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Abstract

Purpose Portable sleep monitoring devices with less-attached sensors and high-accuracy sleep staging methods can expedite sleep
disorder diagnosis. The aim of this study was to propose a single-channel EEG sleep staging model, SleepStageNet, which extracts
sleep EEG features by multi-scale convolutional neural networks (CNN) and then infers the type of sleep stages by capturing the
contextual information between adjacent epochs using recurrent neural networks (RNN) and conditional random field (CRF).
Methods To verify the feasibility of our model, two datasets, one composed by two different single-channel EEGs (Fpz-Cz and
Pz-0z) on 20 healthy people and one composed by a single-channel EEG (F4-M1) on 104 obstructive sleep apnea (OSA) patients
with different severities, were examined. The corresponding sleep stages were scored as four states (wake, REM, light sleep, and
deep sleep). The accuracy measures were obtained from epoch-by-epoch comparison between the model and PSG scorer, and the
agreement between them was quantified with Cohen’s kappa ().

Results Our model achieved superior performance with average accuracy (Fpz-Cz, 0.88; Pz-Oz, 0.85) and (Fpz-Cz, 0.82; Pz-
Oz, 0.77) on the healthy people. Furthermore, we validated this model on the OSA patients with average accuracy (F4-M1, 0.80)
and (F4-M1, 0.67). Our model significantly improved the accuracy and compared to previous methods.

Conclusions The proposed SleepStageNet has proved feasible for assessment of sleep architecture among OSA patients using
single-channel EEG. We suggest that this technological advancement could augment the current use of home sleep apnea testing.

Keywords Sleep staging - Single-channel EEG - Multi-scale feature - Recurrent neural network - Conditional random field

Introduction

Sleep plays an essential role in human health, both physical
and mental. Outside of the wake state, sleep commonly occurs
in four repeating stages: rapid eye movement (REM), non-
REM (NREM) stages 1, 2, and 3 [1]. Sleep disorders like
obstructive sleep apnea (OSA) are a global health problem
[2]. The overall prevalence of OSA estimated from a system-
atic review is up to 9-38% in all regions of the world [3].
Another study reported that the prevalence of OSA in Asia
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in middle-aged men and women is 4.1-7.5% and 2.1-3.2%,
respectively [4]. Remarkably, with the increase of risk factors
for OSA (obesity, aging) and the improvement of diagnostic
techniques, these figures may underestimate the true preva-
lence of the disease [5]. Owing to frequent apnea, OSA pa-
tients may suffer from sleep fragmentation, resulting in a lack
of deep sleep (N3) and REM sleep. Moreover, apnea-related
alpha is an EEG characteristic of OSA patients due to the fact
that apnea is often accompanied by arousal, i.e., the invasion
and increase of alpha wave activity [6]. Thus, high-accuracy
sleep staging methods are essential for identifying and man-
aging sleep-related diseases such as OSA.

Polysomnography (PSG) is a multi-parametric test to diag-
nose OSA. However, the messy cables and sensors of PSG
limit the availability of home sleep apnea testing. Many stud-
ies have tried to develop portable sleep monitoring devices
based on the actigraphy [7], cardiorespiratory signals [8], or
radio frequency [9]. These measurements increased the com-
fort and operation simplicity more than PSG but immediately
faced the drawback of less accuracy (within the range of 0.65
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and 0.8). Clinically, manual scoring sleep stages is a labor-
intensive work by human visual inspection. Most of previous
automatic sleep stage scoring methods require a mass of prior
knowledge of sleep analysis. These methods often first extract
experience-based features and then train a classifier to identify
sleep stages [10, 11]. However, the hand-engineered features
based on the characteristics of the available dataset may not
well generalize to a larger population on account of the het-
erogeneity among subjects and recording devices. Recently,
Biswal S. et al. [12] achieved human-expert level sleep stag-
ing performance on PSG by utilizing convolutional neural
network (CNN) to extract features from single independent
epoch and then fed the extracted features to the recurrent net-
work (RNN). The similar model, DeepSleepNet, adopted by
Supratak A et al. [13] has shown state-of-the-art results of
sleep staging on single-channel EEG. However, their net-
work’s ability to extract EEG features is limited by single
or two in scale. However, although RNN encodes the
temporal information in the extracted features, the depen-
dency of adjacent tag information is ignored, such as ex-
plicit sleep stage transition rules [14]. Importantly, most
of the previous methods are limited on healthy individ-
uals, and the external heterogeneous population (e.g.,
OSA) validity remains uncertain.

