Syntheses and characterization of neutral and cationic cyclic (alkyl)(amino)carbene mercury [cAAC-Hg(II)] complexes

Deependra Bawari, Sandeep Kumar Thakur, Krishna K. Manar, Bhupendra Goswami, Sabari V.R., Angshuman Roy Choudhury, Sanjay Singh

Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, 140306, Punjab, India

ARTICLE INFO

Article history:
Received 15 July 2018
Revised in revised form 19 October 2018
Accepted 2 November 2018
Available online 3 November 2018

Keywords:
Carbene
Cationic complexes
Organomercury compounds
cAACs
NHCs

ABSTRACT

Reactions of cyclic (alkyl)(amino)carbenes, cAACMe and cAACcy with equimolar quantity of HgX2 salts afforded their corresponding halide bridged dimeric complexes, [cAACMeHgCl([μ-Cl])2 (1), [cAACcy-HgCl([μ-Cl])2 (2), [cAACMe-Hg([μ-I])2 (3) and [cAACcy-Hg([μ-I])2 (4) (Me = methyl and cy = cyclohexyl). It has been possible to perform stepwise substitution of Br by [cAACcy-HgBr([μ-Br])2 with NO3 leading to the isolation and characterization of the mononitrated species, cAACcy-HgBr(NO3)2 (5) and the dinitrate compound [cAACcy-Hg(NO3)(μ-NO3)]2 (6). The cationic mercury species, [(cAACMe2Hg(NO3))]2+ (7) has also been synthesized by the reaction of adduct, [cAACMe-HgBr([μ-Br])2 with 2 eq. of AgNO3. On reaction of [cAACcy-HgCl([μ-Cl])2 (2) with AgClO4, only one chlorine could be substituted by perchlorate resulting in the formation of chlorine bridged dimeric complex, [cAACcy-Hg(ClO4)(μ-Cl)]2 (8). On performing the reaction between cAACcy and HgCl2 in 2:3 relative stoichiometry, a dicaticonic mercury species [(cAACcy2Hg)2HgCl6]4+ (9) was isolated in moderate yield.

1. Introduction

The facile synthesis of N-heterocyclic carbenes (NHCs), bis(α-amino)cyclopropenylidenes (BACs), and cyclic (alkyl)(amino)carbenes (cAACs) have led to enormous development in the area of metal carbene chemistry [1]. The first metal N-heterocyclic carbene complex reported [2], (Ph2-NHC)2Hg[Cl]2 was of an element from group 12 and subsequently a rapid development with adducts of carbones with metals from other groups of the periodic table was witnessed. Among the elements from group 12, the nontoxic Zn has gained some attention whereas, the carbene adducts of heavier elements, Cd and Hg are less developed perhaps due to toxicity associated with these elements [3]. In this context, Roesky and co-workers (2012) demonstrated the use of cAACs as a potential ligand to stabilize Zn complexes such as the adduct (cAAC)ZnCl2, a singlet biradicaloid (cAAC)2Zn and the hydrogenated complex (cAACH)2Zn (Fig. 1) [4]. Synthesis and characterization of neutral and cationic cAAC-Hg(II) adducts (Fig. 1) and their application in intermolecular hydroamination between phenylacetylenes and anilines [5] prompted us to investigate this area further. In this endeavor, we noticed that the routes for the synthesis of NHC–Hg(II) complexes needed subtle modifications when applied to the synthesis of cAAC-Hg(II) complexes [6]. Therefore, the strategy used to synthesize neutral (HgO route) and cationic complexes (Hg(OAc)2 route) of NHC–Hg(II) could not be applied to synthesize similar cAAC adducts of Hg(II) [5,6]. These cAAC-Hg(II) adducts are obtained by the treatment of in-situ generated carbene with the HgX2 salts. To extend the chemistry of neutral and cationic cAAC-Hg(II) adducts herein we report on the syntheses and characterization of several new cAAC complexes, [cAACMe-HgCl([μ-Cl])2 (1), [cAACcy-HgCl([μ-Cl])2 (2), [cAACMe-Hg([μ-I])2 (3) and [cAACcy-Hg([μ-I])2 (4), cAACcy-HgBr(NO3) (5), [cAACcy-Hg(NO3)(μ-NO3)]2 (6), [(cAACMe2Hg)(μ-NO3)]2(NO3) (7), [cAACcy-Hg(ClO4)(μ-Cl)]2 (8) and [(cAACcy2Hg)2HgCl6]4+ (9) Caution! Organomercury compounds are highly toxic. All necessary care in handling mercury compounds must be exercised.
2. Experimental section

