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Several prospective cohort studies have reported an association between higher levels of physical activity and
decreased risk of cognitive decline and dementia, years later. To support physical activity as a preventative
measure against dementia, including Alzheimer’s disease (AD; the most common form of dementia), evidence
regarding the underlying mechanisms is vital. Here, we review previous work examining the role of physical
activity in modulating levels of AD pathological hallmarks, beta-amyloid (AB) and tau (in the brain, cere-
brospinal fluid and blood). Robust evidence from transgenic animal studies suggests that physical activity

(voluntary wheel running) and exercise (forced wheel running) are implicated in lowering levels of brain Ap and
tau. Nevertheless, evidence from human studies, utilising measurements from positron emission tomography and
cerebrospinal fluid biomarkers, is less consistent. Rigorous randomised controlled trials utilising long exercise
interventions are vital to further understand the relationship between physical activity and Alzheimer’s disease.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative condition, ac-
counting for approximately 70% of dementia cases and is characterised
by neuronal loss and cognitive decline. Beta-amyloid (Af) plaques and
intracellular accumulation of neurofibrillary tangles, comprising hy-
perphosphorylated tau proteins, are the primary hallmarks of AD, and
are proposed to contribute to decline in brain volume and function.
Nevertheless, current therapies for the treatment of AD target the
symptoms, rather than the underlying pathological processes, which are
known to commence decades before the symptoms manifest
(Mangialasche et al., 2010). Recent pharmaceutical advances have
identified compounds associated with reduced production, enhanced
clearance, and degradation of AP; however, to date, trials evaluating
these compounds have not reached their primary endpoints (Graham
et al., 2017). Thus, interest has grown in the investigation of alternative
factors that may delay or prevent the onset of AD, or, more specifically,
slow the accumulation of AD pathology before the onset of clinical
symptoms. One such group of factors are components of lifestyle, in-
cluding good sleep quality, optimum nutrition and high levels of phy-
sical activity or structured exercise.

Physical activity and exercise are both defined as body movement
produced by skeletal muscle that results in energy expenditure.
However, physical activity can include any type of movement, whereas
exercise is a form of physical activity, including planned and structured
activities, usually for the purpose of improving or maintaining physical
fitness (Caspersen et al., 1985). Indeed, cardiorespiratory fitness is as-
sociated with the amount and intensity of physical activity or exercise
(Joyner and Lundby, 2018) that an individual undertakes over a pro-
longed period (DeFina et al., 2015). In this review, we have attempted
to distinguish between physical activity and planned exercise inter-
ventions, where relevant. Importantly, within animal models we have
identified voluntary wheel running as a form of physical activity, and
forced running as exercise.

Several prospective cohort studies have examined the relationship
between physical activity levels and dementia risk: With consistent
reports that higher levels of physical activity are associated with de-
creased risk of dementia years later (Buchman et al., 2012; Iso-Markku
et al., 2015; Larson et al., 2006; Scarmeas et al., 2009; Wang et al.,
2014). Numerous potentially protective mechanisms underlying the
effect of physical activity on dementia risk have been proposed, in-
cluding increases in brain-derived neurotrophic factor (BDNF),
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reduction in cardiovascular disease and metabolic syndrome risk, and
increased cerebral blood flow (Brown et al., 2013a). Importantly,
modulation of the above factors through increases in physical activity is
associated with a reduction in risk of a number of dementia types, with
AD appearing to be the most responsive (Rovio et al., 2005). It is,
therefore, reasonable to hypothesise that alterations in the processing
and degradation of AB and tau are likely to be vital underlying me-
chanisms in the association between exercise and AD risk. Indeed,
evidence is emerging that physical activity may directly influence
proteomic changes that contribute to a delay in the accumulation of AD
neuropathology and biomarkers (Burnham et al., 2016). Here, we
provide a comprehensive narrative review of animal and human studies
that have investigated the role of physical activity in modulating levels
of AR and/or tau. The aim of this review is to identify the gaps within
the literature and provide recommendations for future research.

