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Sleep apnea and galectin-3: possible sex-specific relationship
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Abstract
Purpose Sleep apnea is associated with increased risk of cardiovascular disease. Elevated plasma galectin-3 levels, a biomarker
associated with myocardial fibrosis, are also associated with adverse cardiovascular events, including heart failure. Our objective
was to determine the relationship between severity of sleep apnea and plasma levels of galectin-3 and to determine whether this
relationship was modified by sex.
Methods We performed a cross-sectional study of 471 Mexican Americans from Starr County, TXwho underwent an overnight,
in-home sleep evaluation, and plasma measurement of galectin-3. Severity of sleep apnea was based on apnea hypopnea index
(AHI). Multivariable linear regression modeling was used to determine the association between categories of sleep apnea and
galectin-3. We also tested for interactions by sex.
Results The mean age was 53 years, and 74% of the cohort was female. The prevalence of moderate to severe sleep apnea
(AHI > 15 apnea–hypopnea events per hour) was 36.7%. Moderate to severe sleep apnea was associated with increased levels of
galectin-3 in the entire population, but we identified a statistically significant interaction between galectin-3 levels and category
of sleep apnea by sex (p for interaction = 0.02). Plasma galectin levels were significantly higher in women with moderate or
severe sleep apnea than women with no/mild sleep apnea (multivariable adjusted p < 0.001), but not in men (p = 0.5).
Conclusions Sleep apnea is associated elevated galectin-3 levels in women but not men. Our findings highlight a possible sex-
specific relationship between sleep apnea and galectin-3, a biomarker of potential myocardial fibrosis that has been associated
with increased cardiovascular risk.

Keywords Sleep apnea . Galectin-3 . High-sensitivity troponin

Abbreviations
AHI Apnea hypopnea index
CPAP Continuous positive airway pressure
ODI Oxygen desaturation index

T90 Time spent (minutes) below nocturnal oxygen
saturation of 90%

hsTnT High-sensitivity troponin-T
NT-proBNP N-terminal pro-B-type natriuretic peptide

Introduction

Galectin-3 is a beta-galactoside binding lecithin protein that is
expressed in several cell types including inflammatory cells,
epithelial cells, and fibroblasts and is involved in important
regulatory roles in adhesion, inflammation, immunity, and
fibrosis [1, 2]. Galectin-3 functions as a paracrine signal that
leads to macrophage and fibroblast proliferation and the de-
velopment of fibrosis [3]. Elevated plasma levels of galectin-3
are associated with increased risk of total mortality and mor-
tality secondary to cardiovascular disease and incident heart
failure in the general population [4–8]. Similarly, sleep apnea
is associated with an increased risk of cardiovascular disease,
including atrial fibrillation, coronary artery disease, and heart
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failure [9–12]. Although sleep apnea has been associated with
increased levels of other biomarkers of cardiac injury and
hemodynamic stress [13–16], the relationship between sever-
ity of sleep apnea and galectin-3 has not been well studied.We
sought to investigate the relationship between sleep apnea and
plasma levels of galectin-3 in a Mexican American popula-
tion, a group with a high prevalence of obstructive sleep apnea
[17]. In addition, we investigated whether the relationship
between galectin-3 and sleep apnea was modified by sex, as
previous studies have suggested potential sex-specific differ-
ences in the relationship between sleep apnea and cardiovas-
cular disease [11, 14, 18].

Methods

The cohort for this study included 471 individuals from Starr
County, Texas. Starr County is a Texas county located on the
border ofMexico, and 96% of residents are Hispanic/Latino in
origin [19]. All individuals in this study were classified as
Mexican American. The cohort represents a subgroup of
1200 individuals from a recent study exploring the genetic
underpinnings of sleep apnea and arterial stiffness [20]. The
larger cohort of 1200 individuals was examinedwith the intent
of sampling equal number of individuals with and without
type 2 diabetes. We measured galectin-3 in the first 526 indi-
viduals that were enrolled in the study. Of these 526 individ-
uals, 471 had sleep evaluations performed, and this group
represents the population for our analyses. All aspects of the
protocol were approved by the institutional review boards at
participating institutions, and informed consent was obtained
from all participants.

Examinations in the research center were performed in the
morning after an overnight fast. The examination included
medical and medication history, anthropometric measure-
ments, glucose, hemoglobin A1c (point of care analyzer,
DCAVantage Analyzer, Siemens, Malvern, PA), and oral glu-
cose tolerance testing in individuals not previously known to
have diabetes. Blood pressure was measured three times fol-
lowing a 5-min sitting rest using an automated device
(Critikon Dinamap Model 1846SX, Tampa, FL) with the av-
erage of the second and third values used as the final mea-
sures. Hypertension was defined as a history of hypertension,
taking an antihypertensive medication, or a blood pressure >
140/90. Examinations occurred between December 2010 and
January 2014.