2.1. General consideration

All manipulations were performed under nitrogen/argon atmosphere using Schlenk line or glove box. All chemicals were purchased from Sigma-Aldrich and used without further purification. Cyclic (alkyl)(amino)carbenes, cAACMe and cAACCy were prepared using reported procedure [7]. FT-IR spectra of complexes 1–9 were recorded (in the range 4000–400 cm⁻¹) with a Perkin–Elmer Lambda 35-spectrophotometer. The 1H and 13C NMR spectra were recorded with a Bruker 400 MHz spectrometer with TMS as external reference; chemical shift values are reported in ppm. High-resolution mass spectrometry was performed with Waters SYNAPT G2-S.

Caution: Organomercury compounds are highly toxic. While handling these compounds, protective neoprene gloves should be worn and an efficient hood must be used. Residues and wastes containing mercury should be disposed off according to local regulations.

2.2. Syntheses

2.2.1. Synthesis of [cAACMe·HgCl(μ-Cl)]2 (1)

A mixture of [cAACMeH]+Cl⁻ (0.44 g, 1.38 mmol) and K[N(SiMe3)2] (0.28 g, 1.40 mmol) was taken in THF (25 mL). The resulting suspension was stirred at room temperature for 2 h. The solution was filtered to remove KCl and subsequently added to a suspension of HgCl₂ (0.37 g, 1.38 mmol) in THF (5 mL). The mixture was stirred at room temperature for 3 h followed by filtration to obtain a white solid. This solid was further washed with THF (10 mL) to afford 1 as a white solid. Colorless crystals of 1 were grown from acetonitrile at room temperature. Yield: 0.56 g, 67.9%. Mp: 268–271 °C. IR (KBr, cm⁻¹) ν: 2972, 2931, 2863, 1515, 1462, 1445, 1387, 1264, 1138, 1110, 1049, 933, 810, 776. 1H NMR (400 MHz, DMSO-d₆): δ = 7.51 (t, 2H, pAr-H, 3JHH-H = 8 Hz), 7.40–7.35 (m, 10H, cy), 1.25 (d, 12H, CH(C₂H₅)), 1.19 (d, 12H, CH(C₂H₅)), 1.19 (d, 12H, CH(C₂H₅)), 1.17 (d, 12H, CH(C₂H₅)), 1.15 (d, 12H, CH(C₂H₅)), 1.13 (d, 12H, CH(C₂H₅)), 1.11 (s, 12H, C(CH₃)₂) ppm. HRMS (ES⁺): m/z calcd for C₄₀H₆₂N₂Hg₂Cl₃: 1079.3512; [M - Cl]⁺; found: 1079.3481.

