 2013; Mattson and Arumugam, 2018).

Poly (ADP-ribose) polymerases 1 and 2 (PARP1/2) are activated
following binding to DNA damage to signal the site of damage to DNA
repair proteins by adding ADP-ribose polymers (PAR) to themselves and
to the nearby proteins while consuming nicotinamide adenine dinu-
cleotide (NAD ") in the process (Pascal and Ellenberger, 2015).

NAD™ is an important redox coenzyme in metabolic pathways such
as the citric acid cycle, and glycolysis, and is also used as co-substrate
by three classes of enzymes; 1- poly (ADP-ribose) polymerases (PARP1/
2), 2- sirtuins, and 3- the cyclic ADP-ribose (cADPR) synthases (CD38,
CD157) (Canto et al., 2015). These enzymes compete for the available
cellular NAD* pool. The level of NAD™* declines with age (Braidy et al.,
2011; Zhu et al., 2015), and in animal models of human DNA repair
deficiency (Fang et al., 2016a, 2014), while NAD" supplementation
improves health span and extends lifespan in different animal models
(Mouchiroud et al., 2013; Zhang et al., 2016).

Sirtuins are evolutionarily conserved protein deacetylases/deacy-
lases implicated in the regulation of aging and longevity in various
organisms (Imai and Guarente, 2016). Seven sirtuins (1-7) have been
identified in human cells that localize in the nucleus (SIRT1, 6 and 7),
cytoplasm (SIRT2) and in mitochondria (SIRT 3-5) (Canto et al., 2015).
The nuclear SIRT1 controls and regulates transcription by deacetylating
transcription factors, and modulates the catalytic activity of enzymes
(Canto et al., 2015).

Several recent studies have identified a link between nuclear DNA
damage and cell metabolism and mitochondrial homeostasis through
NAD* consumption. For example, increased PARP activity, as a result
of prolonged genotoxic exposure, defects in DNA repair, and during the
aging process, limits the level of NAD* available for sirtuins conse-
quently affecting the function of their downstream targets such as
PGCl-a, an important regulator of mitochondrial biogenesis and pro-
teins involved in mitophagy (Bai et al., 2011; Fang et al., 2019). Ac-
cordingly, NAD" supplementation and PARP inhibition increases cel-
lular NAD* levels and improves mitochondria homeostasis in various

Fig. 2. NAD" over-consumption following
persistent DNA lesions is a central link between
nuclear DNA instability and mitochondrial
dysfunction, two hallmarks of aging. Defects in
DNA repair proteins such as in the premature
aging disorders xeroderma pigmentosum group
A (XPA), ataxia telangiectasia mutated (ATM),
and Cockayne syndrome A and B (CSA/B), as
well as age-related DNA repair imbalance and
dysregulation (Aging), result in the accumula-
tion of DNA damage and genome instability
(1), leading to prolonged PARP activation
(PARylation), increased NAD* consumption,
and reduced NAD™* levels and SIRT 1 activity
(2). A consequence of this chain of events is
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animal models of human diseases (Fang et al., 2019, 2016a; Fang et al.,
2017a) (Fig. 2).The effect of DNA damage-mediated PARP activation on
mitochondrial bioenergetics and cell metabolism is complex, probably
involving alternative pathways (Fakouri et al., 2018; Fang et al., 2017a;
Fouquerel et al., 2014), and requires more investigation.

7. Telomeres

The regular DNA replication machinery is not able to synthesize the
ends of the chromosomes. The maintenance and the protection of the
genes at the end of the chromosomes is achieved by telomeres, the
tandem repeats of TTAGGG nucleotide sequences, and telomerase, a
specialized reverse transcriptase, that replicates and maintains telo-
meres. Telomeres are partially protected from damage by a protein
complex called shelterin that consists of TRF1, TRF2, POT1, RAP1,
TIN2, and TPP1 subunits (de Lange, 2005).

