

Review

The Y₆₈₂ENPTY₆₈₇ motif of APP: Progress and insights toward a targeted therapy for Alzheimer's disease patients

Carmela Matrone^{a,b,*}, Filomena Iannuzzi^b, Lucio Annunziato^c^a Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy^b Department of Biomedicine, University of Aarhus, Bartholins Allé, 8000 Aarhus, Denmark^c IRCCS SDN, Naples, Italy

ARTICLE INFO

Keywords:

Alzheimer's disease
Amyloid precursor protein
A β
Fyn tyrosine kinase
Y₆₈₂ENPTY₆₈₇
Tyr₆₈₂ residue phosphorylation

ABSTRACT

Alzheimer's disease (AD) is a devastating neurodegenerative disorder for which no curative treatments, disease modifying strategies or effective symptomatic therapies exist. Current pharmacologic treatments for AD can only decelerate the progression of the disease for a short time, often at the cost of severe side effects. Therefore, there is an urgent need for biomarkers able to diagnose AD at its earliest stages, to conclusively track disease progression, and to accelerate the clinical development of innovative therapies.

Scientific research and economic efforts for the development of pharmacotherapies have recently homed in on the hypothesis that neurotoxic β -amyloid (A β) peptides in their oligomeric or fibrillary forms are primarily responsible for the cognitive impairment and neuronal death seen in AD. As such, modern pharmacologic approaches are largely based on reducing production by inhibiting β and γ secretase cleavage of the amyloid precursor protein (APP) or on dissolving existing cerebral A β plaques or to favor A β clearance from the brain.

The following short review aims to persuade the reader of the idea that APP plays a much larger role in AD pathogenesis. APP plays a greater role in AD pathogenesis than its role as the precursor for A β peptides: both the abnormal cleavage of APP leading to A β peptide accumulation and the disruption of APP physiological functions contribute to AD pathogenesis.

We summarize our recent results on the role played by the C-terminal APP motif -the Y₆₈₂ENPTY₆₈₇ motif- in APP function and dysfunction, and we provide insights into targeting the Tyr₆₈₂ residue of APP as putative novel strategy in AD.

1. Introduction

1.1. The scientific problem

Alzheimer's disease (AD) is the single most common form of dementia, which currently results in death for all diagnosed patients given that there is no cure and no effective treatments. Over 30 million people suffer from AD worldwide, with a projected rate of diagnosis of 1 in 85 by 2050 (<https://www.alz.org/alzheimers-dementia/facts-figures>).

The amyloidogenic hypothesis posits that amyloid β (A β) peptides, which are protease cleavage products of the type I transmembrane amyloid precursor protein (APP) by β -site APP-cleaving enzyme 1 (BACE1; also known as β -secretase) and γ -secretase, are causative of AD (Esteras-Chopo et al., 2005; Hardy and Selkoe, 2002; Karra and De Strooper, 2016; Makin, 2018; Selkoe et al., 2012). A β peptides, detectable in senile plaques in AD patient brains as well as in highly

neurotoxic small oligomeric A β -aggregates, are considered to be central to AD etiology (Selkoe, 2004). Mutations in the genes encoding APP or presenilins (PSEN1 and 2), the alternative catalytic subunits of the γ secretase complex, cause autosomal dominance and early-onset familial AD (FAD) by increasing A β production (Karch et al., 2014; Gómez-Isla et al., 1999; Van Cauwenbergh et al., 2016). Conversely, the APP mutation (A673 T) that prevents β -secretase-mediated cleavage of APP and, consequently, reduces A β levels, protects against the risk of late-onset sporadic AD (Jonsson et al., 2012; Maloney et al., 2014).

The tau microtubule associated protein, considered the other critical component for AD development, forms neurotoxic hyperphosphorylated neurofibrillary tangles that purportedly function downstream of A β , thus exacerbating A β neurotoxicity (Selkoe et al., 2012).

To date, there have been over completed or in-process 1500 clinical trials for AD treatments targeting A β and tau neurotoxicity. Unfortunately, none of these trials have demonstrated clinical effects in

* Corresponding author at: Dept. of Neurosciences, School of Medicine, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy.
E-mail address: carmela.matrone@unina.it (C. Matrone).

Table 1

Results of PubMed database search using key words such as “APP and YENPTY” and “APP and Tyr/Tyrosine 682 phosphorylation”.

Authors	Experimental Model	Main Findings
(Koo and Squazzo, 1994)	CHO cell line	The NPTY motif of APP controls APP endocytosis and influences production and release of $\text{A}\beta$.
(Fiore et al., 1995)	PC12 cell line	The C-terminal region of Fe65 protein binds the YENPTY motif of APP.
(Lai et al., 1995)	CHO cell line	The two tyrosines on the YENPTY cytoplasmic tail of APP function as internalization signals and mediate APP trafficking from the cell surface toward the endocytic pathway. Glycogen synthase mediates the phosphorylation of APP cytoplasmic domain.
(Aplin et al., 1996)	In vitro assay	X11 protein binds the YENPTY motif of APP
(Borg et al., 1996)	HEK293 and HER14 cell lines	
(Bressler et al., 1996)	In vitro assay	
(McLoughlin and Miller, 1996)	In vitro assay	
(Borg et al., 1998)	HEK293 cell line	Binding analysis between proteins containing phosphotyrosine-binding domain (PTB) and the YENPTY motif of APP.
(Duilio et al., 1998)	HEK293 and HER14 cell lines	X11-a factor binds the YENPTY motif, regulates APP processing and reduces Ab production and secretion.
(Sastre et al., 1998)	N2a and HEK 293 cell lines	Fe65L2 - a member of the Fe65 protein family- interacts with the intracellular YENPTY motif of APP.
(Ando et al., 1999)	PC12 cell line	X11 interacts with the YENPTY motif of APP and affects APP processing and Ab production.
(Guénette et al., 1999)	HEK293	APP phosphorylation on Thr668 residue triggers neuronal differentiation of PC12 cell line.
(Perez et al., 1999)	CHO cell line	hFE65L influences APP maturation and secretion
(Watanabe et al., 1999)	Brain tissues	YENPTY motif of APP influences endocytosis, turnover, and generation of secreted Ab fragments
(Iijima et al., 2000)	Rat hippocampal neuronal cultures	UV-DDB protein binds to the cytoplasmic domain of APP
(Mueller et al., 2000)	HEK293 cell line	Cyclin-dependent kinase 5 phosphorylates neuronal APP on the YENPTY motif
(Ando et al., 2001)	HEK293 cell line	X11alpha and Mint-1 adaptor proteins modulate APP metabolism by interacting with the YENPTY motif.
(Cao and Südhof, 2001)	COS7, HEK293, PC12 cell lines	APP-Fe65 interaction results in the phosphorylation of APP on the YENPTY motif and affects A production
(Cupers et al., 2001)	Knockout mice tissues; Primary neuronal cultures	Tip60 forms a complex with Fe65 and the YENPTY motif of APP.
(Kimberly et al., 2001)	Cos7 cell line	The cytoplasmic APP fragments are degraded rapidly and they are partially located in the nuclear fraction.
(Matsuda et al., 2001)	COS7 cells and in vitro assays	Fe65 stabilizes the cytoplasmic APP fragment and favors APP translocation to the nucleus.
(Minopoli et al., 2001)	Cos7 and PC12 cell lines	JNK-interacting protein-1 (JIP-1b) and its human homolog IB1 bind the cytoplasmic APP fragment
(Nunan et al., 2001)	Transgenic mice tissues; Primary neuronal culture	The phosphorylation of the cytoplasmic APP fragment prevents Fe65 translocation to the nucleus
(Ramelot and Nicholson, 2001)	In vitro assay	The C-terminal fragment of APP is degraded by a proteasome-dependent mechanism
(Zambrano et al., 2001)	Cos7 cell line	NMR analysis of phosphorylation-induced structural changes in the APP cytoplasmic tail
(Biederer et al., 2002)	HEK 293 and HER14 cell line	Abl oncogene phosphorylates APP on tyrosine residues.
(Edbauer et al., 2002)	HEK 293 cell line	Differential transcription functions of Mint isoforms on APP gene.
(Roncarati et al., 2002)	HEK 293, HeLa cell lines;	Insulin-degrading enzyme is responsible for the rapid degradation of the APP intracellular domain (AICD)
(Russo et al., 2002)	Primary cultures of cortical neurons	The C-terminal fragment of APP binds Numb and inhibits Notch signaling
	Primary cultures of rat cortical neurons and astrocytes;	
	Human brain tissues	Tyrosine-phosphorylated APP C-terminal fragments interact with Shc/Grb2 adaptor proteins.
(Tarr et al., 2002b)	HEK293T, COS7 and N2a cell lines	Tyrosine phosphorylation of APP cytoplasmic tail promotes interaction with Shc.
(Tarr et al., 2002a)	HEK293 cell line	NGF promotes tyrosine phosphorylation and processing of APP via TrkA activation.
(Taru et al., 2002)	CHO cell lines	JIP1b and JIP2 bind the cytosolic tail of APP.
(Bergman et al., 2003)	CHOPro5 and HEK293 cell lines	Mutations on the presenilin gene (FAD mutation) do not influence the production of APP C-terminal peptides.
(Hill et al., 2003)	HeLa cell line	Mint adaptor proteins bind the YENPTY motif of APP and enhances the APP amyloidogenic processing.
(Kim et al., 2003)	HEK293 cell line	The overexpression of the C-terminal fragments of APP increases the levels and the promoter activity of GSK-3 β protein.
(King et al., 2003)	HEK293 cell line	X11a binds the YENPTY motif and regulates the secretory, endocytic trafficking and metabolism of APP
(Nunan et al., 2003)	CHO cell line	The proteasomal cleavage of the cytosolic domain of APP at the YENPTY motif prevents the g secretase processing, and consequently reduces Ab production.
(Scheinfeld et al., 2003b)	HEK293T and N2a cell lines	JNK-interacting protein-1 increases transcription of APP but not APP-like protein, following a mechanism different than that of Fe65
(King and Scott Turner, 2004)	Review article	Review discussing the role of adaptor protein interactions in modulating amyloid precursor protein metabolism and Alzheimer's disease.
(Zambrano et al., 2004)	HEK293, HeLa, and HeLaAG cell lines	Fe65 and Shc bind the YENPTY motif of APP and influence APP processing by two different mechanisms: Fe65 induces the caspase-dependent cleavage of APP, whereas Shc triggers the PDGF-mediated APP processing.
(Fassa et al., 2005)	HEK293 cell line	Notch 1 interacts with the YENPTY motif of APP in a Numb-independent manner
(Kerr and Small, 2005)	Review article	Review discussing the role of the cytoplasmic domain of the beta-amyloid protein precursor in the function, regulation of proteolysis, and implications for drug development of Alzheimer's disease.
(Russo et al., 2005)	Review article	Review discussing the physiological and pathological implications of the amyloid precursor protein and its network of interacting proteins.