2.2.2. Synthesis of [cAACCy·HgCl(μ-Cl)]2 (2)

A mixture of [cAACCyH]+Cl⁻ (0.49 g, 1.38 mmol) and K[N(SiMe3)2] (0.28 g, 1.40 mmol) was taken in THF (25 mL). The resulting suspension was stirred at room temperature for 2 h. The solution was filtered to remove KCl and subsequently added to a suspension of HgCl₂ (0.37 g, 1.38 mmol) in THF (5 mL). The mixture was stirred at room temperature for 3 h followed by filtration to obtain a white solid. This solid was further washed with THF (10 mL) to afford 2 as a white solid. Colorless crystals of 2 were grown from acetonitrile at room temperature. Yield: 0.59 g, 72.5%. Mp: 268–271 °C. IR (KBr, cm⁻¹) ν: 2972, 2931, 2863, 1515, 1462, 1445, 1387, 1264, 1138, 1110, 1049, 933, 810, 776. 1H NMR (400 MHz, DMSO-d₆): δ = 7.51 (t, 2H, pAr-H, 3JHH-H = 8 Hz), 7.40–7.35 (m, 10H, cy), 1.25 (d, 12H, CH(C₂H₅)), 1.19 (d, 12H, CH(C₂H₅)), 1.19 (d, 12H, CH(C₂H₅)), 1.17 (d, 12H, CH(C₂H₅)), 1.15 (d, 12H, CH(C₂H₅)), 1.13 (d, 12H, CH(C₂H₅)), 1.11 (s, 12H, C(CH₃)₂) ppm. HRMS (ES⁺): m/z calcd for C₄₆H₇₀N₂Hg₂Cl₃: 1159.3993; [M - Cl]⁺; found: 1159.3987.

2.2.3. Synthesis of [cAACMe·HgCl(μ-II)]2 (3)

Synthesis of 3 was performed in a manner similar to that for 1. Quantity of reagents used were [cAACCyH]+Cl⁻ (0.44 g, 1.38 mmol), K[N(SiMe3)2] (0.28 g, 1.40 mmol) and HgI₂ (0.63 g, 1.38 mmol). Colorless crystals of 3 were grown from acetonitrile at room temperature. Yield: 0.56 g, 67.9%. Mp: 268–271 °C. IR (KBr, cm⁻¹) ν: 2972, 2931, 2863, 1515, 1462, 1445, 1387, 1264, 1138, 1110, 1049, 933, 810, 776. 1H NMR (400 MHz, DMSO-d₆): δ = 7.51 (t, 2H, pAr-H, 3JHH-H = 8 Hz), 7.40 (d, 4H, mAr-H, 3JHH-H = 8 Hz), 2.68 (sept, 4H, CH(C₂H₅)), 1.50–0.20 (m, 10H, cy), 1.42 (s, 12H, CH(C₂H₅)), 1.25 (d, 12H, CH(C₂H₅)), 1.19 (d, 12H, CH(C₂H₅)), 1.18 (d, 12H, CH(C₂H₅)), 1.16 (d, 12H, CH(C₂H₅)), 1.14 (d, 12H, CH(C₂H₅)), 1.12 (d, 12H, CH(C₂H₅)), 1.11 (s, 12H, C(CH₃)₂) ppm. HRMS (ES⁺): m/z calcd for C₄₆H₇₀N₂Hg₂Cl₂: 1159.3993; [M - Cl]⁺; found: 1159.3987.

2.2.4. Synthesis of [cAACCy·HgCl(μ-II)]2 (4)

Synthesis of 4 was performed in a manner similar to that for 2. Quantity of reagents used were [cAACCyH]+Cl⁻ (0.49 g, 1.38 mmol),
A mixture of [cAACMe]HgBr([μ-Br]2) (0.69 g, 1.00 mmol) and K[AgNO3] ([0.59 g, 5.00 mmol) was taken in THF (15 mL). The resulting suspension was stirred at room temperature for 2 h. The solution was filtered to remove KCl and subsequently added to a suspension of HgCl2 (0.20 g, 0.75 mmol) in THF (5 mL). The mixture was stirred at room temperature for 3 h followed by filtration to obtain a white solid. This solid was further washed with THF (10 mL) to afford 9 as a white solid. Colorless crystals of 9 were grown from acetone at room temperature. Yield: 0.40 g, 54.6%. M: 257–260 °C. IR (KBr, cm–1): 2973, 2836, 2862, 1596, 1450, 1385, 1321, 1267, 1135, 1047, 938, 811, 778, 593, 558. 1H NMR (400 MHz, DMSO-d6): δ = 7.63 (t, 2H, pAr-H, JH-H = 8 Hz), 7.57 (d, 4H, mAr-H, JH-H = 8 Hz), 7.36 (d, 4H, mAr-H, JH-H = 8 Hz), 2.72 (s, 6H, C(CH3)2), 1.32 (d, 12H, CH(CH3)2, JH-H = 8 Hz), 1.07 (d, 12H, CH(CH3)2, JH-H = 8 Hz). 13C NMR (100 MHz, DMSO-d6): δ = 141.6, 139.2, 138.4, 137.2, 136.7, 135.6, 129.3, 128.4, 124.1, 121.6, 119.3, 111.9, 109.0, 97.6, 85.9, 78.8, 70.9, 68.9, 39.4, 36.2, 33.7, 30.20, 28.37, 23.74, 23.23, 21.73, 21.38, 21.02, 21.12, 21.03, 21.34, 21.04, 21.05, 21.13. HRMS (ES±): m/z calcd for Cy4H2Hg2N6Cl: 806.6742 [M-HgCl]; found: 806.6741.