In many human cell types, telomeres shorten throughout the life-
span; however, a critical role of telomere shortening in the usual human
aging process is not fully established. Most studies connecting telomere
attrition to aging phenotypes have been conducted in transgenic animal
models with defects in telomere maintenance genes, in which telomere
shortening during normal aging is insignificant (Blackburn et al., 2015).

Cell senescence is probably a key link between telomere attrition
and aging. Many cell types express telomerase at a very low level. When
these cells are cultured, they undergo progressive telomere shortening
during successive rounds of cell division and eventually enter a per-
manent cell cycle arrest known as replicative senescence. Telomeres are
particularly vulnerable to oxidative damage that can result in telomere
shortening and dysfunction and persistent DDR (Barnes et al., 2019;
Hewitt et al., 2012). It has been speculated that the higher sensitivity of
telomeres to oxidative damage was to help telomere-driven replicative
senescence to block the growth of the most badly stressed cells that
were at high risk of accumulating DNA damage and mutations (von
Zglinicki, 2002).

Damage to telomeres can induce senescence independently of telo-
mere size by activating DDR (Anderson et al., 2019; Hewitt et al.,
2012).

7.1. Mitochondria and telomeres

Reciprocal signaling between telomere damage and mitochondrial
function has been reported and appears to occur through different
mechanisms. ROS emitted from dysfunctional mitochondria was iden-
tified as a major determinant of telomere damage and telomere de-
pendent senescence, which was proposed to account for cell-to-cell
variation in replicative capacity (Passos et al., 2007).

In telomerase deficient mice, persistent telomere damage and at-
trition was shown to activate the transcription factor p53, which in turn
suppressed the expression of PGCl-a and PGC-1f genes that are con-
sidered key regulators of mitochondrial biogenesis, thus compromising
mitochondria homeostasis (Sahin et al., 2011). Telomere dysfunction
and p53 activation also suppressed the expression of sirtuins including
the mitochondrial sirtuins 3-5, which was corrected by p53 deletion
(Amano et al., 2019). Administration of the NAD* precursor NMN,
lowered the level of p53 acetylation (which can negatively affect p53
transcriptional activity), maintained telomere length, and reduced
DDR. In addition, NMN treatment improved several mitochondrial
parameters in transgenic mice (Amano et al., 2019). The results of this
study identify a novel pathway linking impaired sirtuin activity fol-
lowing telomere dysfunction and DDR, to mitochondrial dysfunction,
and present NAD " supplementation as a potential therapeutic approach
for telomere-related aging phenotypes and diseases.

It should, however, be noted that patients with dyskeratosis con-
genita, a telomere related disease caused, in part, by mutation in the
components of telomerase complex, do not seem to show clear clinical
features of mitochondrial disease, (Armanios and Blackburn, 2012;
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Scheibye-Knudsen et al., 2013), but this needs further investigation.

Other forms of apparent interplay between mitochondria and telo-
meres involve the dual localization of TERT, the catalytic subunit of
telomerase, and the shelterin protein TIN2 in mitochondria and telo-
meres.

A number of studies have demonstrated the presence of TERT in
mitochondria both in proliferating and post-mitotic brain neurons.
However, whereas initial studies showed that localization of TERT in
mitochondria compromised mitochondrial function and mtDNA in-
tegrity (Santos et al., 2004, 2006), later works demonstrated improved
mitochondrial parameters and mtDNA stability (Ahmed et al., 2008;
Haendeler et al., 2009).

Compared to TERT, limited data is available on the biological sig-
nificance of mitochondrial localization of TIN2. Overexpression of TIN2
had a profound effect on mitochondrial morphology and network.
Furthermore, shRNA mediated TIN2 knockdown improved several
parameters of mitochondrial bioenergetics, (Chen et al., 2012), sug-
gesting a link between TIN2 and mitochondrial morphology and me-
tabolism.

The RECQL4 helicase functions in DNA repair and replication and is
a central enzyme in the maintenance of genome stability (Croteau et al.,
2014). RECQL4 localizes into mitochondria and contributes to telo-
meric DNA maintenance (Croteau et al., 2014, 2012; Ghosh et al.,
2012). Individuals with defect in RECQL4 develop premature aging
syndromes which may be in part related to its role in telomere integrity
and mtDNA metabolism.