(continued on next page)

Table 1 (continued)

Authors	Experimental Model	Main Findings
(Xie et al., 2005)	<i>H4 cell line</i>	X11alpha and X11beta bind the YENPTY motif of APP although they play a different role in APP processing and Ab production
(Ozaki et al., 2006)	<i>U2OS and H4 cell line</i>	The C-terminal domain of APP enhances p53-mediated apoptosis
(Nakaya and Suzuki, 2006)	<i>Neuro-2a (N2a) cells and mutant mice</i>	The phosphorylation of APP modulates Fe65 intracellular localization and translocation to the nucleus with the consequent activation of AICD related genes.
(Pastorino et al., 2006)	<i>Knock out mice tissues</i>	The prolyl isomerase Pin1 binds the YENPTY motif of APP and regulates APP processing and Ab production
(Shaked et al., 2006)	<i>N2a and B103 cell lines</i>	Ab induces neuronal toxicity by interacting directly and specifically with membrane-bound APP and by facilitating the oligomerization of β -secretase cleaved APP C-terminal fragments. The YENPTY domain in the APP is critical for this cell death pathway.
(Parisiadou and Efthimiopoulos, 2007)	<i>HEK 293 and U251 cell lines</i>	mDab1 binds to the C-terminal tail of APP and prevents the APP amyloidogenic processing. X11alpha and mDab1 exert opposing effects on APP processing and Ab production.
(Ring et al., 2007)	<i>APP knock out mice and primary neuronal cultures.</i>	US" > Mice lacking of the YENPTY motif show reduced turnover of holoAPP, increased cell surface expression, and strongly reduced AUS" > bUS" > levels in brain.
(Yoon et al., 2007)	<i>US" > Primary rat cortical neuronal cultures</i>	US" > The okadaic acid-induced neurodegeneration results in the proteolytic processing of mint-1 and mint-2, and in the APP accumulation and phosphorylation.
(Xie et al., 2007)	<i>H4 neuroglioma cell line</i>	US" > The lack of ShcC (but not ShcA) reduces APP-C-terminal and Ab levels. Fe65 absence increases APP-C-terminal levels, although Ab levels remain decreased.
(Venugopal et al., 2007)	<i>In vitro assay</i>	APP cytoplasmic fragments are degraded by insulin (AbUS" > degrading enzyme)
(Beel et al., 2008)	<i>Cell line</i>	Cholesterol binds to APP-C-terminal (C99) fragment and influences APP trafficking and Ab production
(Hoe et al., 2008)	<i>COS7 and HEK293 cell lines</i>	Fyn phosphorylates Dab1 and enhances APP and ApoE receptor 2 processing
(McLoughlin and Miller, 2008)	<i>Review article</i>	Review discussing the role of Fe65 proteins in Alzheimer's disease
(Müller et al., 2008)	<i>Review article</i>	Review discussing the amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics in Alzheimer's disease
(Takahashi et al., 2008)	<i>HEK 293 cell lines</i>	Tyr687 phosphorylation on the YENPTY motif of APP favors the non-amyloidogenic APP processing
(Waldron et al., 2008)	<i>CHO K1 and HEK 293 cell lines</i>	Increased AICD generation does not result in increased nuclear translocation or activation of target genes
(Austin et al., 2009)	<i>Endothelial cells</i>	Amyloid precursor protein mediates a tyrosine kinase-dependent activation response
(Ghosal et al., 2009)	<i>Transgenic mice tissues</i>	AICD overexpression induces hyperphosphorylation and aggregation of tau, neurodegeneration and working memory deficits and increased expression levels of GSK-3b.
(Shaked et al., 2009)	<i>B103 cell line; Human brain tissues</i>	Interactions between YENPTY motif of APP and G proteins influence calcium dysregulation and Ab toxicity
(Tamayev et al., 2009)	<i>Mammalian cell line</i>	Tyr682 and Thr668 are crucial for APP interactome shaping US" >
(Zhou et al., 2009)	<i>HEK293 cell line</i>	Tyrosine phosphorylation on the YENPTY motif of APP inhibits Fe65-APP binding and Fe65 signaling
(Barbagallo et al., 2010)	<i>Knock-in mice brain tissues and primary neuronal culture</i>	US" > Mutation of Tyr682 in the intracellular domain of APP prevents amyloidogenic APP processing
(Buoso et al., 2010)	<i>Review article</i>	Review discussing the beta-Amyloid precursor protein metabolism on the functions and degradation of its intracellular domain
(Schettini et al., 2010)	<i>Review article</i>	Review discussing the phosphorylation of CTF-AICD domains and the interaction with adaptor proteins as signal transduction and/or transcriptional mediator of APP activity
(Barbagallo et al., 2011)	<i>Knock-in mice brain tissues; Primary neuronal culture</i>	Mutant knock-in mice carrying mutation on Tyr682 residue on the YENPTY motif show defect in development
(Matrone et al., 2011)	<i>US" > Knock-in mice tissues; Primary neuronal culture</i>	Phosphorylation of Tyr682 residue on the YENPTY motif is crucial for NGF signaling
(Xu et al., 2011)	<i>SK-N-SH, SK-N-AS and HeLa cell lines</i>	MED12/Mediator binds to AICD and activates the expression of AICD target genes
(Beyer et al., 2012)	<i>NEURO-2A and SH-SY5Y cell lines; Primary rat hippocampal neurons; Human brain tissues</i>	GULP1 interacts with the YENPTY motif of APP and alters trafficking and processing of APP
(Beckett et al., 2012)	<i>Review article</i>	Review discussing the AICD "enigma" in respect of APP nuclear signaling and transcriptional activity
(Matrone et al., 2012)	<i>Knock-in mice brain tissues; Primary neuronal culture</i>	Tyr682 residue on the YENPTY motif regulates synaptic connectivity, cholinergic function, and cognitive performance
(Xie et al., 2012)	<i>H4 cell line</i>	Lack of Dab and Numb-YENPTY adaptor proteins reduce the γ -secretase mediated APP processing and prevent $\text{A}\beta$ production.
(Caster and Kahn, 2013)	<i>HeLa cell line</i>	Mint3 binds the Tyr682 on the YENPTY motif and regulates APP trafficking from the Golgi to lysosomal compartments.
(Matrone, 2013)	<i>Review article</i>	A review discussing the role of Tyr682 residue of amyloid precursor protein in age-related neurodegeneration
(Riese et al., 2013)	<i>HEK293 cell line</i>	Bimolecular fluorescence complementation procedure used to visualize AICD-Fe65 and Tip60 interactions in the nucleus.
(Milosch et al., 2014)	<i>Knock-out mice and Primary hippocampal neurons</i>	sAPP α neuroprotection via G-protein-coupled activation of the Akt pathway does not require YENPTY motif.
(Klevanski et al., 2015)	<i>Knock-out mice</i>	The C-terminus domain of APP is essential for neuromuscular morphology and functions as well as for normal nervous system activities such as synaptic plasticity, spatial learning, and memory.
(Nhan et al., 2015)	<i>Review article</i>	A review discussing "friends and foes" of amyloid precursor protein and its proteolytic fragments.
(Poulsen et al., 2015)	<i>Knock-in mice brain tissues; Primary neuronal culture</i>	Tyr682 residue of APP is essential for the Clathrin and Adaptor Protein 2 binding to the YENPTY motif.

(continued on next page)

Table 1 (continued)

Authors	Experimental Model	Main Findings
(Yáñez et al., 2016)	<i>Mutant and knock-out mice</i> <i>CHO cell line</i>	Tyr682 is crucial for the binding of c-Abl to APP. The inhibition of c-Abl prevents A β production and reduces levels of A β oligomers and of the carboxy-terminal fragment β CTF
(Guénette et al., 2017)	<i>Review article</i>	“APP Protein Family Signaling at the Synapse: Insights from Intracellular APP-Binding Proteins”
(Poulsen et al., 2017)	<i>Human neural stem cells from AD patients and healthy controls</i>	Excessive phosphorylation of APP Tyr residue(s) impairs the APP binding to the Clathrin endocytic complex and affects the APP trafficking in neurons from AD patients.
(Krasinski et al., 2018)	<i>In vitro assay</i>	The C-terminal APP fragment AICD57 forms micelle-like assemblies that are proteolyzed by insulin-degrading enzyme (IDE) particularly at level of the YENPTY motif.
(Cheng et al., 2019)	<i>Transgenic mice brain tissues; Primary neuronal culture</i>	Cofilin induces phosphorylation of APP C-terminal fragments and facilitates their nuclear translocation.

reversing, slowing or stopping cognitive decline and neuronal deficits in patients, thus raising skepticism among scientists with regards to the influence of A β as well as tau protein as necessary components AD etiology (Ghosal et al., 2009; Hardy and Selkoe, 2002; Karan and De Strooper, 2016; Nalivaeva and Turner, 2013). This concern seems to be heightened by the frequent lack of correspondence between the occurrence of brain amyloid deposits and cognitive and memory deficits in patients (Rabinovici, 2015; Armstrong, 2014).