2. Methods

A computer-based search of PubMed was conducted for all relevant
articles published before June 12, 2018. The following search terms
were used: (Physical activity OR exercise OR fitness) AND (Alzheimer’s
disease OR Dementia OR beta-amyloid OR amyloid OR tau). The search
was limited to only publications in English.

For studies to be included in Tables 1-3, titles and abstracts were
screened by the first-author (BMB) to ensure they met the following
criteria: 1) Were conducted on animals or humans (i.e., no in vitro
studies were reviewed), 2) Examined the relationship between physical
activity/exercise/fitness and measures of AP or tau in the brain, cere-
brospinal fluid (CSF) or blood, 3) Studies must have independently
assessed physical activity/exercise/fitness (i.e., no combined studies
with, e.g., cognitive training, diet etc. unless a physical activity only
group was utilised). Articles were excluded if they: 1) Were a con-
ference proceeding abstract, 2) A review or theoretical article, 3) Were
non-peer reviewed, or a book chapter, or 4) Were a non-English lan-
guage article. Additional relevant articles, including those undertaking
mechanistic work, are referred to throughout this manuscript based on
supplementary targeted searches.

3. Beta-amyloid and amyloid precursor protein processing

The amyloid cascade hypothesis is the primary theory underlying
the initiation of pathology accumulation in AD (Hardy and Higgins,
1992). AP peptides aggregate to form extracellular amyloid plaques,
contributing to neuronal death and decline in cognitive functions. The
longer, and more fibrillar isoform of AP, AP, 45, is the primary con-
stituent of amyloid plaques (Masters and Beyreuther, 1995). Post-
mortem assessment of AD brains has identified that amyloid plaques are
first observed in the cingulate cortex, followed by the temporal and
parietal cortices and the caudate. In the later stages of this neuro-
pathological process, plaques are found in the occipital, sensory and
motor brain regions (Thompson et al., 2007). Within studies of living
humans, measurements of AP in the CSF and brain (via positron
emission tomography; PET, with AR binding ligands) have proved
sensitive and specific in identifying individuals with AD, and correlate
highly with post-mortem quantified amyloid plaques (Ikonomovic et al.,
2008). Using the biomarker modalities described above, research has
demonstrated that brain AR begins accumulating up to two decades
before the onset of clinical symptoms (Villemagne et al., 2013).

AP is produced from the amyloid precursor protein (APP), which is
cleaved via one of two competing pathways: the non-amyloidogenic
and amyloidogenic pathways (Verdile et al., 2004). APP is cleaved by [3-
site APP cleaving enzyme 1 (BACE1) and y-secretase to produce the A3
peptide (AP1.40 or AB;1.42). BACEL is considered a biomarker for the
early detection of AD and is also a target for a number of therapeutic
compounds (Yan and Vassar, 2014). Cleavage of APP by a-secretase
(such as A Disintegrin and metalloproteinase domain-containing
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protein 10; ADAM10) contributes to the production of non-amyloido-
genic fragments (soluble APPa; sAPPa), which are believed to be in-
volved in the modulation of neurite growth and neuronal excitability
(for an overview of APP processing enzymes and products see Chow
et al., 2010).

Pertinent to the current review, various animal models of AD can be
utilised to model disease course, and subsequently, gain a greater un-
derstanding of factors that may modify the pathological cascade usually
observed in AD. Either transgenic or infusion models are typically used
to ensure rapid accumulation of AR in the brain. Nevertheless, the
length of time from birth/infusion until peak pathology accumulation
can vary across models (Janus et al., 2000); and thus model type is an
important consideration across the reviewed studies below.