In addition, a number of DNA repair proteins have functions in the
mitochondria and in telomeres (Akbari et al., 2014; Batenburg et al.,
2012; Duxin et al., 2009; Safdar et al., 2016; Sahin et al., 2011; Aamann
et al., 2010). It is not clear what drives the distribution of these proteins
between mitochondria and telomeres, and this presents as an inter-
esting avenue of future research.

Taken together, there appears to be some crosstalk between mi-
tochondria and telomeres, and elucidating functional links between
these compartments merits more investigation.

8. Mitochondria in cellular senescence

Cellular senescence has long been recognized as a distinct and
central feature of aging tissues (Dimri et al., 1995). It is characterized
by a state of irreversible and permanent proliferation arrest in somatic
cells, together with a complex and distinct senescence-associated se-
cretory phenotype (SASP) consisting of upregulation of pro-in-
flammatory cytokines, proteases, and growth and angiogenesis factors
that can alter tissue homeostasis (Freund et al., 2010; Wiley and
Campisi, 2016). Senescence can be induced by various stress factors
including mitogenic stress, and persistent DNA damage including
telomeric DNA, and activation of DDR, and is commonly thought to
have been developed to counter oncogenic transformation of the af-
fected cell (Wiley and Campisi, 2016). Over time, the number of se-
nescent cells increase, and this results in diminished tissue function,
altered tissue structure, and decline in tissue repair and regenerative
capacity, collectively promoting aging and age-related phenotypes
(Chapman et al., 2019). Accordingly, genetic and pharmacological
clearance of senescent cells delays the onset of age-related pathologies
and extends health span in mice (Baker et al., 2011; Xu et al., 2018).

Evidence suggests a key role for mitochondria in the development of
cellular senescence and in the modulation of the SASP signaling. A
range of mitochondrial alterations have been reported in senescent cells
including mitochondrial morphology and network, mass, mitochondrial
ROS production, metabolites, and overall function (Chapman et al.,
2019; Kaplon et al., 2013; Moiseeva et al., 2009; Wiley and Campisi,
2016; Ziegler et al., 2015).

Controlled disruption of mitochondrial function and depletion of
mitochondria in cells, have provided some clues about the molecular
processes that connect mitochondrial metabolism to senescence.
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Cells treated with various DDR activators and senescence inducers
display increased mitochondrial mass prior to senescent cell cycle arrest
(Moiseeva et al., 2009). This is via transcriptional activation of PGC1-3
resulting in increased mitochondrial ROS production and DNA damage.
Persistent DNA damage, gives rise to a positive feedback loop through
ATM, Akt, and mTORC1 phosphorylation activation followed by en-
hanced PGC-1B dependent mitochondrial biogenesis, sustained DDR,
cell cycle arrest and cellular senescence (Correia-Melo et al., 2016).

Mitochondrial dysfunction-associated senescence (MiDAS) is char-
acterized by distinct SASP, and reduced NAD* /NADH ratio and AMPK
activation. Activated AMPK was shown to drive growth arrest and se-
nescence though phosphorylation of p53 that increased expression of its
target senescence markers p21"VAF! and p16™¥4? (Wiley et al., 2016).
Senescence and MiDAS phenotypes were also detected in tissues from
transgenic mice that accumulate mtDNA mutations, and dysfunctional
mitochondria, and show accelerated aging phenotypes (Kujoth et al.,
2005; Trifunovic et al., 2004), demonstrating MiDAS in vivo (Wiley
et al., 2016).

Thus, cellular senescence might be an important consequence of
age-related decline in mitochondrial homeostasis. Because of the key
roles of senescence and mitochondrial dysfunction in aging and age-
related tissue dysfunction and disease, more in vivo studies in animal
models and in human tissues are needed.