Following the recent development of neural networks,
multi-scale CNN, with the advantage of extracting features
from different scales at the same time, have achieved impres-
sive performance in computer vision [15]. In addition, condi-
tional random field (CRF) is favorable to consider the adjacent
tag information and jointly decode the best chain of tags for a
given input data [16]. The previous studies have demonstrated
that CRF can achieve excellent performance in sequence tag-
ging tasks, such as part-of-speech tagging [17].

In this study, we propose a single-channel EEG sleep stag-
ing model, termed SleepStageNet, which extracts sleep EEG
features by multi-scale CNN and then infers the type of sleep
stages by capturing the contextual information between adja-
cent epochs using RNN and CRF. To verify the feasibility of
our model, two datasets, one composed by two different
single-channel EEGs (Fpz-Cz and Pz-Oz) on 20 healthy peo-
ple and one composed by a single-channel EEG (F4-M1) on
104 OSA patients with different severities, were examined. In
addition, we investigate how the contextual information be-
tween epochs affect the performance of sleep staging
performance.

Material and methods
Dataset and preprocessing

Sleep-EDF dataset This is a public benchmark database for
sleep staging [18]. As Supratak A. et al. [13], the sleep
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monitoring data on 20 healthy subjects in adults (age, 25—
34), were used in this study, without any sleep-related medi-
cation. Briefly, each sleep recording contained two scalp-EEG
signals from Fpz-Cz and Pz-Oz channels. All EEG channels
had the same sampling rate of 100 Hz. Each no overlapping
30-s epoch of these recordings was manually classified into
one of the six classes (W, N1, N2, N3, N4, and REM) accord-
ing to the R&K standard [19]. Sleeping time was recommend-
ed to use the annotated lights off and lights on times as start
and end times, respectively. In addition, 30 min of such pe-
riods before and after the sleep periods were extended. Other
time was removed from the analysis, as their patterns were not
being related to the events of interest. We merged the N3 and
N4 stages into a single stage, deep sleep, according to the
AASM standard [1]. Furthermore, owing to transitory na-
ture of N1 stage and difficulty in distinguishing between
N1 and N2 stage reported in [10, 11], we followed the
same approach used in [8, 9], merging N1 and N2 stage
into a single stage, light sleep.

OSA dataset The retrospective analysis of our dataset was
approved by the ethics committee of Peking University First
Hospital. From May 2016 to October 2017, 104 consecutive
patients with suspected OSA were recruited from the sleep
laboratory. The subjects were selected to satisfy the following
criteria: (1) age older than 18 years. (2) at least 4 h of EEG
recording. The overall severity of sleep apnea was described
by the apnea-hypopnea index (AHI). Among them, 24 pa-
tients were confirmed to have mild OSA (5<AHI<15), 19
patients had moderate (15 < AHI < 30), 39 patients had severe
(AHI > 30), and the remaining 22 patients were non-OSA. For
each subject, the overnight PSG (Siesta 2, Compumedics Ltd.,
Australia) was performed. Each no overlapping 30-s epoch
of the PSG recordings was manually divided into one of
the five sleep stages (W, NI, N2, N3, and REM) by a
sleep expert in accordance with the AASM standard [1].
We also merged N1 and N2 stages into a single-stage
termed light sleep, like the Sleep-EDF dataset. We evalu-
ated our model using the F4-M1 channel, which was
resampled to the same sampling rate of 100 Hz.

Table 1 summarizes the basic characteristics of the study
population and the number of 30-s epochs for each sleep stage
from these two datasets. All EEG recordings from the two
datasets were preprocessed with bandpass filters of 0.3—
35 Hz for eliminating power frequency (50 or 60 Hz) and
baseline wander.