3.1. The role of physical activity and exercise in modulating A levels

3.1.1. Animal studies

In the current review, we identified studies that have examined the
role of physical activity (i.e., voluntary wheel running) and exercise
(i.e., forced wheel running) in modulating brain AB in AD animal
models (Table 1; Fig. 1). The methodologies utilised across the seven-
teen studies reviewed here were diverse: numerous animal models were
used, including a variety of transgenic and infusion models, and the age
of the animals at intervention commencement varied (6 weeks to 16
months). Importantly, the length of the administered interventions also
differed largely across studies, from 3 weeks through to 11 months.
Unsurprisingly, given the protracted nature of brain AP deposition,
studies that reported an effect of physical activity or exercise on brain
Ap plaque load were more likely to be those utilising a longer inter-
vention (i.e. greater than 3 months; Adlard et al., 2005; Koo et al.,
2017; Liu et al., 2013; Yuede et al., 2009; Zhang et al., 2018). Studies
utilising relatively shorter interventions (i.e. < 3 months) did report
an effect on AfB; however, this was more frequently in the form of al-
terations to soluble AP (including AP;.40 and Af;_45) protein levels and
mRNA expression, both of which are subject to more acute fluctuations
in levels (Alkadhi and Dao, 2018; Choi et al., 2014; He et al., 2017;
Kang and Cho, 2014; Nichol et al., 2008; Ozbeyli et al., 2017; Um et al.,
2008; Yu et al., 2013; Zhao et al., 2015). However, the relationship
between intervention length and type of AP alteration was not con-
sistent across all studies; for example, Zhao et al. (2015) administered
five months of exercise to a group of younger (3 months) and older (12
months) mice, and observed a reduction in soluble A levels in the
young mice, yet no changes in soluble or brain plaque load in the older
mice.

Despite the widely varying methodologies used across the reviewed
studies, only one study reported no effect of exercise on brain A
protein levels or plaque load (Wolf et al., 2006). A reason for these
discordant findings could be due to the use of a long intervention (11
months), and compared with other studies reviewed here, the animals
were older at brain AP} quantification (13 months). It is possible that
exercise delays or reduces A deposition, rather than entirely inhibiting
it, and thus may reflect the importance of exercise being undertaken
within a ‘preclinical’ period (i.e. before the onset of symptoms). Fur-
thermore, Um et al (2008) quantified AB at "17 months and observed an
effect of exercise on reduced AP,.4, deposition. What is considered
‘preclinical’ likely varies across animal models, and the particular
transgenic models used by Um et al and Wolf et al must be considered.
Wolf et al utilised the APP-23 mouse model, within which, brain Ap
deposition is usually observed by 6 months; Um et al however, utilised
the NSE/APPsw mouse model, in which brain Af deposition is usually
apparent by approximately 12 months (Janus et al., 2000). It is possible
that AD pathology was too advanced within the mouse model utilised
by Wolf et al, for an environmental factor, such as exercise, to influence
disease course. To understand the relationship between exercise and A3
in early to late stage disease, a meta-analysis modelling the effect of
exercise across the disease course in varying disease models should be
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Fig. 1. Events that may underlie the effect of exercise on brain A} and tau, based on reviewed literature. Abbreviations: AP, beta-amyloid; ADAM-10, A
disintegrin and metalloproteinase domain-containing protein 10; APP, amyloid precursor protein; BACE1, fB-site APP cleaving enzyme; BDNF, brain-derived neu-
rotrophic factor; IDE, Insulin-degrading enzyme; LRP1, Lipoprotein receptor-related protein 1; MMP9, Matrix metalloproteinase 9; NFTs, neurofibrillary tangles;
NPC1, Niemann-Pick type C disease 1; NPC2, Niemann-Pick type C disease 2; SIRT1, Sirtuin 1.

conducted.

Whether increased Af production or decreased AP clearance, or
both, is the primary contributor to the development of AD is still under
debate (Selkoe and Hardy, 2016). Evidence from animal studies sug-
gests that exercise may contribute to both the inhibition of AP pro-
duction and enhancement of A clearance in the brain. Indeed, al-
terations in APP cleavage enzymes and fragments have been observed
in exercising transgenic mice (Adlard et al., 2005; Alkadhi and Dao,
2018; Koo et al., 2017; Liu et al., 2013; Zhang et al., 2018). Reduced
levels of BACE1 (Alkadhi and Dao, 2018; Koo et al., 2017; Yu et al.,
2013; Zhang et al., 2018) and increased ADAM-10 (Koo et al., 2017)
have been observed following exercise, suggesting a respective decrease
in APP processing via the amyloidogenic pathway and increase in APP
processing via the non-amyloidogenic pathway. It has been proposed
that both brain-derived neurotrophic factor (BDNF) and sirtuin 1 are
mechanisms modulating levels of BACE-1 and ADAM-10, respectively
(Koo et al., 2017; Nigam et al., 2017); both BDNF and sirtuin 1 have
been shown to be increased following exercise in animal models
(Ferrara et al., 2008; Wrann et al., 2013).