2.3. Single crystal X-ray structural characterization of compounds 1–9

Single crystal X-ray diffraction data of 1, 3, 4, 6 and 8 were collected on a Bruker AXS KAPPA APEX-II CCD diffractometer with MoKα radiation using omega scans equipped with Oxford Cryosystem 700 plus with a sample to detector distance of 6 cm with variable position of the detector. Unit cell determination and refinement and data collection were done using the Bruker APEX-II suite [8], data reduction and integration were performed using SAINT v8.34 A (Bruker, 2013) [9] and absorption corrections and scaling were done using SADABS-2014/5 (Bruker, 2014/5) [10]. Single crystal X-ray diffraction data of 2, 5, 7 and 9 were collected using a Rigaku XtaLAB mini diffractometer equipped with Mercury375 M CCD detector. The data were collected with MoKα radiation (λ = 0.7073 Å) using omega scans. During the data collection, the detector distance was 49.9 mm (constant) and the detector was placed at 2Θ = 29.85° (fixed) for all the data sets. The data collection and data reduction were done using Crystal Clear suite [11]. All the crystal structures were solved through OLEX2 [12] package using XT [13] and the structures were refined using XL [13]. All non-hydrogen atoms were refined anisotropically. All figures were generated using Mercury. One of the two isopropyl groups, five membered carbene ring and nitrate groups in 7 were found to be disordered. These disordered atoms were refined with appropriate use of PART and EADP commands. The geometric data reported here are taken from the CIF.

3. Results and discussion

3.1. Synthesis and characterization of complexes 1–9

To highlight any resemblance or disparity in the synthesis, structure and properties of NHCl–Hg(II)I2 complexes (X = Cl and I), with that of tetrachloro-halomethane complexes, we have prepared the complexes: [cAACMe]Hg(I2Cl) ([1], [cAAC-CyHg(I2Cl)]2 ([2], [cAACMe-Hg(I2Cl)]2) (3) and [cAAC-CyHg(I2Cl)]2 (4) based on carbene cAACMe and cAACCy. (Me = methyl and cy = cyclohexyl) and these complexes were found to be halide bridged dimers in the
solid state. Complexes 1–4 were synthesized by the reaction of in-situ generated cAACMe and cAACCy carbenes with an equimolar amount of HgX₂ salts (X = Cl and I) (Scheme 1). The formation of these complexes was apparent by downfield shifted signal for the carbene carbon in ¹³C NMR spectra for 1 and 2 (~245 ppm) when compared to the free carbenes (312 ppm for cAACMe and 316 ppm for cAACCy), the corresponding signals for 3 and 4 were not observed.

The features in the ¹H NMR spectra of 1–4 were in accordance with the expected adducts. The HRMS spectra of these complexes revealed their dimeric nature due to signals at m/z = 1079.3481 (calcd. 1079.3512 for [M - Cl]⁺) (1), 1159.3993 for [M - Cl]⁺ (2), 1353.1450 for [M - I]⁺ (3) and 1433.2301 (calcd. 1433.2078 for [M - I]⁺) (4).