Model structure

As shown in Fig. 1, the architecture of our model,
SleepStageNet, consists of two parts. The first part is a
multi-scale neural network termed SleepFeatureNet, which
extracts specific EEG features of different sleep stages from
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Table 1 Basic characteristics of

the study population and the Variable Sleep-EDF OSA dataset (N =104)

number of 30-s epochs for each

sleep stage from the two datasets Normal N=20 Normal N=22 Mild N=24 Moderate N=19 Severe N=39
Age 29+£3* 44+19 49+19 52+12 48+9
Male (%) 50 63.6 60.7 78.9 90.0
AHI (n/h) <5 <5 5-15 15-30 >30
TST (min) 542+110 367+58 359+68 345+71 364+ 66
Light (n %) 20,603 (49) 8472 (43) 9685 (44) 8173 (45) 20,606 (56)
Deep (n %) 5703 (14) 4643 (23) 4210 (19) 2846 (16) 3582 (10)
REM (n %) 7717 (18) 3051 (16) 2626 (12) 2121 (12) 3883 (11)
Wake (n %) 7927 (19) 3664 (18) 5471 (25) 4916 (27) 8631 (23)

#Values are presented as mean=SD
TST = total sleep time

AHI = apnea-hypopnea index
REM =rapid eye movement

each independent 30-s epoch. The second part is a contex-
tual information-learning network, which encodes the
temporal information in the extracted features between
adjacent epochs by RNN, and then explicitly captures
stage transition rules in the sleep states and then infers
the type of sleep stages, by CRF.

Briefly, the SleepFeatureNet is a modified CNN by replac-
ing a single scale convolutional layer with a multi-scale con-
volution layer, which was inspired by the popular GoogLeNet
[15]. The contextual information learning network consists of
a bi-directional gated recurrent unit (Bi-GRU) [20] and a
chain-structured conditional random field (CRF) [16]. Part II
in Fig. 1 illustrates the architecture in a simple way. Here, the
Bi-GRU layer adapted to aggregating the features, which en-
ables the networks to take into account the features EEG ex-
tracted in adjacent frames. The length of the input epochs is
five, and both the number of input neurons and output neurons
of Bi-GRU is four. Importantly, a chain CRF is finally used to
capture explicit stage transition rules and infers the type of
sleep stages. The architecture of SleepFeatureNet, technical
details of CRF, model training and evaluation, and key
hyperparameters were formed in the Appendix.

Evaluation metrics

We evaluated the performance metrics of different models
using accuracy, macro-averaging Fl-score (MF1) [21], and
Cohen’s kappa [22]. All metrics are commonly used in auto-
mated sleep staging.

(a) Accuracy: accuracy is defined as the percent of correct
labels predicted by the model out of a total number of
annotations.

(b) Macro averaging Fl-score (MF1): Fl-score is the
weighted average of precision and recall, which takes

both false positives and false negatives into account.
The macro-averaging F1 score is the average of the F1
scores obtained for each category. The MF1 score
reaches its best value at 1 and worst score at 0.

Kappa: Cohen’s kappa coefficient () is a statistic
which measures the degree of inter-rater agreement
between model prediction and annotations by a sleep
technologist. The values are typically categorized as
follows: 0-0.4 are considered low, 0.4—0.6 are mod-
erate, 0.6-0.8 are high, and above 0.8 are near per-
fect agreement.

(©)

Performance analysis

The results of different sleep staging methods in this study are
expressed as mean+SD. Two-tailed paired ¢ test were used for
comparison of the metrics between SleepStageNet and
DeepSleepNet. Values of p <0.05 were considered to be
significant. The calculations were performed with SPSS
Software System version 19.0 (SPSS Inc., USA).
Moreover, to precisely evaluate the feasibility of our pro-
posed model, we summarized the performance of other
two EEG-based automatic scoring methods using hand-
engineered features [10, 11], and three representative
non-EEG-based scoring methods [7-9].