In addition to reducing AP production, there is evidence that phy-
sical activity enhances AP degradation/clearance (He et al., 2017;
Moore et al., 2016b). Most recently, six weeks of voluntary wheel
running was found to be associated with A clearance in the brain by
accelerating interstitial fluid (ISF) drainage (He et al., 2017). The in-
fluence of physical activity on the glymphatic system mirrors a pro-
posed mechanism by which good quality sleep is associated with AP
reduction (Xie et al., 2013), highlighting the idea that lifestyle factors
may have common underpinning mechanisms and should be in-
vestigated in parallel. Other studies have investigated the role of ex-
ercise in AR degradation: Moore et al (2016a) demonstrated an in-
tensity dose-dependent increase in the A proteases insulin-degrading

enzyme (IDE), matrix metallopeptidase 9 (MMP-9), neprilysin, and low
density lipoprotein receptor-related protein 1 (LRP1), indicating that
high-intensity exercise may be more effective than low-intensity ex-
ercise in enhancing AP degradation. Nevertheless, these results are not
supported by Adlard et al. (2005) who reported reduced AP in the
brains of mice following 5 months of voluntary wheel running, in-
dependent of changes to IDE and neprilysin. The difference between
voluntary and forced wheel running may explain these disparate find-
ings, as it is unlikely that the intensity of each intervention was similar;
thus, differences in the degradation of A, through the induction of A}
proteases would be expected. Future research into the effect of exercise,
and more specifically exercise intensity, on A} degradation/clearance is
required.

In addition to the Adlard et al (2005) and Moore et al (2016a)
studies detailed above, the current review includes numerous studies
that utilised voluntary wheel running (Adlard et al., 2005; He et al.,
2017; Nichol et al., 2008; Yuede et al., 2009) and forced exercise
(Alkadhi and Dao, 2018; Choi et al., 2014; Koo et al., 2017; Moore
et al., 2016a; Zhang et al., 2018). One study compared the effects of
both forced and voluntary wheel running on brain AP levels and re-
ported animals undertaking voluntary wheel running had significantly
reduced A plaque burden, compared with animals that had undergone
forced exercise (Yuede et al., 2009). However, both groups had less
plaque burden than a control (i.e., brain Af reductions: voluntary
wheel running > forced wheel running > control). Stress is likely to
mitigate the relationship between physical activity/exercise and Af,
and, importantly, forced exercise is associated with increasing levels of
hypothalamic corticotropin-releasing factor (a hormone involved in the
stress response; Yanagita et al., 2007). Interestingly, mental stress as-
sociated with continuous running without being able to stop was a
greater contributor to stress in animal models than the initial foot shock
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used to induce running (Yuede et al., 2009). Based on this study alone,
it would appear that exercise (i.e., forced wheel running) is not as po-
tent at reducing A as physical activity (i.e., voluntary wheel running).
Paradoxically; however, the ability to deliver high-intensity exercise
(for example in Moore et al (2016)) within an animal model may only
be possible when forced.