All participants underwent an overnight, in-home sleep ap-
nea evaluation. The sleep study was performed using the
WatchPat 2000 monitor (Itamar Medical, Caesarea, Israel),
an American Academy of Sleep Medicine approved type 3
monitor that provides a validated estimate of the Apnea
Hypopnea Index (AHI) using information from digital periph-
eral arterial tonometry, finger pulse oximetry, and movement

[21]. Snoring and body position were also recorded. The se-
verity of sleep apnea was defined by using conventional clin-
ical categories: none (AHI ≤ 5 apnea–hypopnea events per
hour), mild (AHI > 5 to ≤ 15 apnea–hypopnea events per
hour), moderate (AHI > 15 to ≤ 30 apnea–hypopnea events
per hour), and severe (AHI > 30 apnea–hypopnea events per
hour). Oxygen desaturation index (ODI) and the total time a
person had nocturnal oxygen saturation below 90% (T90)
were also recorded. The ODI is the number of oxygen
desaturation events (4% minimum desaturation) per estimate
hour of sleep.

Biomarkers were measured at the Baylor College of
Medicine Atherosclerosis Clinical Research Laboratory.
Galectin-3 was measured using a chemiluminescent micropar-
ticle immunoassay on an Architect i 2000 sr instrument
(Abbott, Abbott Park, IL) in EDTA-plasma. The Architect
galectin-3 assay has a limit of detection of 1.1 ng/mL and a
limit of quantitation of 4.0 ng/mL. Inter-assay coefficients of
variation were 5.2%, 3.3%, and 2.3% at mean galectin-3 levels
of 8.8 ng/mL, 19.2 ng/mL, and 72.0 ng/mL, respectively.

In addition, we also measured high-sensitivity troponin-T
(hsTnT), a biomarker of myocardial injury [22, 23], and N-
terminal pro-B-type natriuretic peptide (NT-proBNP), a bio-
marker of hemodynamic stress and neurohormonal activation
[24–26]. High-sensitivity troponin T was measured using a
highly sensitive (precommercial) sandwich immunoassay
method (Roche Elecsys T, Roche Diagnostic, Indianapolis,
IN). The lower limit of blank for the hsTnT is 3.0 ng/L, and
the limit of detection is 5.0 ng/L as reported previously (Roche
Diagnostics, Indianapolis, IN) [22]. NT-proBNP was mea-
sured by using an electrochemiluminescent immunoassay on
an automated Cobas e411 analyzer.

Baseline characteristics for the study population were tab-
ulated by grouping individuals into categories of sleep apnea
severity. Given the limited sample size in subcategories, sleep
apnea was subsequently categorized into two clinically rele-
vant groups: no/mild sleep apnea (AHI < 15) and moderate/
severe sleep apnea (AHI > 15). Continuous variables were
presented as means with standard deviations or median with
25th and 75th percentiles. Categorical variables were present-
ed as percentages. Differences in baseline variables were
ascertained using chi-square tests for categorical variables
and t test for continuous variables and Kruskal–Wallis tests
for non-normal variables. Correlations between galectin-3 and
continuous measures of severity of sleep apnea were per-
formed with Spearman correlation coefficients. Linear regres-
sion models were created to determine the relationship be-
tween galectin-3 and the categories of sleep apnea. The model
was adjusted for age, sex, body mass index (BMI), waist cir-
cumference, hypertension status, smoking status, diabetes sta-
tus, and history of cardiovascular disease. Because of non-
normality, galectin-3 was natural log (ln) transformed for
model analyses. We tested for sex-galectin interaction by
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adding an interaction term into the adjusted linear regression
model. Because hs-TnT varies by sex, we used sex-specific
cut-points to define elevated hsTnT levels as a categorical
variable (≥ 14 ng/L for males and ≥ 8 ng/L for females) [14].
Logistic regression models were used to assess the relation-
ship between elevated hsTnT levels and categories of sleep
apnea, as hsTnT could not be transformed into a normal dis-
tribution. NT-proBNP levels were ln-transformed for
analyses.

Analyses were performed with STATA/IC version 12.1
(StataCorp). All tests were two-tailed with a p value < 0.05
considered as statistically significant.