The unambiguous composition of compounds 1–4 have been confirmed by single crystal X-ray structural analysis (Fig. 2, Table S1 in ESI). Crystals suitable for X-ray diffraction of complexes 1–4 were grown from acetonitrile at room temperature and these crystals were found to crystallize in monoclinic system with P2₁/n (P2₁/c for 2) space group. All these complexes formed halide bridged dihalo-mercury(II) structures, [cAACMe/cy-HgX(μ-X)]₂ (X = Cl (1 & 2) and I (3 & 4)) in their solid state (Fig. 2). Mercury atoms in these complexes adopt distorted tetrahedral geometry consisting of one cAAC unit, a terminal and two bridged halides X. The C–Hg bond distances (2.120(5) (1), 2.120(5) (2), 2.162(4) (3), 2.170(5) Å (4)) for these complexes were comparable to their bromide analogs, [cAACMe-HgBr(μ-Br)]₂ (2.163(7) Å) and [cAACCy-HgBr(μ-Br)]₂ (2.144(3) Å) complexes [5]. In all these complexes, the bridging Hg–X distances (2.6936(13) (1), 2.7128(13) (2), 2.9347(3) (3) and 2.9525(4) Å (4)) were, as expected, longer than the terminal Hg–X distances (2.3829(14) (1), 2.3793(13) (2), 2.6849(4) (3) and 2.6960(4) Å (4)). It has been previously observed that NHCs form mononuclear [HgX₂] complex with cAACs, the HgX₂ salts (X = Cl and I) formed dimers [cAACMe⁻⁻, HgX(μ-X)]₂. NHCs are predicted to be less electrophilic than cAACs, the dimeric nature of Hg(II)Cl₂ complexes 1 and 2 indicate relatively weaker donation from cAAC allowing Hg(II) to increase its coordination number to satisfy its electronic demand. The dimeric nature of Hg(II)Cl₂ complexes with cAAC, 3 and 4 were similar to those found for Hg(II) – NHC complexes [6].

Recently, we showed the reaction of [cAACCy-HgBr(μ-Br)]₂ with AgNO₃ affords a dicationic Hg(II) complex, [[cAACCyHg(H₂O)]²⁺ [NO₃]⁻ [5]. On further elaboration of this work, it was observed that the reaction proceeds through the formation of mercury mono-nitrate, cAACCy-Hg(NO₃) (5) and dinitrate complex, [cAACCy·Hg(NO₃)(μ-NO₃)]₂ (6) (Scheme 2). Complexes 5 and 6 were obtained as a mixture that could not be separated. The ¹H NMR spectrum of this mixture showed two doublets and a merged triplet in aromatic region whereas the aliphatic region clearly showed two septets and their corresponding doublets (for isopropyl groups on cAAC) indicating the presence of two complexes. Continuing the reaction for a longer period (nearly 14 h) led to the isolation of reported dicaticion species, [[cAACCy₂Hg(H₂O)]²⁺ [NO₃]⁻ [5]. The formation of 5 and 6 was also seen by HRMS spectra with signal at m/z 606.1661 (calcd. 606.1644 for [M - NO₃]⁺) (5) and 1237.4539 (calcd. 1237.4501 for [M–H–NO₃]⁺) (6) due to the loss of one nitrate ion from each.
The X-ray quality crystals of complexes 5 and 6 were grown from THF at room temperature. Complexes 5 and 6 were found to crystallize in orthorhombic and triclinic system with P2₁2₁2₁ and Pı space group, respectively (Table S2 in ESI). The structure of complex 5 in the solid state shows that mercury is tetracoordinated and connected to a cAACcy unit, a bromide and a bidentate nitrate group (Fig. 3). The structure of complex 6 was observed as a dimer containing two hexacoordinated mercury centers bridged by two nitrate groups (Fig. 4). The C—Hg bond distances for complex 5 (2.080(11) Å) and 6 (2.068(4) Å) are similar to that reported for dicationic species, [(cAACcy)₂Hg(H₂O)]²⁺[NO₃]⁻ (2.072(4) Å) and [(NHC)₂Hg]²⁺ 2.073(6) Å, whereas, slightly shorter than that reported for complexes, [cAACcy·HgBr(μ-Br)]₂ (2.144(3) Å) [5,14,15] and 1–4.