3.1.2. Human cohorts

When compared with animal studies, human studies provide less
compelling evidence of an effect of physical activity or exercise in
modulating A levels (Table 3; Fig. 1). Given the inability to directly
quantify brain AP plaques in human cohorts (i.e. this can only be
achieved post-mortem), the use of gold-standard measurements, such as
PET imaging with AP binding ligands and CSF A, provide the strongest
opportunities to evaluate the relationship between exercise and brain
AP levels ante-mortem. Studies utilising A PET scanning in cognitively
normal older adults have shown higher levels of self-reported physical
activity are associated with lower levels of AR (Brown et al., 2013b;
Head et al., 2012; Liang et al., 2010; Okonkwo et al., 2014). Never-
theless, the largest study to date (n = 268) examining the relationship
between physical activity and PET-quantified Af in humans reported no
association between self-reported physical activity and brain AP (de
Souto Barreto et al., 2015). It is important to note however, that de
Souto Barreto et al. (2015) utilised a cohort comprising both individuals
with subjective memory complaints (SMC) and mild cognitive impair-
ment (MCI): It is possible the combination of two different clinical
groups may have contributed to their negative findings. Indeed, Ap PET
imaging data derived from the Australian Imaging, Biomarkers and
Lifestyle Study of Ageing suggests individuals with SMC have sig-
nificantly lower brain A burden (mean neocortical Pittsburgh Com-
pound B SUVR: 1.5), compared with those with MCI (mean neocortical
Pittsburgh Compound B SUVR: 1.96; Rowe et al., 2010). It is also
possible that the presence of objective memory impairment (i.e., MCI)
may decrease the accuracy of self-reported physical activity, further
confounding the findings. Thus, by studying individuals likely to be
further along the AD trajectory (i.e. individuals with AD pathology and
reaching MCI diagnostic criteria), it may be more difficult to discern a
relationship between physical activity and brain AP. Indeed, as hy-
pothesised above in the review of animal literature, an effect of exercise
on AP levels may become more unlikely later in the disease course.

Given the small detectable changes in PET-quantified brain Af} over
short periods (Villemagne et al., 2013), measurements of soluble forms
of AP in CSF fractions may provide a more dynamic indication of the
relationship between physical activity and AR in human populations.
Nevertheless, observational studies in cognitively normal cohorts have
reported conflicting results. Utilising actigraphy, an inverse relation-
ship has been observed between time spent in moderate physical ac-
tivity and higher CSF A (reflection of lower brain AP load; Law et al.,
2018), while other studies utilising self-reported physical activity data
describe no association between physical activity and CSF AP (Baker
et al., 2012; Brown et al., 2017). Nevertheless, these studies were
conducted on relatively small sample sizes, and thus, larger observa-
tional studies with CSF AR measurements should consider conducting
similar analyses. The only exercise intervention in AD individuals (to
the Authors’ knowledge) also reported no effect of exercise on CSF le-
vels of AP (Steen Jensen et al., 2016). It is plausible however, that levels
of CSF A in this clinical population were too low for exercise to induce
a detectable change, as by the time a diagnosis of AD has been reached,
the majority of AP has been sequestered into plaques within the brain
(Jack et al., 2013). These fluctuations are also influenced by APOE
genotype (presence or absence of the APOE &4 allele; Ju et al., 2016);
thereby representing another factor which requires consideration when
interpreting the relationship between exercise and isoforms of A in
CSF.

ELISA-measured plasma AP has also been evaluated in relation to
physical activity and exercise, with higher baseline levels of physical
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activity associated with lower levels of plasma Af; 4o, measured 9-13
years later (Stillman et al., 2017), and a decreased trend in plasma Af;.
42 observed following a six month aerobic intervention (Baker et al.,
2010). It is important to note however, that the authors acknowledge
that the plasma AR measurements within the outlined studies had high
levels of variability: this issue may potentially be attenuated in the
future through the utilisation of high-performance blood-based AP as-
says (validated against PET measures of Af) using mass spectrometry
(Nakamura et al., 2018).