Results

The analytical sample consisted of a total of 471 participants.
The median age was 53 years, and 74% were female. The
prevalence of mild, moderate, and severe obstructive sleep
apnea was 32.3%, 20.6%, and 16.1%, respectively. Baseline
characteristics for the study population by categories of sleep
apnea are detailed in Table 1. Individuals with moderate to
severe sleep apnea were older, more often male, had a higher
BMI, higher waist circumference, higher systolic blood pres-
sure, and a higher prevalence of cardiovascular disease.
Diabetes prevalence, hemoglobin A1c, and fasting glucose
were higher in those with sleep apnea. The percentage of
individuals with detectable hsTnT, median levels of hsTnT,
and the proportion of individuals with elevated hsTnT levels
increased with increasing severity of sleep apnea. No associ-
ation was noted amongst severity of sleep apnea and NT-
proBNP levels.

The median galectin-3 concentration increased with in-
creasing severity of sleep apnea in the total population
(Table 1). Utilizing two clinically relevant categories of sleep
apnea, the median galectin-3 concentration was higher in
those with moderate/severe sleep apnea (7.63 ng/mL, 25th–
75th percentiles 6.10, 8.84) compared to those with no/mild
sleep apnea (6.53 ng/mL, 25th–75th percentiles 5.35, 7.57 ng/
mL). In multivariable linear regression models for the entire
population, moderate/severe sleep apnea was associated with
increased levels of ln-galectin-3 in models adjusted for age,
bodymass index, waist circumference, hypertension, smoking
status, diabetes mellitus, and history of cardiovascular disease
(ß-coefficient 0.077, p = 0.015). When we tested for interac-
tion by sex in full models, we found a statistically significant
interaction between sex and categories of sleep apnea (p for
interaction = 0.02). Therefore, we subsequently performed
sex-specific analyses.

Baseline characteristics by categories of sleep apnea (no/
mild sleep apnea and moderate/severe sleep apnea) and sex
are shown in Table 2. A total of 351 women were enrolled in
the study, and 116 (33%) had moderate to severe sleep apnea.

Women with moderate to severe sleep apnea were more likely
to be older, have a higher BMI, and have a history of hyper-
tension, diabetes, and cardiovascular disease. Plasma galectin
levels were significantly higher in women with moderate or
severe sleep apnea (median galectin-3 levels 7.73 ng/mL,
25th–75th percentiles 6.46–9.19 ng/mL) than women with
no/mild sleep apnea (median galectin-3 levels 6.29 ng/mL,
25th–75th percentiles 5.45–7.39 ng/mL, p < 0.001) (Table 2;
Fig. 1). Spearman correlation coefficients for continuous mea-
sures of severity of sleep apnea and plasma galectin-3 levels
are shown in Table 3.

The relationship between ln-galectin-3 and moderate/
severe sleep apnea remained significant after adjusting for
age, BMI, waist circumference, hypertension, smoking status,
diabetes mellitus, and history of cardiovascular disease (ß-co-
efficient moderate/severe sleep apnea 0.14, p < 0.001). In fully
adjusted multivariable model utilizing quartiles of ODI, wom-
enwith the highest ODI quartile (> 13.9 hypoxic events/h) had
increased levels of ln-galectin-3 compared to the lowest quar-
tile (< 1.6 hypoxic events per hour) (ß-coefficient Q4 vs Q1
0.11, p = 0.03). The relationship between quartiles of time
spent below a nocturnal oxygen saturation less than 90%
and ln-galectin-3 levels was not statistically significant in
women after adjustments in multivariable models (data not
shown).

Women with moderate to severe obstructive sleep apnea
also had higher levels of detectable, median hs-TnT, and ele-
vated hs-TnT levels compared to women with mild or no
obstructive sleep apnea (Table 2). The relationship between
sleep apnea and elevated hsTnTwas no longer significant after
adjustment for age (p = 0.22) or in fully adjusted models (p =
0.57). In unadjusted analyses, median NT-proBNP levels were
higher in women with moderate to severe sleep apnea com-
pared to women with mild or no sleep apnea (p = 0.046), but
this was no longer significant after adjustments for age (p =
0.41) or fully adjusted models (p = 0.6). In exploratory analy-
sis, the relationship between ln-galectin-3 and moderate to
severe sleep apnea in women remained statistically significant
when NT-proBNP was added to the fully adjusted multivari-
able model (p = 0.001).