In view of limited methods available to synthesize dicationic bis(NHC) mercury salts, [(NHC)₂Hg]²⁺ we were prompted to explore the syntheses and properties of similar dications using cAACs (see Scheme 2). Known procedures in such transformations involve either the reaction of mercury acetate with an imidazolium salt or a free NHC with a mercury(II) salt [2a,b,14,15]. Recently, we found that the mercury acetate route could not afford the bis(cAAC) salts, [(cAAC)₂Hg]²⁺ therefore we adopted an alternate salt metathesis route to synthesize three coordinated dicationic species [(cAACcy)₂Hg(H₂O)]²⁺[NO₃]⁻ by reacting the adduct [cAACcy·HgBr(μ-Br)]₂ with AgNO₃ in THF. Following our work in this area we treated the adduct [cAACMe·HgBr(μ-Br)]₂ with AgNO₃ in THF to afford a cationic Hg(II) species, [(cAACMe)₂Hg(NO₃)]⁺[NO₃]⁻ (7) (Scheme 3).

Formation of AgBr was observed in this route and upon filtration and concentration of the mother liquor colorless crystals of the cationic complex [(cAACMe)₂Hg(NO₃)]⁺[NO₃]⁻ of 7 were obtained. The ¹H NMR and ¹³C NMR spectra of 7 in DMSO-d₆ showed the expected signals for cAACMe however, the carbene carbon signal could not be observed in its ¹³C NMR spectrum. The HRMS spectrum for 7 showed a fragment for the cation at m/z 897.4433 (calcd. 897.4462 for [M+H]⁺).

Fig. 3. Single crystal X-ray structure of cAACcy·HgBr(NO₃)(5). Ellipsoids are shown at 50% probability levels. THF molecule present in the lattice and all hydrogen atoms have been omitted for clarity. Selected bond lengths [Å] and bond angles [°]: Hg1—Br1 2.434(14), Hg1—Cl1 2.080(11), Hg1—O1 2.556(9), Hg1—O2 2.568(8), Cl1—Hg1—Br1 159.0(3), O1—Hg1—O2 49.2(3), Br1—Hg1—O1 91.13(19), Br1—Hg1—O2 92.14(19), C1—Hg1—O1 107.1(3), C1—Hg1—O2 107.7(3).

Scheme 2. Syntheses of cAACcy·HgBr(NO₃)(5) and [cAACcy·Hg(NO₃)(μ-NO₃)]₂ (6).
Crystals suitable for X-ray diffraction of complex 7 were grown from THF at room temperature. Crystal data for 7 were collected at 298 K and was found to crystallize in monoclinic system with P2₁/c space group (Table S2 in ESI). The crystal structure of 7 indicated the formation of a cationic three coordinated Hg(II) complex with one NO₃ connected to Hg(II) and other as a counter anion. The Hg(II) centre was coordinated with two cAACMe units in an almost linear fashion (Fig. 5) with the C₁–Hg₁–C₂₁ bond angle (174.69(18)°) that compares well with the known cationic NHC–Hg(II) complexes [14c,14e,15d]. The C–Hg bond lengths in 7 are slightly shorter (2.087(5) Å) than that of precursor [cAACMe₂Hg(NO₃)]₂ (2.163(7) Å) but similar to that reported for dicationic species, [cAACMe₂Hg(H₂O)]₂⁺ (2.100(4) Å). The Hg₁–O₁ distance of 2.637(5) Å is longer than that known for Hg–O covalent bonds (2.0–2.4 Å) [16] and can be attributed as secondary bonding interactions in view of the sums of the van der Waals radii (Hg–O, 3.05 Å) [16].