Collectively, current data suggests that cellular senescence in-
tegrates several regulators of longevity and health span, i.e. genome
instability and DDR, mitochondrial metabolism, AMPK activation, and
mTOR pathway function, which are largely druggable targets, including
senescent cells and SASP (Arriola Apelo et al., 2016; Bai et al., 2011;
Fang et al., 20164, a; Kirkland et al., 2017; Kraig et al., 2018; Lin and
Hardie, 2018; Zhang et al., 2016), which can also be modified by life-
style changes (Di Francesco et al., 2018; Mattson et al., 2018).
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9. Dynamic modeling of modulators of longevity and health span

A central objective in aging research is to develop intervention
strategies to reduce age-associated illness and frailty, and to improve
quality of life at old age. The action of the longevity signaling pathways
is influenced by highly dynamic and complex system of interactions and
feedback loops, and is controlled at several levels including gene ex-
pression, subcellular localization, and post-translational modification,
and importantly by external factors like lifestyle and various com-
pounds (Figs. 1-3).

Computer modeling has been developed to handle complex biolo-
gical systems (Dalle Pezze et al., 2014; Guimera et al., 2019; Mc Auley
et al,, 2017). Integrated dynamic computer modeling represents a
powerful tool to bring together the actions and responses determined
experimentally in order to quantify and predict the outcomes of various
drug interventions on the longevity regulating pathways and mi-
tochondrial function, and to develop testable models for intervention
strategies.

10. Conclusions

The biology of the aging process is complex, shows large inter-in-
dividual variations, and is largely driven by the accumulation of sto-
chastic damage to tissues and cellular components over time.

Impaired mitochondrial function and homeostasis is now commonly
recognized to constitute a central connection to multiple aspects of the
aging process and age-onset frailty and diseases (Lopez-Otin et al.,
2013; Mattson and Arumugam, 2018). This is largely because of the
central position of mitochondria in key cellular processes, as well as,
the control of mitochondrial homeostasis by numerous processes taking
place within and outside the mitochondria. Interestingly, mitochondrial
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Fig. 3. Multiple processes may link nuclear DNA instability to mitochondrial dysfunction and aging, several of which are malleable to modification by lifestyle and
drug interventions. Persistent DNA damage and DNA damage response (PARylation), reduces cellular NAD* content resulting in aberrant activity of sirtuins and their
downstream targets (1). These events can affect mitochondrial proteins (2) and cytosolic proteins that control mitochondrial quality and mtDNA maintenance (3),
leading to mitochondrial stress and loss of mitochondrial homeostasis (4), which ultimately result in tissue and organismal dysfunction (5). Life style and phar-
macological interventions (6) may improve health span and increase lifespan by correcting these events (7).
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dysfunction has emerged as a malleable therapeutic target (Fang et al.,
2019, 2016a; Ryu et al., 2016). This seems to be a research area of great
opportunity going forward.

Single cell and multicellular organisms have evolved interconnected
signaling mechanisms to sense and respond to genome damage, and to
the environmental cues and nutrients to regulate their internal needs
for growth, proliferation and maintenance. Research has consistently
shown that the manipulation of some of these pathways markedly af-
fects lifespan and health span in various model organisms. A remark-
able outcome of these studies is the identification of lifestyle and
pharmacological interventions that act on these pathways and can po-
tentially delay or reduce age-associated chronic illnesses and extend
lifespan (Fang et al., 2017a, b; Mattson et al., 2018) (Fig. 3). Some of
the drugs that promote health span and extend lifespan in animal
models are already in clinical use for other purposes, and some seem
safe to be tested in human clinical trials (Dellinger et al., 2017; Martens
et al., 2018; Newman et al., 2016).

With the advancing knowledge and the growing insight into the
genetic and biochemistry of aging, together with continual improve-
ment in biomarkers of biological aging, safer and target specific inter-
vention strategies may be developed to improve mitochondrial biology
and to modulate the longevity signaling pathways to provide a healthier
aging for the growing elderly populations worldwide.
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