Indeed, what seems plausible, considering the abundance of unsuccessful trials, is that A β plaques form within the brain at a later stage in AD development, suggesting that there is a point at which the disease becomes irreversible; that is, when reducing A β production and A β accumulation is not enough to rescue neuronal functions and the neurodegenerative processes progress independently from A β production, patients become unresponsive to any type of intervention.

It is therefore essential to prevent the pathology long before patients present with any clinical symptoms, certainly prior to the detection of A β plaques or neurofibrillary tangles. This means that it is necessary to find biomarkers to use as a screening tool that can detect the earliest biochemical signs of AD in people and thereby provide evidence of the disease prior to the presentation of obvious clinical symptoms, which is difficult when considering that a conclusive and exhaustive diagnosis of AD is only possible after a neuropathological examination of brain autopsy and that the symptoms of AD both start out very mildly and progress slowly, making it difficult for families and clinicians to detect any deterioration until well after the disease has progressed.

The ability to find biomarkers is even more challenging because of the lack of an animal model that accurately mimics all the features of AD neuropathology, such as A β deposition, synapse loss, inflammation, tau hyperphosphorylation, and the presence of neurofibrillary tangles. The currently available animal models of AD harbor mutations in genes encoding APP, PSEN1-2 or tau protein, which collectively account for < 5% of disease cases, thus prioritizing early-onset and familial forms of human AD and disregarding the vast majority of AD cases that are multifactorial and sporadic. This leads to data that are unequivocally difficult to translate to patients, which potentially explains why promising therapies in animal models frequently fail to replicate the same results in human clinical trials. Therefore, the role of APP in the onset or progression of AD requires a better understanding of its physiological function the malfunction thereof in AD, including a clear comprehension of the structure of the entire APP and its structural interactions with other proteins.

2. Methods

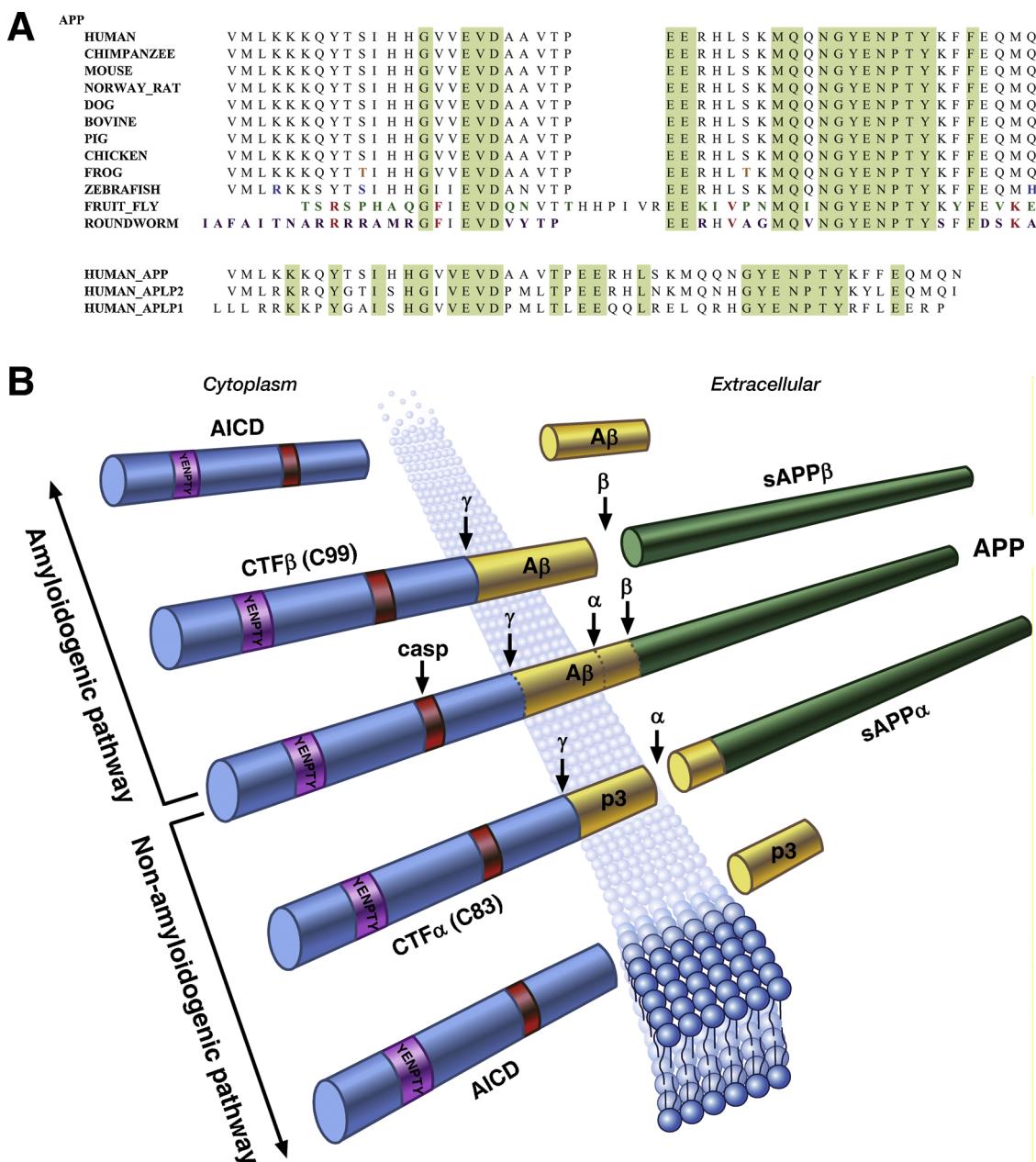
2.1. Search strategy

Review articles discussing recent advances in the amyloidogenic hypothesis were selected using PubMed database (typing “the amyloidogenic hypothesis”) and limiting the search to the last 5 years.

A computer-based search of PubMed database was performed to identify studies in which key words such as “APP and Y₆₈₂ENPTY₆₈₇” and “APP and Tyr/Tyrosine 682 phosphorylation” were typed. The search was performed without any specific restrictions with the exception of the language, as such only publications in English were included. All the papers have been listed in Table 1 and some of them have been mentioned and discussed along the text. Papers from reviews including the key words Y₆₈₂ENPTY₆₈₇ and Ty682 were also added to Table 1.

3. One possible solution: focus on the Y₆₈₂ENPTY₆₈₇ DOMAIN

APP belongs to an evolutionarily conserved family of type I transmembrane glycoproteins that includes the paralogs amyloid precursor-like proteins 1 and 2 (APLP1 and APLP2) (Gralle and Ferreira, 2007). These proteins share several conserved motifs, including the E1 and E2 domains in the extracellular region, and harbor a short cytoplasmic domain, the APP intracellular domain (AICD), which contains the Y₆₈₂ENPTY₆₈₇ motif patch with the highest homology (APP structure Fig. 1A) (Kaden et al., 2012). Indeed, that the Y₆₈₂ENPTY₆₈₇ motif is evolutionarily conserved among mammalian species and is present in either APP as APLP1 and APLP2 rather than in the non-conserved A β sequence, clearly suggests an essential role for the Y₆₈₂ENPTY₆₈₇ motif in APP function as well as its subsequent dysfunction.

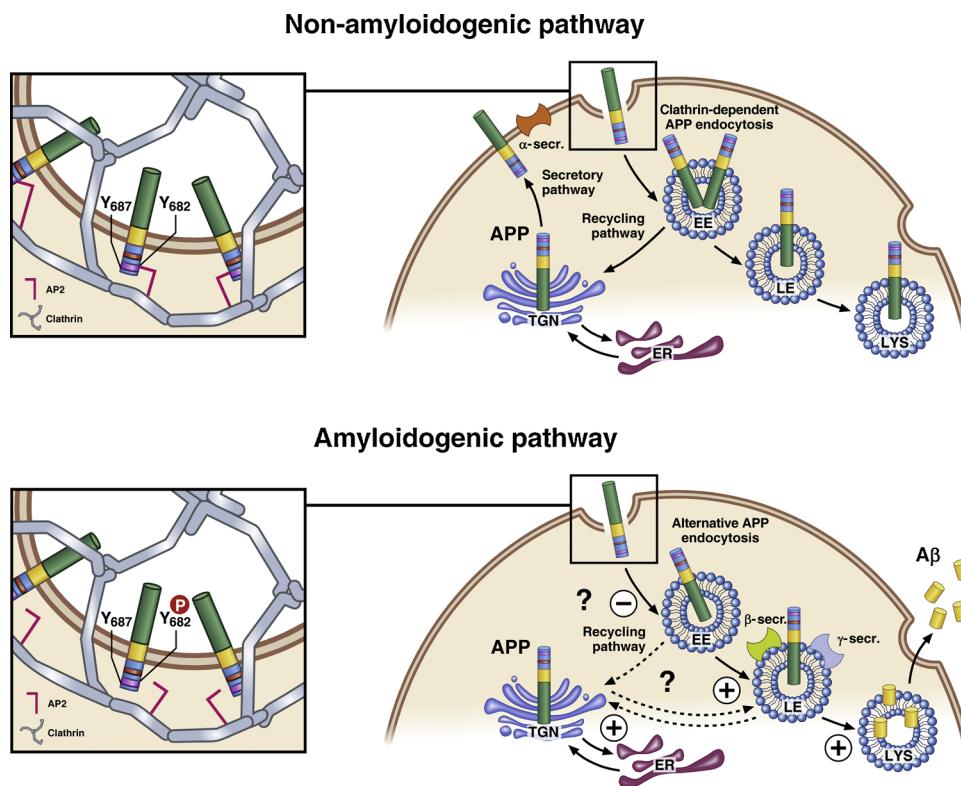

Consistent with the importance of the Y₆₈₂ENPTY₆₈₇ motif in APP function and dysfunction, the proteolytic processing of APP either under physiologic (α - and γ -secretase cleavage producing a P3 fragment and COOH-terminal A β segment) or pathologic conditions (β - and γ -secretase cleavage releasing A β peptides) results in the production of the AICD intracellular fragment (Vassar et al., 1999; Selkoe, 2004), the significance of which remains unclear and controversial (Fig. 1B).