In further attempts to prepare cationic Hg complexes via the substitution of Cl⁻ with weakly coordinating anions such as BF₄⁻ or ClO₄⁻, the reaction between [cAAC⁹⁻HgCl₂(μ-Cl)]₂ (2) and NaBF₄ did not occur. However, the reaction between 2 and AgClO₄ was carried out that smoothly afforded a product that was characterized to be [cAAC⁹⁻Hg(ClO₄)₂(μ-Cl)]₂ (8). The ¹³C NMR spectrum of this product showed the signal for carbene carbon at 252.2 ppm compared to that observed in 2 (245.0 ppm). Other signals in the ¹H and ¹³C NMR spectra of this product were consistent with the carbene bound to Hg centre. The HRMS spectrum of this product showed the signal at m/z 562.2134 (calcd. 562.2158 for [M – ClO₄]⁺) corresponding to [cAAC⁹⁺-Hg(ClO₄)]⁺. The unambiguous composition of compound 8 was confirmed by single crystal X-ray structural analysis (Table S3 in ESI). Crystals suitable for X-ray diffraction of complex 7 were grown from acetonitrile at room temperature. Complex 8 was found to crystallize in the monoclinic system with P2₁/c space group. Complex 8 formed chlorine bridged dimeric structure, [cAAC⁹⁻HgClO₄(μ-Cl)]₂ in the solid state (Fig. 6). Mercury atoms in this complex are tetracoordinated by connecting with one cAAC⁹⁻ unit, an O-connected ClO₄⁻ and two bridged Cl⁻ groups. The C–Hg bond distances for complex 8 (2.086(6) Å) are comparable to that reported for dicaticionic species, [[cAAC⁹⁺]₂Hg(H₂O)][NO₃]²⁺ (2.072(4) Å) and [(NHCH)Hg]²⁺ (2.073(6) Å), whereas, slightly shorter than that found in [cAAC⁹⁻HgBr(μ-Br)]₂ (2.144(3) Å) [5,14,15] and complexes 1–4. The Hg–O distances found in 8 are 2.706(2) Å which are much longer than the Hg–O covalent bonds and are better described as secondary bonding interactions in view of the sums of the van der Waals radii (Hg–O, 3.05 Å) [16].

The formation of HgX₂⁺ or Hg₂X₄²⁻ anions are common in the synthesis of complexes of HgX₂ salts particularly when the HgX₂ salts are used in excess [17]. In view of this, we thought of exploiting this approach to prepare cationic Hg(II) complexes by using more than one equivalents of HgCl₂ with an anticipation that...
cAACMe-HgCl(NO3)(μ-Cl)]2 (2), [cAACMe-Hg(μ-I)]2 (3) and [cAACMe-Hg(μ-I)]4 (4) have been synthesized. In order to gain insights on the formation of previously reported Hg cation, via the reaction of [cAACMe-HgBr(μ-Br)]2 with AgNO3, led to the successful isolation of [cAAC9-HgBr(NO3)]2 (5) and a dinitrate, [cAAC9-HgNO3(μ-NO3)]2 (6) complex. Additionally, the cationic mercury species, [[cAACMe3Hg(NO3)]3[NO3]2]7+ (7) has also been synthesized by the reaction of [cAACMe-HgBr(μ-Br)]2 with AgNO3. Interestingly, only one chlorine in 2 could be substituted with perchlorate leading to the formation of a dimeric complex, [cAAC9-Hg(ClO4)(μ-Cl)]2 (8). It has also been possible to prepare two coordinated dicaticion mercury(II) complex, [(cAAC9)Hg2][Hg2Cl6]2− (9) from a 2:3 stoichiometric reaction of cAAC9 and HgCl2.

Caution

Organomercury compounds are highly toxic. While handling these compounds protective neoprene gloves should be worn and an efficient hood must be used. Residues and wastes containing mercury should be disposed of according to local regulations.

Acknowledgements

Authors thank IISER Mohali for NMR, HRMS and X-ray facility and for infrastructural support. D.B. and S.K.T. thank University Grant Commission (UGC, New Delhi) and IISER Mohali for fellowship. National-Postdoctoral Fellowship from DST-SERB, India (PDF/2017/001078) to K.K.M. is gratefully acknowledged.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jorgchem.2018.11.005.

References