Results
Sleep staging performance in healthy individuals
Table 2 shows a comparison between our proposed method

and other available sleep stage scoring methods. It is readily
observed that the EEG-based methods show better
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Fig. 1 An overview architecture
of SleepStageNet consisting of
two main parts: multi-scale feature
learning (part I) and contextual
information learning (part II). The
feature vector of each epoch is
computed by SleepFeatureNet in

Partll

—W—
Bi-GRU ’_L

LoD
B

__D__ P

part I, then feed it into the part 11

SleepFeatureNet ‘

that combines bi-directional GRU
layer and CRF layer to capture
temporal contextual information

and infers the sleep stage Epoch (30-s)

Part |

r
R

Multi-scale CNN 1

GRU- RNN(128) ‘

reshape (10,128) ‘

av pooI (150,1) |

\
|
‘ 12800nv 1,1) |
|
|

concatenate ‘

64 conv,(5,1)

64 conv,(3,1) 64 conv,(1,1)

64 conv,(1,1)

64 conv,(1,1) || max pool (2,1) || 64 conv,(1,1) |

performance metrics than those of non-EEG-based methods,
and especially, for each EEG-based approach, the staging per-
formance based on Fpz-Cz channel is better than that based on
Pz-Oz channel.

On Fpz-Cz channel, the DeepSleepNet performs an av-
erage ACC of 0.84, MF1 of 0.82, and k of 0.74. Our
SleepFeatureNet performs an average ACC of 0.86, MF1
of 0.85, and k of 0.80. Our SleepStageNet improves the
performance considerably by taking the average ACC of
0.88, MF1 of 0.87, and k of 0.82. The similar trend was on
the Pz-Oz channel with best performs (ACC of 0.85, MF1
of 0.83, and k of 0.77). In particular, our SleepStageNet
showed a significantly higher ACC (p <0.05) and «
(» <0.05) than those of DeepSleepNet, both on Fpz-Cz
and Pz-Oz channels.
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Sleep staging performance in OSA individuals

In Table 3, we report the extended validation in the OSA
patients by the F4-M1 channel. The results suggest that our
SleepStageNet exhibits the best performance by taking the
average ACC 0f 0.80, MF1 of 0.72, and k of 0.67. As expect-
ed, we realize that by adding the RNN-CRF layer to the base-
line SleepFeatureNet, the performance is improved substan-
tially with 7% increase in ACC, 7% increase in MF1, and
10% increase in k on OSA dataset. Of note, both the
accuracy (ACC) and consistency (k) using our
SleepStageNet have been significantly (p<0.01) im-
proved than the reference model DeepSleepNet. Our per-
formance was comparable to the results of Sun et al. [23]
based on large-scale six-channel EEG data.
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Table 2 Comparison between

our proposed method and other Approach Signal source Overall metrics

sleep staging methods across

accuracy (ACC), macro-fl score ACC MF1

(MF1), and Cohen’s kappa () in

healthy individuals Ref. [7] Actigraphy 0.65% - -
Ref. [8] Cardiorespiratory 0.57+0.13 - 0.71+0.86
Ref. [9] Radio frequency 0.80% - 0.70*
Ref. [10] EEG/Cz-Pz 0.85% - 0.75"
Ref. [10] EEG/Pz-Oz 0.75% - 0.63"
Ref. [11] EEG/Pz-Oz 0.82% - -
DeepSleepNet EEG/Fpz-Cz 0.84+0.08 0.82+0.09 0.74+0.11
SleepFeatureNet EEG/Fpz-Cz 0.86+0.04 0.85+0.05 0.80+£0.06
SleepStageNet EEG/Fpz-Cz 0.88+0.04 0.87+0.04 0.82+0.06
DeepSleepNet EEG/Pz-Oz 0.81+0.07 0.78+0.09 0.70+0.12
SleepFeatureNet EEG/Pz-Oz 0.84+0.03 0.82+0.04 0.76 £0.05
SleepStageNet EEG/Pz-Oz 0.85+0.04 0.83+0.05 0.77+0.06

#Overall metric of the test set

® Three-class classification based on 5-min segment

¢ Data corrected to two decimal places

Compared with the DeepSleepNet, our architecture can re-
duce remarkably parameters and computation from 24.7 M to
0.18 M. Meanwhile, the variances of both the ACC and
results using our model are much smaller, which show that
our method provides more stable performance in sleep staging
task. Moreover, we analyzed the overall performance of our
SleepStageNet for each sleep stage on the test dataset. It is easy
to observe that many misclassifications occur between the
pairs of Deep-Light, Light-REM, and REM-Wake in Fig. 2b,
as is visualized in Fig. 2a using ¢ SNE algorithm [18]. In addi-
tion, we observed that the SleepStageNet can distinguish the
light, deep, and wake stage with high accuracy, about 0.80, and
the accuracy of the REM stage was reasonably low at 0.71.