A large body of evidence (Table 1) points to a role for AICD in regulating the transcription of genes involved in downstream APP functions. AICD, when associated with Med 12, Fe65 protein, and the histone acetyltransferase Tip60, forms a stable transcription complex that can translocate into the nucleus to activate target genes (Cao and Südhof, 2001; Xu et al., 2011; Beckett et al., 2012). Examples of genes that have been linked with AICD include genes directly related to AD such as APP itself, β -secretase, and the neprilysin A β -degrading enzyme as well as GSK3 β (Beckett et al., 2012; Alves da Costa et al., 2006; Belyaev et al., 2009).

In addition to the role of AICD in gene regulation, its conservative Y₆₈₂ENPTY₆₈₇ motif has been proposed to control APP trafficking and sorting via phosphorylation of the Tyr₆₈₂ residue (Table 1).

We previously compared APP phosphorylation at Tyr₆₈₂ to a “biochemical switch” that drastically changes the APP “interactome” thereby abolishing its binding to some proteins and creating docking sites for others (Matrone, 2013).

Y₆₈₂ENPTY₆₈₇ has been reported to interact with more than 20 adaptor protein partners, and this interaction largely depends on the


Fig. 1. Illustration of the primary sequence of APP (endoplasmic tails) and of the non-amyloidogenic and amyloidogenic APP pathway in neurons. (A) In green are marked conservative domains from various species. Differences in residues among the species are marked in red, green and purple colors. Note that, human APP, APLP1, and APLP2 share conserved Y₆₈₂ENPTY₆₈₇ motif in the carboxyl terminus. (B) In the non-amyloidogenic pathway, α -secretase cleaves APP within the A β region. The CTF α (C83) peptide is then cut by γ -secretase, thus releasing the peptide P3 fragment. In the amyloidogenic pathway, APP protein is a substrate for enzymatic β secretase (BACE) cleavage, thus producing sAPP β and the CTF β (C99) fragment. The C99 fragment is further cleaved by the γ -secretase to generate A β . Note that the AICD peptide is produced both in the amyloidogenic and non-amyloidogenic pathway.

phosphorylation status of the Tyr₆₈₂ residue and, as such, acts as major regulator of APP fate (Matrone, 2013). Proteins interacting with the Y₆₈₂ENPTY₆₈ motif include the X11 and Fe65 family, which modulate cellular trafficking and the processing of APP (Pietrzik et al., 2004; Scheinfeld et al., 2003a); JIP1, a c-Jun N-terminal kinase JNK-signaling scaffold, which facilitates APP axonal trafficking (Scheinfeld et al., 2003a; Roncarati et al., 2002) and mediates transcription (Scheinfeld et al., 2003b); peptidyl-prolyl *cis/trans* isomerase Pin1, which regulates APP amyloidogenic processing (Pastorino et al., 2006); and Tip60, an histone acetyltransferase, and SET, a nucleosome assembly factor, which activates transcription of target genes (McLoughlin and Miller, 2008; Teles et al., 2005). The Shc family (ShcA and ShcB), mammalian

disabled (mDab1), Numb, Abl, and Grb2 also interact with the Y₆₈₂ENPTY₆₈₇ domain, although the precise functions of these interactions require further elucidation (Klevanski et al., 2015; Müller and Zheng, 2012; Raychaudhuri and Mukhopadhyay, 2007).

We hypothesized that Tyr₆₈₂ phosphorylation could induce a diversion of APP from its normal transport route, thus driving APP toward alternative neuronal compartments where it can be processed to generate A β (Matrone, 2013). Consistent with this hypothesis, we demonstrated that knock-in mice (YG mice) carrying a mutation in the Tyr₆₈₂ residue (Barbagallo et al., 2010, 2011) show defects in APP trafficking and sorting (La Rosa et al., 2015).

The $Y_{682}ENPTY_{687}$ motif also binds Clathrin/AP2 complex, and we

Fig. 2. Proposed model of APP endocytosis and trafficking before and after Tyr682 phosphorylation.

Nascent APP molecule after maturation through the constitutive secretory pathway reaches the plasma membrane where it is rapidly internalized through the binding of the Y₆₈₂ENPTY₆₈₇ motif to the Clathrin/AP2 complex (upper left panel). After Clathrin-dependent endocytosis, APP is trafficked through early endosome (EE) and Trans Golgi network (TGN) and recycled back to the cell surface (upper right panel). A small fraction also reaches late endosome (LE) and lysosome (LYS) where APP can be degraded. Non-amyloidogenic processing mainly occurs at the cell surface where α -secretase mediates APP cleavage (Haass et al., 2012).

In the amyloidogenic processing, APP transits through the acidic endocytic organelles LE and LYS, where β secretase is mostly located and triggers amyloidogenic APP processing (lower right panel).

We propose a model in which the increased APP Tyr₆₈₂ phosphorylation causes the loss of APP binding to AP2 and Clathrin endocytic complex (lower left panel), thus leading to an alternative APP trafficking toward acidic organelles where APP accumulates and it is ultimately processed to generate A β .

have reported that, in neurons from mutant knock-in mice, the lack of APP binding to the Clathrin-AP2 complex causes apparent defects in APP endocytosis (La Rosa et al., 2015; Poulsen et al., 2015).

We additionally demonstrated that the replacement of Tyr₆₈₂ residue with Gly (YG) resulted in a gain-of-function phenotype that forced APP to be retained in an acidic neuronal compartment, such as the late endosome or the lysosome (La Rosa, 2015), where β secretase is more active and triggers amyloidogenic APP processing (Vassar et al., 1999; Domínguez et al., 2010). As a consequence, lysosomes appeared reduced in number and enlarged, forming massive cellular structures (Matrone, 2013). Additionally, cognitive and learning tests in these mice showed premature aging related deficits (Matrone et al., 2012) (Fig. 2).

In neurons differentiated from progenitor cells retrieved from AD patients that partially reflect the abnormalities reported in neurons seen in AD patients (such A β production and neuronal degeneration), we assessed increased extent levels of APP Tyr₆₈₂ phosphorylation when compared to age matched healthy volunteers, which -as observed in neurons from mutant mice- causes a lack of APP binding to the Clathrin-AP2 complex and consequently affects APP internalization from the plasma membrane as well as its trafficking inside neurons (Poulsen et al., 2015, 2017). Additionally, an accumulation of Tyr₆₈₂ hyperphosphorylated APP inside late endosome and lysosome was observed in these patient-derived cells.

Consistent with the idea that the prolonged permanence of APP inside lysosomes and endosomes promotes β secretase cleavage (Vassar et al., 1999; Domínguez et al., 2010), we found an increase in A β released into the media from AD neurons carrying mutations in the PSEN1 gene (Zollo et al., 2017) as well as in pigs harboring the same mutation (Jakobsen et al., 2016). Such an increase could be counteracted by Tyr kinase inhibitor exposures, concomitant to the reversion of the alterations in APP endocytosis and trafficking as well as the reduction of APP Tyr₆₈₂ hyperphosphorylation levels (Poulsen et al., 2017).

Whether the hyperphosphorylation of APP Tyr₆₈₂ residue actually plays a role in provoking AD remains to be demonstrated in patients.

However, a variety of studies have offered intriguing results that support this evidence from human AD brains (Kametani, 2008; Gao and Pimplikar, 2001; Ghosal et al., 2009).

Further insights came from a liquid chromatography-tandem mass spectrometry analysis carried out in PSEN1 minipigs and in background-age-matched control minipigs. The results of this analysis identified Fyn Tyr kinase as a unique binding partner of the APP Tyr₆₈₂ residue. Such an interaction was promoted by Tyr₆₈₂ phosphorylation on the Y₆₈₂ENPTY₆₈₇ motif of APP and was increased in cortical brain tissues from PSEN1 minipigs as well as in AD patients carrying the same PSEN1 mutation (Poulsen et al., 2017).

Fyn kinase is a member of the Src family of non-receptor tyrosine kinases. Fyn has multiple isoforms, namely FynB, FynT, and FynD7, which arise from alternative splicing at exon 7. Fyn isoform 1, also known as FynB, is particularly enriched at synaptic structures and acts as a key regulator in synaptic transmission and plasticity (Bhaskar et al., 2005).

In the same neurons in which APP Tyr₆₈₂ was hyperphosphorylated, we assessed increased Fyn Tyr kinase activity (assessed as increased Tyr₄₂₀ phosphorylation levels) and increased interaction of Fyn kinase with the APP Y₆₈₂ENPTY₆₈₇ domain (Poulsen et al., 2017). Whether this interaction is instrumental for APP Tyr₆₈₂ phosphorylation or is a downstream effect and whether other APP Y₆₈₂ENPTY₆₈₇ adaptors contribute to such interaction is still under evaluation by our group. However, it is notable that Tyr kinase inhibitor (TKI) exposure reduced the APP/Fyn interaction, reinstated proper APP compartmentalization (Poulsen et al., 2017), and prevented A β production in human AD neurons, thus suggesting that APP Tyr₆₈₂ phosphorylation might be an upstream event and delineating a complex interplay among APP and Fyn proteins that clearly deserves further investigation.