The Apolipoprotein E (APOE) €4 allele is the strongest known ge-
netic risk factor for sporadic onset AD (Corder et al., 1993): Carriage of
the APOE ¢4 allele is associated with higher rates of AR aggregation,
reduced clearance of AB from the brain, increased rate of cognitive
decline and neuronal vulnerability (Mahley et al., 2006; Villemagne
et al., 2013). Based on this, the examination of APOE €4 as a moderating
factor between lifestyle factors, such as physical activity, and Alzhei-
mer’s disease risk is of great interest. Indeed, in the investigation of AD
pathological hallmarks, two studies reported the relationship between
habitual levels of physical activity and brain AP to exist only in carriers
of the APOE ¢4 allele, suggesting higher levels of physical activity (as
determined by greater weekly MET min~!) may be associated with
mitigating the increased risk of AR deposition conferred by APOE &4
carriage (Brown et al., 2013b; Head et al., 2012). Furthermore, an
APOE genotype-dependent relationship between plasma ABi_43/1_40
and physical activity levels was observed; whereby physically active
non-carriers of the APOE €4 allele had significantly lower plasma
AB1_42/1_40, than their inactive counterparts (Brown et al., 2013b).
These studies bring into focus the need for consideration of APOE
genotype as a moderating factor in future exercise intervention trials:
Such studies will be vital in determining the optimum levels of activity
needed for each genotype to attain the greatest benefit.

Clearly, the field of exercise and A in human cohorts requires
rigorous evaluation in large exercise intervention trials with long-
itudinal follow-up. Cohort inclusion criteria and demographics (e.g.
age, APOE genotype, disease stage, etc.) will also be a vital considera-
tion when examining the role of exercise in modulating AB. As de-
monstrated in the animal studies reviewed here, it is possible that ex-
ercise will only be effective in reducing AP deposition within an early
preclinical period. Thus, individuals already experiencing pronounced
decline in cognitive function (i.e. individuals with MCI, or early AD)
may be too advanced in the disease course for exercise to alter Af le-
vels. We are not however suggesting that exercise is unimportant in
individuals with objective cognitive impairment; evidence suggests that
exercise is associated with alterations in neurotrophic factors and
neurotransmitters, and this is likely to mediate enhancement in cogni-
tion following exercise even in individuals with MCI and AD.
Furthermore, exercise is effective at reducing falls risk and improving
mood, which both have the potential to enhance quality of life and
reduce carer burden.

4. Tau

Tau is a microtubule-associated protein which is important for
maintaining the functional and structural integrity of neurons. Tau
proteins are biologically important for axonal transport and micro-
tubule polymerisation (Buee et al., 2000). Intracellular aggregation of
either hyperphosphorylated or abnormally phosphorylated tau forms
tau pathology, which is identified in a number of neurodegenerative
conditions, including AD (Benzing et al., 1993). In AD, intracellular
neurofibrillary tangles, comprised of hyperphosphorylated tau, first
form within the entorhinal cortex and hippocampus, before reaching
the neocortical regions (Braak and Braak, 1995), and are associated
with the development of clinical symptoms in AD (Giannakopoulos
et al., 1997). Tau kinases, including Glycogen synthase kinase 3 (GSK3)
and Cyclin-dependent kinase 5 (CDKS5), have been demonstrated to play
a vital role in the phosphorylation of tau, and represent a mechanistic
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target in the relationship between exercise and brain tau (Dolan and
Johnson, 2010).

4.1. The role of exercise in modulating tau levels

4.1.1. Animal studies

Our review of the literature identified numerous animal studies that
have reported reductions in brain tau phosphorylation and tau pa-
thology following physical activity and exercise (Table 2; Fig. 1). It is
important to note that many of the reviewed studies utilised tau
transgenic models, i.e. models of tauopathies (Belarbi et al., 2011; Elahi
et al., 2016; Gratuze et al., 2017; Kang and Cho, 2015; Leem et al.,
2009; Ohia-Nwoko et al., 2014), whereas only one reviewed study
utilised a model of AD (Liu et al., 2013). Thus, many of the findings
summarised below are relevant to all tauopathies, rather than AD alone.