Effects of contextual information on sleep staging
performance

To further explore the effect of context information, which
was introduced for improving the performance for sleep stag-
ing in this study, we compared the hypnograms predicted by
our models with that of a sleep expert in Fig. 3. Although the

predicted hypnograms look very similar in general, the results
are a bit different in specifics. For instance, the hypnogram
predicted using SleepFeatureNet leads to more oscillations
than that of SleepStageNet at the 2nd to 3rd hours of the
subject’s sleep. Specifically, the true REM and light stages
are prone to be mistakenly scored as wake stage. It can be
observed that the SleepStageNet further improves the accuracy
by taking into account contextual information. Subsequently,
we investigated whether using contextual information can im-
prove sleep staging performance in each subject on the testing
set. As shown in Fig. 4, the stacked bar graph is the values of
kappa for each testing subject on the test dataset. It illustrates
that the contextual information increased (0.01-0.26) the kap-
pa in the most of subjects (23/26), but a slight decrease (<

0.03) in a tiny number of subjects (3/26).

Discussion

In this paper, we proposed an automated sleep staging model,
SleepStageNet, that benefited from both multi-scale feature

Table 3 Comparison between

our proposed method and other Approach Severity AHI/h Test set

sleep stage scoring methods on

the comprehensive dataset that ACC MF1 Parameters

include OSA patients with j

different severity Ref. [23] 1.2-16.2 - - 0.68" -
DeepSleepNet <5 0.75+0.07 0.67+0.12 0.5940.15 247 M
SleepFeatureNet 0.2-109.1 0.73+£0.07 0.65+0.09 0.57+0.10 0.18 M
SleepStageNet 0.2-109.1 0.80+0.05 0.72+0.10 0.67+0.08 0.18 M

2 Overall Cohen’s kappa of the test set
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Fig. 2 The performance of SleepStageNet for each sleep stage. (a) The distribution of the features extracted by SleepFeatureNet form a typical subject.
Axes are in arbitrary units. (b) Confusion matrix of prediction from SleepStageNet on the test dataset

and contextual information. Our model was validated on dif-
ferent single-channel EEGs (Fpz-Cz, Pz-Oz, and F4-M1) and
the OSA patients with different severity. The results suggested
that the SleepStageNet significantly improved the overall per-
formance more than the previous method on average ACC
and kappa (). Furthermore, our proposed model requires a
much less computational cost.
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Intrinsically, scoring sleep stage is a sequence-labeling
task, as sleep technologists have always need to explore not
only temporally local features, but also neighboring epochs.
For instance, scoring stage N2 takes into account whether K
complex or sleep spindles occurs early or in the last half of the
previous epoch [1]. Therefore, we added the RNN-CRF layers
to capture the contextual information of adjacent epochs,
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Fig. 4 The stacked bar graph is the values of kappa for each subject on
the test dataset. The blue represents the results of SleepFeatureNet, and
the orange represents the effect of considering context information on
kappa values. It illustrates that the contextual information increased the
kappa in the most of subjects (23/26), but a slight decrease in a tiny
number of subjects (3/26)

instead of decoding each label independently. Our model con-
siderably improved the overall performance more than the
model based on independent epochs, as shown in Table 2
and Table 3. Moreover, we found that the majority of misclas-
sifications between the pairs of deep-light and REM-wake
were substantially improved. This improvement might well
be due to our network learning the difference of transition
probability matrices of sleep stages, as outlined in [14, 24].
For instance, if the current epoch is the REM stage, the next
frame is most likely REM stage, but it is unlikely to be deep
sleep. In Fig. 2, for our SleepStageNet, the true REM instances
were prone to be mistakenly scored as light stages. Also, there
is no way to distinguish N1 and N2 using our method, due to
combining N1 and N2 sleep into a single stage, light sleep. In
particular, the limitations could be improved by
supplementing information about EMG and EOG [25]. We
also found that, as mentioned by Sun et al. [23], a few subjects
on the entire OSA dataset considering context information
lead to a slight drop (< 0.03) of kappa. The different pheno-
type is likely due to individual differences such as age, BMI.
There is a reason to believe that with the richness of patient
data, the result will be improved.