Previous evidence has emphasized the clinical relevance of TKI in AD. Masitinib and Saracatinib have been demonstrated to be efficacious in treating AD symptoms by reducing Fyn Tyr kinase activity in experimental AD mouse models (Folch et al., 2015; Kaufman et al., 2015). Interestingly, Netzer et al., primed our results. They demonstrated that the TKI Imatinib renders APP less susceptible to proteolysis by β

secretase, making it less available to β -secretase cleavage in acidic neuronal compartments (Netzer et al., 2017). We now can hypothesize that the altered APP trafficking that prolongs APP permanence in such acidic neuronal compartments and makes APP more accessible for β -secretase cleavage is largely due to the increased level of APP Tyr₆₈₂ phosphorylation (La Rosa et al., 2015; Poulsen et al., 2017). Accordingly, by reducing APP Tyr₆₈₂ phosphorylation levels, TKIs prevent APP retention in late endosomes and lysosomes, ultimately reducing $\text{A}\beta$ production (Poulsen et al., 2017). Nonetheless, it remains well known that $\text{A}\beta$ triggers downstream neurotoxic events, including the phosphorylation of Tyr residues of target proteins, such as Fyn and Tau (Nygaard et al., 2014; Nygaard, 2018; Babus et al., 2011).

In line with the above observations, we found that an intriguing target of $\text{A}\beta$ is the NGF receptor TrkA (Matrone et al., 2009). We reported a paradoxical switch of TrkA from a pro-survival to pro-death function due to an increase in $\text{A}\beta$ levels in an *in vitro* neuronal model lacking in NGF support (Matrone et al., 2008a; Basso and Matrone, 2013; Matrone et al., 2008b). Because of the increased $\text{A}\beta$ production, TrkA activity resulted in hyperphosphorylation of Tyr residues despite the absence of NGF, thereby eliciting neuronal death. Notably, this pro-apoptotic switch of the TrkA receptor could be prevented by reducing $\text{A}\beta$ production and accumulation (Babus et al., 2011), which was achieved by exposure to either anti- $\text{A}\beta$ antibodies (as well as β and γ secretase inhibitors) or TKI (such as PP1) (Matrone et al., 2009), suggesting a complex progressive neurodegenerative mechanism in which Fyn Tyr kinases, APP Tyr₆₈₂ hyperphosphorylation, β and γ secretases, $\text{A}\beta$ and several downstream neurotoxic targets all appear to be implicated.

Together, these observations bring us back to the initial scientific question of this short review regarding the necessity to analyze AD before $\text{A}\beta$ is produced, looking at dysfunction in the APP pathway rather than to the aberrant accumulation and deposition of $\text{A}\beta$.

In conclusion, we have provided new evidence that implicates the Tyr₆₈₂ residue and the Y₆₈₂ENPTY₆₈₇ motif of APP in the onset and mostly likely progression of neurodegenerative processes in AD neurons. More detailed research is clearly needed to gain a more complete picture of the mechanisms responsible for increased APP Tyr₆₈₂ phosphorylation and of the strategies that can be used to prevent amyloidogenic APP processing.

Further elucidation of the role played by Y₆₈₂ENPTY₆₈₇ in AD might provide a new target to identify a subclass of patients with increased phosphorylation levels of APP Tyr₆₈₂ residue and to develop a personalized treatment for those AD patients.

Acknowledgements

The authors are grateful to Molinaro P and Servillo F for IT technical and editing support. The authors appreciate the valuable help of Centro Servizi per la Comunicazione (Fiorbianco F) in assisting with the preparation of the illustrations and Biomed proof reading for English revision.

This study was funded by the Lundbeck Foundation (Grant nos. R208-2015-3075 to Carmela Matrone) and by PON (PERMEDNET ARS 01_0126 to Lucio Annunziato).

References

Alves da Costa, C., Sunyach, C., Pardossi-Piquard, R., Sévalle, J., Vincent, B., Boyer, N., Kawarai, T., Girardot, N., St George-Hyslop, P., Checler, F., 2006. Presenilin-dependent gamma-secretase-mediated control of p53-associated cell death in Alzheimer's disease. *J. Neurosci.* 26 (23), 6377–6385.

Ando, K., Iijima, K.I., Elliott, J.I., Kirino, Y., Suzuki, T., 2001. Phosphorylation-dependent regulation of the interaction of amyloid precursor protein with Fe65 affects the production of beta-amyloid. *J. Biol. Chem.* 276, 40353–40361.

Ando, K., Oishi, M., Takeda, S., Iijima, K., Isohara, T., Nairn, A.C., Kirino, Y., Greengard, P., Suzuki, T., 1999. Role of phosphorylation of Alzheimer's amyloid precursor protein during neuronal differentiation. *J. Neurosci.* 19, 4421–4427.

Aplin, A.E., Gibb, G.M., Jacobsen, J.S., Gallo, J.M., Anderton, B.H., 1996. In vitro phosphorylation of the cytoplasmic domain of the amyloid precursor protein by glycogen synthase kinase-3beta. *J. Neurochem.* 67, 699–707.

Armstrong, R.A., 2014. A critical analysis of the 'amyloid cascade hypothesis'. *Folia Neuropathol.* 52 (3), 211–225.

Austin, S.A., Sens, M.A., Combs, C.K., 2009. Amyloid precursor protein mediates a tyrosine kinase-dependent activation response in endothelial cells. *J. Neurosci.* 29, 14451–14462.

Babus, L.W., Little, E.M., Keenoy, K.E., Minami, S.S., Chen, E., Song, J.M., Caviness, J., Koo, S.Y., Pak, D.T., Rebeck, G.W., Turner, R.S., Hoe, H.S., 2011. Decreased dendritic spine density and abnormal spine morphology in Fyn knockout mice. *Brain Res.* 1415, 96–102.

Barbagallo, A.P., Weldon, R., Tamayev, R., Zhou, D., Giliberto, L., Foreman, O., D'Adamo, L., 2010. Tyr(682) in the intracellular domain of APP regulates amyloidogenic APP processing in vivo. *PLoS One* 5 (11), e15503.

Barbagallo, A.P., Wang, Z., Zheng, H., D'Adamo, L., 2011. A single tyrosine residue in the amyloid precursor protein intracellular domain is essential for developmental function. *J. Biol. Chem.* 286 (11), 8717–8721.

Basso, E., Matrone, C., 2013. NGF and APP interplay: focus on YENPTY motif of amyloid precursor protein and Y682 residue. *Cell Biol. Res. Ther.* 2 (2).

Beckett, C., Nalivaeva, N.N., Belyaev, N.D., Turner, A.J., 2012. Nuclear signalling by membrane protein intracellular domains: the AICD enigma. *Cell. Signal.* 24 (2), 402–409.

Beel, A.J., Mobley, C.K., Kim, H.J., Tian, F., Hadziselimovic, A., Jap, B., Prestegard, J.H., Sanders, C.R., 2008. Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP): does APP function as a cholesterol sensor? *Biochemistry* 47, 9428–9446.

Belyaev, N.D., Nalivaeva, N.N., Makova, N.Z., Turner, A.J., 2009. Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. *EMBO Rep.* 10 (1), 94–100.

Bergman, A., Religa, D., Karlström, H., Laudon, H., Winblad, B., Lannfelt, L., Lundkvist, J., Näslund, J., 2003. APP intracellular domain formation and unaltered signaling in the presence of familial Alzheimer's disease mutations. *Exp. Cell Res.* 287, 1–9.

Beyer, A.S., von Einem, B., Schwanzar, D., Keller, I.E., Hellrung, A., Thal, D.R., Ingelsson, M., Makarova, A., Deng, M., Chhabra, E.S., Pröpper, C., Böckers, T.M., Hyman, B.T., von Arnim, C.A., 2012. Engulfment adapter PTB domain containing 1 interacts with and affects processing of the amyloid- β precursor protein. *Neurobiol. Aging* 33, 732–743.

Blaskar, K., Yen, S.H., Lee, G., 2005. Disease-related modifications in tau affect the interaction between Fyn and Tau. *J. Biol. Chem.* 280 (42), 35119–35125.

Biederer, T., Cao, X., Südhof, T.C., Liu, X., 2002. Regulation of APP-dependent transcription complexes by Mint/X11s: differential functions of Mint isoforms. *J. Neurosci.* 22, 7340–7351.

Borg, J.P., Ooi, J., Levy, E., Margolis, B., 1996. The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. *Mol. Cell Biol.* 16, 6229–6241.

Borg, J.P., Yang, Y., De Taddeo-Borg, M., Margolis, B., Turner, R.S., 1998. The X11alpha protein slows cellular amyloid precursor protein processing and reduces Abeta40 and Abeta42 secretion. *J. Biol. Chem.* 273, 14761–14766.

Bressler, S.L., Gray, M.D., Sopher, B.L., Hu, Q., Hearn, M.G., Pham, D.G., Dinulos, M.B., Fukuchi, K., Sisodia, S.S., Miller, M.A., Disteche, C.M., Martin, G.M., 1996. cDNA cloning and chromosome mapping of the human Fe65 gene: interaction of the conserved cytoplasmic domains of the human beta-amyloid precursor protein and its homologues with the mouse Fe65 protein. *Hum. Mol. Genet.* 5, 1589–1598.

Buoso, E., Lanni, C., Schettini, G., Govoni, S., Racchi, M., 2010. beta-Amyloid precursor protein metabolism: focus on the functions and degradation of its intracellular domain. *Pharmacol. Res.* 62, 308–317.

Cao, X., Südhof, T.C., 2001. A transcriptionally [correction of transcriptionally] active complex of APP with Fe65 and histone acetyltransferase Tip60. *Science* 293 (5527), 115–120.

Caster, A.H., Kahn, R.A., 2013. Recruitment of the Mint3 adaptor is necessary for export of the amyloid precursor protein (APP) from the Golgi complex. *J. Biol. Chem.* 288, 28567–28580.