Decreases in tau phosphorylation (Gratuze et al., 2017; Jeong and
Kang, 2018; Kang and Cho, 2015; Leem et al., 2009; Liu et al., 2013;
Ohia-Nwoko et al., 2014) and decreases in hippocampal tau pathology
(Belarbi et al., 2011; Jeong and Kang, 2018; Kang and Cho, 2015) have
been observed in studies utilising interventions ranging from 2 to 5
months and 2-9 months; respectively. From these findings, it is unclear
whether particular aspects of interventions (i.e. length, intensity, bout
duration) play an important role in the effect of physical activity and
exercise on brain tau. It could be hypothesised that higher intensity
running may elicit a more beneficial effect in terms of tau reduction;
however, studies utilising both forced running (Jeong and Kang, 2018;
Kang and Cho, 2015) and voluntary wheel running (i.e. likely at a lower
intensity; Belarbi et al., 2011; Gratuze et al., 2017) observed effects on
both phosphorylation and aggregation. It is possible that any consistent
aerobic exercise over a certain duration (e.g. 2 months) elicits reduc-
tions in tau in animal models. Nevertheless, one study reported increases
in both insoluble tau levels and phosphorylation of tau at the C-ter-
minus following exercise (Elahi et al., 2016). It is important to note
however, that Elahi and colleagues utilised the oldest animals (19
months), and the shortest duration of exercise (3 weeks), compared
with the other reviewed studies. These two factors alone may have
contributed to their disparate findings, the animals may have had pa-
thology too advanced to be mitigated by exercise, and indeed the ex-
ercise itself was likely too short in duration to decrease the level of
brain tau. Furthermore, the authors provide data to suggest that in-
creases in exercise-induced neuroinflammation were associated with
the observed increases in tau. Nevertheless, the relationship between
exercise, inflammation and neurodegenerative processes is complex:
both increases in inflammatory markers and decreases in inflammatory
markers are linked to decreased AD pathology, and there are varying
(i.e. increases followed by decreases) adaptive inflammatory responses
to exercise (Nichol et al., 2008; Parachikova et al., 2008). It is also
important to consider that a range of techniques were used to detect
brain tau across the reviewed studies: western blotting (Elahi et al.,
2016; Kang and Cho, 2015; Leem et al., 2009; Liu et al., 2013), enzyme-
linked immunsorbent assays (Belarbi et al., 2011), sarkosyl extraction
(Gratuze et al., 2017), and immunofluorescence (Ohia-Nwoko et al.,
2014). However, due to the wide range of methods utilised, it is unclear
how this varying methodology could influence the reported results.

The mechanisms by which exercise positively influences tau phos-
phorylation and tau pathology are not well understood in the current
literature. One of the animal studies described above has provided
evidence that the tau kinase GSK3, but not CDK5, plays a mediating role
in the relationship between exercise and tau phosphorylation (Liu et al.,
2013). However, Gratuze et al (2017) reported no effect of voluntary
wheel running on a number of tau kinases (GSK3, CDK5, c-Jun N-
terminal kinases (JNK) and Calmodulin-dependent protein kinase II
(CamKII)) nor phosphatases (shown to dephosphorylate tau in vitro) in
their animals. A deficiency in two cholesterol binding proteins, Nei-
mann-Pick disease, type C1 (NPC1) and type C2 (NPC2), has been
shown to induce tau pathology (Klunemann et al., 2002). Interestingly,
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upregulation of NPC1 and NPC2 mRNA was observed by Belarbi and
colleagues in their mice following voluntary wheel running, demon-
strating another potential mechanism through which exercise reduces
tau pathology (Belarbi et al., 2011). Given the large number of poten-
tially mediating factors (i.e. various kinases and phosphatases), this
field requires further extensive research.

4.1.2. Human cohorts

The literature examining the relationship between physical activity
and tau in humans is sparse (Table 3). Similar to the gold-standard
measurement of AR in human cohorts, tau quantification is marred by
inaccessibility and relative invasiveness. Nevertheless, quantification of
phosphorylated tau in CSF is considered a core biomarker for AD, and is
routinely utilised in clinical trials (Hampel et al., 2010). In addition,
there have been recent advances in the use of tau-binding tracers
coupled with PET imaging: tau PET has recently been validated against
post-mortem histopathological brain tissue (Lemoine et al., 2017).