There are two aspects that help us build efficient models.
Firstly, we discarded extraneous information such as eliminat-
ing power frequency (50 or 60 Hz) and baseline wander,
which could reduce task complexity. Secondly, our multi-
scale CNN architecture controlled the trade-off between tem-
poral and spatial resolution in the feature extraction process,
and this is especially suitable for sleep staging tasks with
significant differences in frequency and local characteristics.

For future potential clinical applications, our work could be
furtherly improved in the following aspects. Firstly, our model

could augment the performance of recently emerging portable
sleep monitors with frontal EEG channels. Secondly, this
model needs to prompt the predicted sleep stage that has low
confidence or was changed by contextual information and
allows sleep technologists to determine manually.

Conclusion

Based on single-channel EEG, we proposed a fully automated
sleep staging model, SleepStageNet, which combines multi-
scale feature and contextual information. The sleep staging
results suggested that the SleepStageNet could achieve supe-
rior overall performance on different levels of OSA patients
with much less computational cost. We suggest this techno-
logical advancement could augment the current use of home
sleep apnea testing.
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Appendix
1. Architecture of SleepFeatureNet

As demonstrated in Fig. 1, the SleepFeatureNet consists
of four convolutional layers and a gated recurrent neural
network layer (GRU). Its structure is briefly described from
bottom to top, in which each 30-s EEG epoch is the input of
the model. Each convolutional layer sequentially executes
three operations: convolution with its filters, batch normal-
ization, and using the rectified linear unit activation. Each
pooling layer performed a down-sampling operation along
the spatial dimensions (width, height). The specifications of
the number of filters, the filter sizes and pooling operation
and sizes are described in Fig. 1. Each “conv” block shows
the number of filters, a filter size. Each “pool” block shows
a pooling operation and size. The above stride size is fixed
at one. Importantly, the multi-scale convolutions in the sec-
ond and third convolutional layers provide a more efficient
contribution for capturing the temporal-spatial characteris-
tics of single-channel EEG signals in each 30 s. Then, we
concatenated the outputs of the previous layer by a
“concatenate” layer that takes a list of vectors as the input
and simply outputs the concatenation of the vectors. The
output activations of the last convolutional layer are further
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resized by “reshape” layer, and the reshaped active outputs
then are fed into a following gated recurrent unit (GRU) to
summarize the local features.

2. Technical details of CRF

The input of the CRF layer is a sequence of hidden states
7=1421, 20, ..., 2} (Where i is ith epoch, n =15), while the cor-
responding sleep stage sequence is y = {y1, V2, ..., Vu}- Y(2),
which represents the set of possible sleep stage sequences
for z.

The conditional probability p(y| z; w, b) over all possible
sleep stage sequence y given z is described as the following
form:

ﬁwi(yi—layiaz>
pOlzw, b) = —= (1)
) _Hi/fi()/i—l,y/i,z)
Ve (z)i=1

Where ¥y, v, z) = exp(wryv .Zi+ by ) are the potential func-
tions, w', ,z;and b, _, are the weight and bias corresponding
to sleep stage pair (v, ), respectively.

The maximum conditional likelihood estimation is used for
CREF training. For a training set {(z;, y;)}, the log-likelihood is
given by:

L(w,b) = > logp(y|z; w, b) 2)

Decoding in CRF is to search for the sleep stage sequence j»
with the highest conditional probability:

y = argmax p(y|z; w, b) 3)
yeY(2)

In this work, the CRF training and decoding were solved
efficiently by adopting the Viterbi algorithm [26].

3. Model training and evaluation

Our training process consists of two steps. The first step is
to train the SleepFeatureNet part independently. Explicitly, the
“GRU-RNN? layer is followed by a softmax layer (see Fig. 2)
for supervised training. Here, the parameter optimization is
performed with stochastic gradient descent (SGD) with an
initial learning rate of 103, a fixed momentum value of 0.9
and a mini-batch size of 64. Besides, we add a dropout layer
[27] with a fixed dropout rate at 0.5 before connecting the
softmax layer to help prevent over-fitting problems. The pop-
ular cross-entropy loss is applied to train the model to output
probabilities for mutually exclusive classes. The second step
is to train the SleepStageNet model with a sequential training
set. Precisely, as a feature extractor, the sub-model
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SleepFeatureNet is frozen using the best parameters in the first
step. In our training procedure, the sequences of 30-s EEG
epochs from each subject data were split into sub-sequences
of length 5, then we fed 10 sub-sequences per one training,
and the optimized parameters of SGD were identical to the
first step. For each step, our models were trained for up to 30
iterations and chose the best performing one on validation
sets. Our proposed model was implemented using Keras with
TensorFlow as an underlying computation engine. All exper-
iments were performed on a computer with one 2.5 GHz Intel
Core™ processor and one NVIDIA GPU (GTX 1080).