Cheng, L., Chen, H., Li, C., Xu, C., Xu, Y.J., 2019. C-terminal fragments of amyloid precursor proteins increase cofilin phosphorylation by LIM kinase in cultured rat primary neurons. *Neuroreport* 30, 38–45.

Cupers, P., Orlans, I., Craessaerts, K., Annaert, W., De Strooper, B., 2001. The amyloid precursor protein (APP)-cytoplasmic fragment generated by gamma-secretase is rapidly degraded but distributes partially in a nuclear fraction of neurones in culture. *J. Neurochem.* 78, 1168–1178.

Domínguez, J.L., Christopeit, T., Villaverde, M.C., Gossas, T., Otero, J.M., Nyström, S., Baraznenok, V., Lindström, E., Danielson, U.H., Sussman, F., 2010. Effect of the protonation state of the titratable residues on the inhibitor affinity to BACE-1. *Biochemistry* 49 (34), 7255–7263.

Duilio, A., Faraonio, R., Minopoli, G., Zambrano, N., Russo, T., 1998. Fe65L2: a new member of the Fe65 protein family interacting with the intracellular domain of the Alzheimer's beta-amyloid precursor protein. *330 (Pt 1). Biochem. J.* 330 (Pt 1), 513–519.

Edbauer, D., Willem, M., Lammich, S., Steiner, H., Haass, C., 2002. Insulin-degrading enzyme rapidly removes the beta-amyloid precursor protein intracellular domain (AICD). *J. Biol. Chem.* 277, 13389–13393.

Esteras-Chopo, A., Serrano, L., López de la Paz, M., 2005. The amyloid stretch hypothesis: recruiting proteins toward the dark side. *Proc. Natl. Acad. Sci. U.S.A.* 102, 16672–16677.

Fassa, A., Mehta, P., Efthimiopoulos, S., 2005. Notch 1 interacts with the amyloid precursor protein in a Numb-independent manner. *J. Neurosci. Res.* 82, 214–224.

Fiore, F., Zambrano, N., Minopoli, G., Donini, V., Duilio, A., Russo, T., 1995. The regions

of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer's amyloid precursor protein. *J. Biol. Chem.* 270, 30853–30856.

Polch, J., Petrov, D., Ettcheto, M., Pedrós, I., Abad, S., Beas-Zarate, C., Lazarowski, A., Marin, M., Olloquequi, J., Auladell, C., Camins, A., 2015. Masitinib for the treatment of mild to moderate Alzheimer's disease. *Expert Rev. Neurother.* 15 (6), 587–596.

Gao, Y., Pimplikar, S.W., 2001. The gamma -secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus. *Proc. Natl. Acad. Sci. U. S. A.* 98 (26), 14979–14984.

Ghosal, K., Vogt, D.L., Liang, M., Shen, Y., Lamb, B.T., Pimplikar, S.W., 2009. Alzheimer's disease-like pathological features in transgenic mice expressing the APP intracellular domain. *Proc. Natl. Acad. Sci. U. S. A.* 106 (43), 18367–18372.

Gómez-Isla, T., Growdon, W.B., McNamara, M.J., Nochlin, D., Bird, T.D., Arango, J.C., Lopera, F., Kosik, K.S., Lantos, P.L., Cairns, N.J., Hyman, B.T., 1999. The impact of different presenilin 1 and presenilin 2 mutations on amyloid deposition, neurofibrillary changes and neuronal loss in the familial Alzheimer's disease brain: evidence for other phenotype-modifying factors. *Brain* 122 (Pt 9), 1709–1719.

Gralle, M., Ferreira, S.T., 2007. Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. *Prog. Neurobiol.* 82 (1), 11–32.

Guénette, S., Strecker, P., Kins, S., 2017. APP Protein Family Signaling at the Synapse: Insights from Intracellular APP-Binding Proteins. *Front. Mol. Neurosci.* 10, 87.

Guénette, S.Y., Chen, J., Ferland, A., Haass, C., Capell, A., Tanzi, R.E., 1999. hFE65L influences amyloid precursor protein maturation and secretion. *J. Neurochem.* 73, 985–993.

Haass, C., Kaether, C., Thinakaran, G., Sisodia, S., 2012. Trafficking and proteolytic processing of APP. *Cold Spring Harb. Perspect. Med.* 2 (5), a006270.

Hardy, J., Selkoe, D.J., 2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. *Science* 297, 353–356.

Hill, K., Li, Y., Bennett, M., McKay, M., Zhu, X., Shern, J., Torre, E., Lah, J.J., Levey, A.I., Kahn, R.A., 2003. Munc18 interacting proteins: ADP-ribosylation factor-dependent coat proteins that regulate the traffic of beta-Alzheimer's precursor protein. *J. Biol. Chem.* 278, 36032–36040.

Hoe, H.S., Minami, S.S., Makarova, A., Lee, J., Hyman, B.T., Matsuoka, Y., Rebeck, G.W., 2008. Fyn modulation of Dab1 effects on amyloid precursor protein and ApoE receptor 2 processing. *J. Biol. Chem.* 283, 6288–6299.

Iijima, K., Ando, K., Takeda, S., Satoh, Y., Seki, T., Itohara, S., Greengard, P., Kirino, Y., Nairn, A.C., Suzuki, T., 2000. Neuron-specific phosphorylation of Alzheimer's beta-amyloid precursor protein by cyclin-dependent kinase 5. *J. Neurochem.* 75, 1085–1091.

Jakobsen, J.E., Johansen, M.G., Schmidt, M., Liu, Y., Li, R., Callesen, H., Melnikova, M., Habekost, M., Matrone, C., Bouter, Y., Bayer, T.A., Nielsen, A.L., Duthie, M., Fraser, P.E., Holm, I.E., Jørgensen, A.L., 2016. Expression of the Alzheimer's disease mutations AβPP695sw and PSEN1M146I in double-transgenic göttingen minipigs. *J. Alzheimers Dis.* 53 (4), 1617–1630.

Jonsson, T., Atwal, J.K., Steinberg, S., Snaedal, J., Jonsson, P.V., Bjornsson, S., Stefansson, H., Sulem, P., Gudbjartsson, D., Maloney, J., Hoyte, K., Gustafson, A., Liu, Y., Lu, Y., Bhangle, T., Graham, R.R., Huttonlocher, J., Björnsdóttir, G., Andreassen, O.A., Jönsson, E.G., Palotie, A., Behrens, T.W., Magnusson, O.T., Kong, A., Thorsteinsdóttir, U., Watts, R.J., Stefansson, K., 2012. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. *Nature* 488 (7409), 96–99.

Kaden, D., Munter, L.M., Reif, B., Multhaup, G., 2012. The amyloid precursor protein and its homologues: structural and functional aspects of native and pathogenic oligomerization. *Eur. J. Cell Biol.* 91 (4), 234–239.

Kametani, F., 2008. Epsilon-secretase: reduction of amyloid precursor protein epsilon-site cleavage in Alzheimer's disease. *Curr. Alzheimer Res.* 5 (2), 165–171.

Karch, C.M., Cruchaga, C., Goate, A.M., 2014. Alzheimer's disease genetics: from the bench to the clinic. *Neuron* 83 (1), 11–26.

Karran, E., De Strooper, B., 2016. The amyloid cascade hypothesis: are we poised for success or failure? *J. Neurochem.* 139 (Suppl 2), 237–252.

Kaufman, A.C., Salazar, S.V., Haas, L.T., Yang, J., Kostylev, M.A., Jeng, A.T., Robinson, S.A., Gunther, E.C., van Dyck, C.H., Nygaard, H.B., Strittmatter, S.M., 2015. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. *Ann. Neurol.* 77 (6), 953–971.

Kerr, M.L., Small, D.H., 2005. Cytoplasmic domain of the beta-amyloid protein precursor of Alzheimer's disease: function, regulation of proteolysis, and implications for drug development. *J. Neurosci. Res.* 80, 151–159.

Kim, H.S., Kim, E.M., Lee, J.P., Park, C.H., Kim, S., Seo, J.H., Chang, K.A., Yu, E., Jeong, S.J., Chong, Y.H., Suh, Y.H., 2003. C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3beta expression. *FASEB J.* 17, 1951–1953.

Kimberly, W.T., Zheng, J.B., Guénette, S.Y., Selkoe, D.J., 2001. The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. *J. Biol. Chem.* 276, 40288–40292.

King, G.D., Perez, R.G., Steinhilb, M.L., Gaut, J.R., Turner, R.S., 2003. X11alpha modulates secretory and endocytic trafficking and metabolism of amyloid precursor protein: mutational analysis of the YENPTY sequence. *Neuroscience* 120, 143–154.

King, G.D., Scott Turner, R., 2004. Adaptor protein interactions: modulators of amyloid precursor protein metabolism and Alzheimer's disease risk? *Exp. Neurol.* 185, 208–219.

Klevanski, M., Herrmann, U., Weyer, S.W., Fol, R., Cartier, N., Wolfer, D.P., Caldwell, J.H., Korte, M., Müller, U.C., 2015. The APP intracellular domain is required for normal synaptic morphology, synaptic plasticity, and hippocampus-dependent behavior. *J. Neurosci.* 35 (49), 16018–16033.

Koo, E.H., Squazzo, S.L., 1994. Evidence that production and release of amyloid beta-protein involves the endocytic pathway. *J. Biol. Chem.* 269, 17386–17389.

Krasinski, C.A., Zheng, Q., Ivancic, V.A., Spratt, D.E., Lazo, N.D., 2018. The Longest Amyloid-β Precursor Protein Intracellular Domain Produced with Aβ42 Forms β-Sheet-Containing Monomers That Self-Assemble and Are Proteolyzed by Insulin-Degrading Enzyme. *ACS Chem. Neurosci.*

La Rosa, L.R., Perrone, L., Nielsen, M.S., Calissano, P., Andersen, O.M., Matrone, C., 2015. Y682G mutation of amyloid precursor protein promotes endo-lysosomal dysfunction by disrupting APP-SorLA interaction. *Front. Cell. Neurosci.* 9, 109.