Liang et al. (2010) found lower self-reported exercise levels to be
associated with higher CSF total tau and phosphorylated tau in a group
of cognitively healthy older adults; however, when this association was
adjusted for covariates (age, gender and education), the relationship
was no longer significant. As both tau levels and physical activity levels
are highly correlated with advancing age, it is likely that the reported
unadjusted association was confounded by participant age. In an in-
vestigation of cognitively normal and MCI individuals, Baker et al.
(2012) found self-reported high-intensity physical activity to be asso-
ciated with lower CSF tau in the healthy group only: It is possible that
the MCI group may have not been undertaking exercise of a sufficient
intensity or volume to detect a relationship with CSF tau. Objectively
quantified physical activity (actigraphy) has also been utilised to
evaluate the relationship between habitual physical activity levels and
CSF biomarkers of AD (Law et al., 2018); a lower ratio of total tau/Af;.
42 and phosphorylated tau/AB; 4, (indicative of less cerebral pathology)
was observed in those that spent the most time undertaking moderate
physical activity. Interestingly no association was observed between
time spent in vigorous physical activity and the CSF biomarkers; how-
ever, this likely reflects the low levels of vigorous physical activity
undertaken within this cohort of cognitively normal late-middle-aged
adults, and thus the analysis between vigorous physical activity and
CSF biomarkers may not have been adequately powered. Recently,
Brown et al (2018) demonstrated lower levels of PET-quantified tau in
cognitively normal older adults reporting the highest levels of physical
activity; however, it is important to note that even those with “higher”
levels of tau in the brain were not reaching what we understand to be
pathological levels of this protein. With these very recent advances in
tau neuroimaging, the relationship between exercise and brain tau in
human populations will likely be a highly studied topic in coming years.

5. Discussion

This review has highlighted consistent evidence from animal studies
that physical activity and exercise likely modulate levels of AB and tau
(Fig. 1). However, data from human cohorts is relatively limited and less
consistent. It is likely that exercise levels in animal studies are of a high
volume, and may not mirror exercise that is being undertaken by ‘high
exercisers’ (in observational human studies) nor that being administered
in human intervention studies. In addition, it’s important to consider
what we have termed ‘duration of exercise to lifespan ratio’; which
would play an important role in the differing evidence presented in an-
imal versus human studies. Understandably, the study of exercise in
humans is more complex than animal models, with a myriad of factors
contributing to the risk and rate of pathology accumulation in AD.
Nevertheless, with such striking evidence from animal models, it is clear
that this association needs further, thorough examination in humans.

Based on the available evidence, it appears that exercise in animal
studies is required to be undertaken within a ‘preclinical’ period, i.e.
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before the peak of AD pathology, in order to yield the greatest benefit.
Through the utilisation of PET imaging, we know that AP begins to
accumulate up to two decades before the onset of clinical symptoms in
humans. It is during this period we believe that lifestyle factors, such as
exercise, will be most effective in decreasing the risk of AD and asso-
ciated pathology markers. The studies reviewed here support the hy-
pothesis that a ‘window of opportunity’ exists in humans for the pre-
vention or attenuation of AP and tau accumulation (Sperling et al.,
2011).

To demonstrate a definitive role for exercise in modulating levels of
brain AB and tau, high-level evidence from large-scale randomised
controlled trials are required. Current AD pharmaceutical trials utilise
AP PET imaging as an endpoint; however, based on current evidence, it
is unlikely that exercise will be potent enough to contribute to detect-
able changes in A} accumulation over short periods, particularly as we
know AP accumulates slowly over a number of years. Currently, the
best option for determining the effect of exercise on A} and tau requires
the utility of long-term interventions with multiple timepoints. Multi-
modal lifestyle change studies are currently underway, for example the
FINGER trial (Kivipelto et al., 2013), and may be key in understanding
how lifestyle can contribute to long-term brain changes in individuals
we know to be at increased risk of AD. The combination of measures
from both CSF and PET scans would also provide the optimum setting
to clearly understand this relationship.

Here, we have summarised consistent evidence from animal studies,
supported by some human studies, that exercise plays a role in altering
the accumulation of AP and tau pathology. Nevertheless, for exercise to
be accepted as a mechanism for the reduction of cognitive decline and
dementia risk, robust high-level evidence from human research is vital.
Future studies should consider gold-standard tau and AR measurements
as outcome measures in specifically designed exercise-focussed rando-
mised controlled trials.
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