We evaluated our model using 20-fold cross-validation for
each EEG channel on Sleep-EDF dataset. For each fold, we
used the recordings from one subject for testing and the re-
maining recordings of 19 subjects for training model. The
predicted sleep stages from all folds were combined to com-
pute the overall performance. For a fair comparison, the ref-
erence model DeepSleepNet and dataset described in [13]
were unchanged except the corresponding labels were merged
into the four sleep stages (wake, light, deep, and REM). Our
OSA dataset is a relatively large data set, including 104 OSA
patients with different severity, which has 96,580 30-s epochs.
We randomly split 66 subjects as the training set (12 normal,
18 mild, 12 moderate, and 24 severe), 12 subjects as verifica-
tion set (4 normal, 2 mild, 2 moderate, and 4 severe), and 26
subjects as testing set (6 normal, 4 mild, 5 moderate, and 11
severe). Finally, the performances recorded in all subjects on
the test set were averaged and considered as the overall per-
formance of different models.

References

1. Berry RB, Brooks R, Gamaldo CE, Harding SM, Marcus CL,
Vaughn BV (2012) The AASM manual for the scoring of sleep
and associated events. Rules, terminology and technical specifica-
tions. American Academy of Sleep Medicine, Darien

2. Jordan AS, Mcsharry DG, Malhotra A (2014) Adult obstructive
sleep apnoea. Lancet 383(9918):736-747

3. Senaratna CV, Perret JL, Lodge C, Lowe A, Campbell BE,
Matheson MC, Hamilton GSAP, Dharmage SC (2016)
Prevalence of obstructive sleep apnea in the general population: a
systematic review. Sleep Med Rev 34:70-81. https://doi.org/10.
1016/j.smrv.2016.07.002

4. Lam B, Lam DCL, Ip MSM (2007) Obstructive sleep apnoea in
Asia. Int J Tuberc Lung Dis 11(1):2-11

5. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM
(2013) Increased prevalence of sleep-disordered breathing in adults.
Am J Epidemiol 177(9):1006—1014. https://doi.org/10.1093/aje/
kws342

6. Drinnan MJ, Murray A, Griffiths CJ, Gibson GJ (1998)
Interobserver variability in recognizing arousal in respiratory sleep
disorders. Am J Respir Crit Care Med 158(158):358-362

7. Gu W, Yang Z, Shangguan L, Sun W, Jin K, Liu Y (2014)
Intelligent sleep stage mining service with smartphones. In
Proceedings of the 2014 ACM international Joint Conference on
pervasive and ubiquitous Computing (pp. 649-660). ACM


https://doi.org/10.1016/j.smrv.2016.07.002
https://doi.org/10.1016/j.smrv.2016.07.002
https://doi.org/10.1093/aje/kws342
https://doi.org/10.1093/aje/kws342

Sleep Breath (2019) 23:1159-1167

1167

10.

11.

13.

14.

15.

16.

Tataraidze A, Korostovtseva L, Anishchenko L, Bochkarev M,
Sviryaev Y (2016) Sleep architecture measurement based on car-
diorespiratory parameters. In Engineering in Medicine and Biology
Society (EMBC), 2016 IEEE 38th annual international conference
of the (pp. 3478-3481) IEEE

Zhao M, Yue S, Katabi D, Jaakkola TS, Bianchi MT (2017).
Learning sleep stages from radio signals: a conditional adversarial
architecture. In International conference on machine learning (pp.
4100-4109)

Berthomier C, Drouot X, Herman-Stoica M, Berthomier P, Prado J,
Bokar-Thire D, Benoit O, Mattout J, D'Ortho M (2007) Automatic
analysis of single-channel sleep EEG: validation in healthy individ-
uals. Sleep 30(11):1587-1595. https://doi.org/10.1093/sleep/30.11.
1587