Lai, A., Sisodia, S.S., Trowbridge, I.S., 1995. Characterization of sorting signals in the beta-amyloid precursor protein cytoplasmic domain. *J. Biol. Chem.* 270, 3565–3573.

Makin, S., 2018. The amyloid hypothesis on trial. *Nature* 559, S4–S7.

Maloney, J.A., Bainbridge, T., Gustafson, A., Zhang, S., Kyauk, R., Steiner, P., van der Brug, M., Liu, Y., Ernst, J.A., Watts, R.J., Atwal, J.K., 2014. Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein. *J. Biol. Chem.* 289 (45), 30990–31000. <https://doi.org/10.1074/jbc.M114.589069>.

Matrone, C., 2013. A new molecular explanation for age-related neurodegeneration: the Tyr682 residue of amyloid precursor protein. *Bioessays* 35 (10), 847–852.

Matrone, C., Barbagallo, A.P., La Rosa, L.R., Florenzano, F., Ciotti, M.T., Mercanti, D., Chao, M.V., Calissano, P., D'Adamo, L., 2011. APP is phosphorylated by TrkA and regulates NGF/TrkA signaling. *J. Neurosci.* 31, 11756–11761.

Matrone, C., Ciotti, M.T., Mercanti, D., Marolda, R., Calissano, P., 2008a. NGF and BDNF signaling control amyloidogenic route and Abeta production in hippocampal neurons. *Proc. Natl. Acad. Sci. U. S. A.* 105 (35), 13139–13144.

Matrone, C., Di Luzio, A., Meli, G., D'Aguzzo, S., Severini, C., Ciotti, M.T., Cattaneo, A., Calissano, P., 2008b. Activation of the amyloidogenic route by NGF deprivation induces apoptotic death in PC12 cells. *J. Alzheimers Dis.* 13 (1), 81–96.

Matrone, C., Marolda, R., Ciafre, S., Ciotti, M.T., Mercanti, D., Calissano, P., 2009. Tyrosine kinase nerve growth factor receptor switches from prosurvival to proapoptotic activity via Abeta-mediated phosphorylation. *Proc. Natl. Acad. Sci. U. S. A.* 106 (27), 11358–11363.

Matrone, C., Luvisetto, S., La Rosa, L.R., Tamayev, R., Pignataro, A., Canu, N., Yang, L., Barbagallo, A.P., Biundo, F., Lombino, F., Zheng, H., Ammassari-Teule, M., D'Adamo, L., 2012. Tyr682 in the Abeta-precursor protein intracellular domain regulates synaptic connectivity, cholinergic function, and cognitive performance. *Aging Cell* 11 (6), 1084–1093.

Matsuda, S., Yasukawa, T., Homma, Y., Ito, Y., Niikura, T., Hiraki, T., Hirai, S., Ohno, S., Kita, Y., Kawasumi, M., Kouyama, K., Yamamoto, T., Kyriakis, J.M., Nishimoto, I., 2001. c-Jun N-terminal kinase (JNK)-interacting protein-1b/islet-brain-1 scaffolds Alzheimer's amyloid precursor protein with JNK. *J. Neurosci.* 21, 6597–6607.

McLoughlin, D.M., Miller, C.C., 1996. The intracellular cytoplasmic domain of the Alzheimer's disease amyloid precursor protein interacts with phosphotyrosine-binding domain proteins in the yeast two-hybrid system. *FEBS Lett.* 397, 197–200.

McLoughlin, D.M., Miller, C.C., 2008. The FE65 proteins and Alzheimer's disease. *J. Neurosci. Res.* 86 (4), 744–754.

Milosch, N., Tanrıöver, G., Kundu, A., Rami, A., François, J.C., Baumkötter, F., Weyer, S.W., Samanta, A., Jäschke, A., Brod, F., Buchholz, C.J., Kins, S., Behl, C., Müller, U.C., Kögel, D., 2014. Holo-APP and G-protein-mediated signaling are required for sAPP β -induced activation of the Akt survival pathway. *Cell Death Dis.* 5, e1391.

Minopoli, G., de Candia, P., Bonetti, A., Faraonio, R., Zambrano, N., Russo, T., 2001. The beta-amyloid precursor protein functions as a cytosolic anchoring site that prevents Fe65 nuclear translocation. *J. Biol. Chem.* 276, 6545–6550.

Müller, H.T., Borg, J.P., Margolis, B., Turner, R.S., 2000. Modulation of amyloid precursor protein metabolism by X11alpha /Mint-1. A deletion analysis of protein-protein interaction domains. *J. Biol. Chem.* 275, 39302–39306.

Müller, T., Meyer, H.E., Egensperger, R., Marcus, K., 2008. The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-relevance for Alzheimer's disease. *Prog. Neurobiol.* 85, 393–406.

Müller, U.C., Zheng, H., 2012. Physiological functions of APP family proteins. *Cold Spring Harb. Perspect. Med.* 2 (2), a006288.

Nakaya, T., Suzuki, T., 2006. Role of APP phosphorylation in FE65-dependent gene transactivation mediated by AICD. *Genes Cells* 11, 633–645.

Nalivaeva, N.N., Turner, A.J., 2013. The amyloid precursor protein: a biochemical enigma in brain development, function and disease. *FEBS Lett.* 587, 2046–2054.

Netzer, W.J., Bettayeb, K., Sinha, S.C., Flajole, M., Greengard, P., Bustos, V., 2017. Gleevec shifts APP processing from a β-cleavage to a nonamyloidogenic cleavage. *Proc. Natl. Acad. Sci. U. S. A.* 114 (6), 1389–1394.

Nhan, H.S., Chiang, K., Koo, E.H., 2015. The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. *Acta Neuropathol.* 129, 1–19.

Nunan, J., Shearman, M.S., Checler, F., Cappai, R., Evin, G., Beyreuther, K., Masters, C.L., Small, D.H., 2001. The C-terminal fragment of the Alzheimer's disease amyloid protein precursor is degraded by a proteasome-dependent mechanism distinct from gamma-secretase. *Eur. J. Biochem.* 268, 5329–5336.

Nunan, J., Williamson, N.A., Hill, A.F., Sernee, M.F., Masters, C.L., Small, D.H., 2003. Proteasome-mediated degradation of the C-terminus of the Alzheimer's disease beta-amyloid protein precursor: effect of C-terminal truncation on production of beta-amyloid protein. *J. Neurosci. Res.* 74, 378–385.

Nygaard, H.B., 2018. Targeting fyn kinase in Alzheimer's disease. *Biol. Psychiatry* 83 (4), 369–376.

Nygaard, H.B., van Dyck, C.H., Strittmatter, S.M., 2014. Fyn kinase inhibition as a novel therapy for Alzheimer's disease. *Alzheimers Res. Ther.* 6 (1), 8.

Ozaki, T., Li, Y., Kikuchi, H., Tomita, T., Iwatsubo, T., Nakagawa, A., 2006. The intracellular domain of the amyloid precursor protein (AICD) enhances the p53-mediated apoptosis. *Biochem. Biophys. Res. Commun.* 351, 57–63.

Parisiadou, L., Eftimiopoulos, S., 2007. Expression of mDab1 promotes the stability and processing of amyloid precursor protein and this effect is counteracted by X11alpha. *Neurobiol. Aging* 28, 377–388.

Pastorino, L., Sun, A., Lu, P.J., Zhou, X.Z., Balastik, M., Finn, G., Wulf, G., Lim, J., Li, S.H.,

Li, X., Xia, W., Nicholson, L.K., Lu, K.P., 2006. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. *Nature* 440 (7083), 528–534.

Perez, R.G., Soriano, S., Hayes, J.D., Ostaszewski, B., Xia, W., Selkoe, D.J., Chen, X., Stokin, G.B., Koo, E.H., 1999. Mutagenesis identifies new signals for beta-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including Abeta42. *J. Biol. Chem.* 274, 18851–18856.

Pietrzik, C.U., Yoon, I.S., Jaeger, S., Busse, T., Weggen, S., Koo, E.H., 2004. FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein. *J. Neurosci.* 24 (17), 4259–4265.

Poulsen, E.T., Larsen, A., Zollo, A., Jørgensen, A.L., Sanggaard, K.W., Enghild, J.J., Matrone, C., 2015. New insights to Clathrin and adaptor protein 2 for the design and development of therapeutic strategies. *Int. J. Mol. Sci.* 16 (12), 29446–29453.

Poulsen, E.T., Iannuzzi, F., Rasmussen, H.F., Maier, T.J., Enghild, J.J., Jørgensen, A.L., Matrone, C., 2017. An aberrant phosphorylation of amyloid precursor protein tyrosine regulates its trafficking and the binding to the clathrin endocytic complex in neural stem cells of Alzheimer's disease patients. *Front. Mol. Neurosci.* 10, 59.

Rabinovici, G.D., 2015. The translational journey of brain β -amyloid imaging: from postmortem emission tomography to autopsy to clinic. *JAMA Neurol.* 72 (3), 265–266.

Ramelot, T.A., Nicholson, L.K., 2001. Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR. *J. Mol. Biol.* 307, 871–884.

Raychaudhuri, M., Mukhopadhyay, D., 2007. AICD and its adaptors - in search of new players. *J. Alzheimers Dis.* 11 (3), 343–358.

Riese, F., Grinschgl, S., Gersbacher, M.T., Russi, N., Hock, C., Nitsch, R.M., Konietzko, U., 2013. Visualization and quantification of APP intracellular domain-mediated nuclear signaling by bimolecular fluorescence complementation. *PLoS One* 8, e76094.

Ring, S., Weyer, S.W., Kilian, S.B., Waldron, E., Pietrzik, C.U., Filippov, M.A., Herms, J., Buchholz, C., Eckman, C.B., Korte, M., Wolfer, D.P., Müller, U.C., 2007. The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. *J. Neurosci.* 27, 7817–7826.

Roncarati, R., Sestan, N., Scheinfeld, M.H., Berechid, B.E., Lopez, P.A., Meucci, O., McGlade, J.C., Rakic, P., D'Adamio, L., 2002. The gamma-secretase-generated intracellular domain of beta-amyloid precursor protein binds Numb and inhibits Notch signaling. *Proc. Natl. Acad. Sci. U. S. A.* 99 (10), 7102–7107.

Russo, C., Dolcini, V., Salis, S., Venezia, V., Violani, E., Carlo, P., Zambrano, N., Russo, T., Schettini, G., 2002. Signal transduction through tyrosine-phosphorylated carboxy-terminal fragments of APP via an enhanced interaction with Shc/Grb2 adaptor proteins in reactive astrocytes of Alzheimer's disease brain. *Ann. N Y Acad. Sci.* 973, 323–333.

Russo, C., Venezia, V., Repetto, E., Nizzari, M., Violani, E., Carlo, P., Schettini, G., 2005. The amyloid precursor protein and its network of interacting proteins: physiological and pathological implications. *Brain Res. Brain Res. Rev.* 48, 257–264.

Sastre, M., Turner, R.S., Levy, E., 1998. X11 interaction with beta-amyloid precursor protein modulates its cellular stabilization and reduces amyloid beta-protein secretion. *J. Biol. Chem.* 273, 22351–22357.

Scheinfeld, M.H., Ghersi, E., Davies, P., D'Adamio, L., 2003a. Amyloid beta protein precursor is phosphorylated by JNK-1 independent of, yet facilitated by, JNK-interacting protein (JIP)-1. *J. Biol. Chem.* 278 (43), 42058–42063.

Scheinfeld, M.H., Matsuda, S., D'Adamio, L., 2003b. JNK-interacting protein-1 promotes transcription of A beta protein precursor but not A beta precursor-like proteins, mechanistically different than Fe65. *Proc. Natl. Acad. Sci. U. S. A.* 100 (4), 1729–1734.

Schettini, G., Govoni, S., Racchi, M., Rodriguez, G., 2010. Phosphorylation of APP-CTF-AICD domains and interaction with adaptor proteins: signal transduction and/or transcriptional role-relevance for Alzheimer pathology. *J. Neurochem.* 115, 1299–1308.

Selkoe, D., Mandelkow, E., Holtzman, D., 2012. Deciphering Alzheimer disease. *Cold Spring Harb Perspect Med.* 2, a011460.

Selkoe, D.J., 2004. P. American College of and S. American Physiological: Alzheimer disease: mechanistic understanding predicts novel therapies. *Ann. Intern. Med.* 140 (8), 627–638.

Shaked, G.M., Chauv, S., Ubhi, K., Hansen, L.A., Masliah, E., 2009. Interactions between the amyloid precursor protein C-terminal domain and G proteins mediate calcium dysregulation and amyloid beta toxicity in Alzheimer's disease. *FEBS J.* 276, 2736–2751.

Shaked, G.M., Kummer, M.P., Lu, D.C., Galvan, V., Bredesen, D.E., Koo, E.H., 2006. Abeta induces cell death by direct interaction with its cognate extracellular domain on APP (APP 597–624). *FASEB J.* 20, 1254–1256.

Takahashi, K., Niidome, T., Akaike, A., Kihara, T., Sugimoto, H., 2008. Phosphorylation of amyloid precursor protein (APP) at Tyr687 regulates APP processing by alpha- and gamma-secretase. *Biochem. Biophys. Res. Commun.* 377, 544–549.

Timayev, R., Zhou, D., D'Adamio, L., 2009. The interactome of the amyloid beta precursor protein family members is shaped by phosphorylation of their intracellular domains. *Mol. Neurodegener.* 4, 28.

Tarr, P.E., Contursi, C., Roncarati, R., Noviello, C., Ghersi, E., Scheinfeld, M.H., Zambrano, N., Russo, T., D'Adamio, L., 2002a. Evidence for a role of the nerve growth factor receptor TrkA in tyrosine phosphorylation and processing of beta-APP. *Biochem. Biophys. Res. Commun.* 295, 324–329.

Tarr, P.E., Roncarati, R., Pellicci, G., Pellicci, P.G., D'Adamio, L., 2002b. Tyrosine phosphorylation of the beta-amyloid precursor protein cytoplasmic tail promotes interaction with Shc. *J. Biol. Chem.* 277, 16798–16804.

Taru, H., Iijima, K., Hase, M., Kirino, Y., Yagi, Y., Suzuki, T., 2002. Interaction of Alzheimer's beta-amyloid precursor family proteins with scaffold proteins of the JNK signaling cascade. *J. Biol. Chem.* 277, 20070–20078.

Teles, F., Bruni, P., Donizetti, A., Gianni, D., D'Ambrosio, C., Scaloni, A., Zambrano, N., Rosenfeld, M.G., Russo, T., 2005. Transcription regulation by the adaptor protein Fe65 and the nucleosome assembly factor SET. *EMBO Rep.* 6 (1), 77–82.

Van Cauwenbergh, C., Van Broeckhoven, C., Sleegers, K., 2016. The genetic landscape of Alzheimer disease: clinical implications and perspectives. *Genet. Med.* 18, 421–430.

Vassar, R., Bennett, B.D., Babu-Khan, S., Kahn, S., Mendiaz, E.A., Denis, P., Teplow, D.B., Ross, S., Amarante, P., Loeloff, R., Luo, Y., Fisher, S., Fuller, J., Edenson, S., Lile, J., Jarosinski, M.A., Biere, A.L., Curran, E., Burgess, T., Louis, J.C., Collins, F., Treanor, J., Rogers, G., Citron, M., 1999. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. *Science* 286 (5440), 735–741.

Venugopal, C., Pappolla, M.A., Sambamurti, K., 2007. Insulysin cleaves the APP cytoplasmic fragment at multiple sites. *Neurochem. Res.* 32, 2225–2234.

Waldron, E., Isbert, S., Kern, A., Jaeger, S., Martin, A.M., Hébert, S.S., Behl, C., Weggen, S., De Strooper, B., Pietrzik, C.U., 2008. Increased AICD generation does not result in increased nuclear translocation or activation of target gene transcription. *Exp. Cell Res.* 314, 2419–2433.

Watanabe, T., Sukegawa, J., Sukegawa, I., Tomita, S., Iijima, K., Oguchi, S., Suzuki, T., Nairn, A.C., Greengard, P., 1999. A 127-kDa protein (UV-DDB) binds to the cytoplasmic domain of the Alzheimer's amyloid precursor protein. *J. Neurochem.* 72, 549–556.

Xie, Z., Dong, Y., Maeda, U., Xia, W., Tanzi, R.E., 2007. RNA interference silencing of the adaptor molecules ShcC and Fe65 differentially affect amyloid precursor protein processing and Abeta generation. *J. Biol. Chem.* 282, 4318–4325.

Xie, Z., Dong, Y., Maeda, U., Xia, W., Tanzi, R.E., 2012. RNAi-mediated knock-down of Dab and Numb attenuate $\text{A}\beta$ levels via γ -secretase mediated APP processing. *Transl. Neurodegener.* 1, 8.

Xie, Z., Romano, D.M., Tanzi, R.E., 2005. RNA interference-mediated silencing of X11alpha and X11beta attenuates amyloid beta-protein levels via differential effects on beta-amyloid precursor protein processing. *J. Biol. Chem.* 280, 15413–15421.

Xu, X., Zhou, H., Boyer, T.G., 2011. Mediator is a transducer of amyloid-precursor-protein-dependent nuclear signalling. *EMBO Rep.* 12 (3), 216–222.

Yáñez, M.J., Belbin, O., Estrada, L.D., Leal, N., Contreras, P.S., Lleó, A., Burgos, P.V., Zanlungo, S., Alvarez, A.R., 2016. c-Abl links APP-BACE1 interaction promoting APP amyloidogenic processing in Niemann-Pick type C disease. *Biochim. Biophys. Acta.* 1862, 2158–2167.

Yoon, S., Choi, J., Haam, J., Choe, H., Kim, D., 2007. Reduction of mint-1, mint-2, and APP overexpression in okadaic acid-treated neurons. *Neuroreport* 18, 1879–1883.

Zambrano, N., Bruni, P., Minopoli, G., Mosca, R., Molino, D., Russo, C., Schettini, G., Sudol, M., Russo, T., 2001. The beta-amyloid precursor protein APP is tyrosine-phosphorylated in cells expressing a constitutively active form of the Abl proto-oncogene. *J. Biol. Chem.* 276, 19787–19792.

Zambrano, N., Gianni, D., Bruni, P., Passaro, F., Teles, F., Russo, T., 2004. Fe65 is not involved in the platelet-derived growth factor-induced processing of Alzheimer's amyloid precursor protein, which activates its caspase-directed cleavage. *J. Biol. Chem.* 279, 16161–16169.

Zhou, D., Zambrano, N., Russo, T., D'Adamio, L., 2009. Phosphorylation of a tyrosine in the amyloid-beta protein precursor intracellular domain inhibits Fe65 binding and signaling. *J. Alzheimers Dis.* 16, 301–307.

Zollo, A., Allen, Z., Rasmussen, H.F., Iannuzzi, F., Shi, Y., Larsen, A., Maier, T.J., Matrone, C., 2017. Sortilin-related receptor expression in human neural stem cells derived from Alzheimer's disease patients carrying the APOE epsilon 4 allele. *Neural Plast.* 2017, 1892612.