Ronzhina M, Janou$ek O, Kolafova J, Novakova M, Honzik P,
Provaznik 1 (2012) Sleep scoring using artificial neural networks.
Sleep Med Rev 16(3):251-263. https://doi.org/10.1016/j.smrv.
2011.06.003

Biswal S, Kulas J, Sun H, Goparaju B, Westover MB, Bianchi MT,
Sun J (2017) SLEEPNET: automated sleep staging system via deep
learning. arXiv preprint arXiv:1707.08262

Supratak A, Dong H, Wu C, Guo Y (2017) DeepSleepNet: a model
for automatic sleep stage scoring based on raw single-channel EEG.
IEEE Trans Neural Syst Rehabil Eng 25(11):1998-2008. https:/
doi.org/10.1109/TNSRE.2017.2721116

Kim JW, Lee JS, Robinson PA, Jeong DU (2009) Markov analysis
of sleep dynamics. Phys Rev Lett 102(17):178104. https://doi.org/
10.1103/PhysRevLett.102.178104

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D,
Rabinovich A (2015) Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 1-9)

Lafferty JD, Mccallum A, Pereira FCN (2001) Conditional random
fields: probabilistic models for segmenting and labeling sequence
data. Proceedings of Icml 3(2):282-289

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Ekbal A, Bandyopadhyay S (2008) Part of speech tagging in
bengali using support vector machine. In Information technol-
ogy, 2008. ICIT’08. International conference on (pp. 106—
111). IEEE

Maaten LVD, Hinton G (2008) Visualizing data using t-SNE. J
Mach Learn Res 9(Nov):2579-2605

Rechtschaffen A (1968) A manual of standardized terminology,
technique and scoring system for sleep stages of human subjects.
Public Health Service

Zhou GB, WuJ, Zhang CL, Zhou ZH (2016) Minimal gated unit for
recurrent neural networks. Int J Autom Comput 13(3):226-234
Sasaki Y (2007) The truth of the F-measure. Teach Tutor Mater
1(5):1-5

Cohen J (1960) A coefticient of agreement for nominal scales. Educ
Psychol Meas 20(1):37-46

Sun H, Jia J, Goparaju B, Huang GB, Sourina O, Bianchi MT,
Westover MB (2017) Large-scale automated sleep staging. Sleep
40(10). https://doi.org/10.1093/sleep/zsx 139

Schlemmer A, Parlitz U, Luther S, Wessel N, Penzel T (2015)
Changes of sleep-stage transitions due to ageing and sleep disorder.
Philos Top 373(2034). https://doi.org/10.1098/rsta.2014.0093
Estrada E, Nazeran H, Barragan J, Burk JR, Lucas EA, Behbehani
K (2006) EOG and EMG: two important switches in automatic
sleep stage classification. Conf Proc IEEE Eng Med Biol Soc 1:
2458-2461. https://doi.org/10.1109/IEMBS.2006.260075

Forney GDJ (1993) The viterbi algorithm. Proc IEEE 61(5):268—
278

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov
R (2014) Dropout: a simple way to prevent neural networks from
overfitting. ] Mach Learn Res 15(1):1929-1958

Publisher’s note  Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.1093/sleep/30.11.1587
https://doi.org/10.1093/sleep/30.11.1587
https://doi.org/10.1016/j.smrv.2011.06.003
https://doi.org/10.1016/j.smrv.2011.06.003
https://doi.org/10.1109/TNSRE.2017.2721116
https://doi.org/10.1109/TNSRE.2017.2721116
https://doi.org/10.1103/PhysRevLett.102.178104
https://doi.org/10.1103/PhysRevLett.102.178104
https://doi.org/10.1093/sleep/zsx139
https://doi.org/10.1098/rsta.2014.0093
https://doi.org/10.1109/IEMBS.2006.260075

	Sleep staging from single-channel EEG with multi-scale feature and contextual information
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Material and methods
	Dataset and preprocessing
	Model structure
	Evaluation metrics
	Performance analysis

	Results
	Sleep staging performance in healthy individuals
	Sleep staging performance in OSA individuals
	Effects of contextual information on sleep staging performance

	Discussion
	Conclusion
	Appendix
	References