A total of 120 men were enrolled in the study. There was no
statistical difference in age, hypertension status, or history of
cardiovascular disease or diabetes in men with moderate to
severe sleep apnea compared to men who had no or mild sleep
apnea. Men with moderate to severe sleep apnea had a higher
BMI than those with mild or no sleep apnea. In men, the
median plasma galectin level was similar between those with
moderate/severe sleep apnea (median galectin-3 levels
6.55 ng/mL, 25th–75th percentiles 5.23–8.33 ng/mL) and
those with mild/no sleep apnea (median galectin-3 levels
6.62 ng/mL, 25th–75th percentiles 5.11–7.81 ng/mL, p =
0.86) (Table 2; Fig. 1). Similarly, in multivariable models,
there was no statistically significant relationship between ln-
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galectin-3 levels and categories of sleep apnea (β-coefficient
moderate/severe sleep apnea −0.04, p = 0.5). No significant
correlations were identified for other continuous measures of
severity of sleep apnea and plasma galectin-3 levels in men
(Table 3). There was also no significant association between
severity of obstructive sleep apnea and median troponin or
NT-pro-BNP levels (Table 2).

Discussion

In this community-based cohort of Mexican Americans from
Starr County, Texas, we demonstrate a relationship between
moderate/severe sleep apnea and elevated galectin-3 levels.
Elevated plasma levels of galectin-3, a beta-galactoside-
binding lecithin, have been associated with increased risk of
heart failure and mortality in multiple epidemiologic studies in
the general population [4–8]. Galectin-3 functions as a para-
crine signal that is secreted in the bloodstream and directly in
the extracellular matrix and leads to macrophage and fibroblast
proliferation and the development of fibrosis. Galectin-3 has
been shown to be a mediator of aldosterone-induced vascular
fibrosis [27]. In a heart failure-prone rat model, upregulation of
myocardial galectin-3 is seen early in the development of left

ventricular hypertrophy and is increased in rats developing
heart failure [3]. A potential causal role of galectin-3 is further
supported by animal studies where administration of galectin-3
results in myocardial fibrosis and heart failure [3], while phar-
macologic or genetic disruption of galectin-3 attenuates myo-
cardial fibrosis and alleviates cardiac dysfunction [28, 29].

Sleep apnea is associated with an increased risk of arterial
hypertension, atrial fibrillation, coronary artery disease, and
heart failure [9–12, 30]. Similarly, sleep apnea has been associ-
ated with cardiac structural changes including left atrial enlarge-
ment and abnormalities of diastolic function that may predispose
to development of atrial fibrillation and heart failure [31, 32].
Mechanisms behind sleep apnea-associated cardiovascular dis-
ease are thought to be related to intermittent hypoxia, increased
sympathetic activity, increased ventricular afterload, inflamma-
tion, oxidative stress, and endothelial dysfunction [12, 33, 34].
Our study implicates a potential role of galectin-3 and myocar-
dial fibrosis in the cardiovascular dysfunction associated with
obstructive sleep apnea. These findings are consistent with ani-
mal studies that have demonstrated that intermittent hypoxia is
associated with myocardial fibrosis [35, 36].

Importantly, we demonstrate a possible novel sex-specific
association between galectin-3 and sleep apnea, with the rela-
tionship between moderate to severe sleep apnea and galectin-

Table 1 Baseline characteristics for the cohort and by categories of sleep apnea

Baseline characteristics Entire cohort
(n = 471)

No sleep apnea
(n = 146)

Mild sleep
apnea (n = 152)

Moderate sleep
apnea (n = 97)

Severe sleep
apnea (n = 76)

P value

Age (years) 53 ± 11.5 50.0 ± 11.0 54.1 ± 10.7 56.5 ± 10.7 57.9 ± 10.3 < 0.001

Female sex (%) 351 (74.5) 125 (85.6) 110 (72.4) 68 (70.1) 48 (63.2) 0.001

BMI (kg/m2) 32.1 ± 6.7 29.0 ± 5.1 31.9 ± 5.9 33.8 ± 6.7 36.6 ± 7.6 < 0.001

Waist circumference (cm) 104.4 ± 15.3 95.8 ± 12.0 104.4 ± 13.8 109.2 ± 15.3 114.8 ± 15.2 < 0.001

SBP (mm Hg) 129 ± 21 120 ± 19 131 ± 21 132 ± 22 136 ± 20 < 0.001

Hypertension (%) 278 (59.0) 51 (34.9) 93 (61.2) 75 (77.3) 59 (77.6) < 0.001

History of CVD (%) 54 (11.5) 9 (6.2) 16 (10.5) 16 (16.5) 13 (17.1) 0.03

Current smoker (%) 66 (14.0) 23 (15.8) 19 (12.5) 12 (12.5) 12 (15.8) 0.08

Diabetes (%) 225 (47.8) 40 (27.4) 76 (50.0) 56 (57.7) 53 (69.7) < 0.001

HbA1c (%) 6.6 ± 1.8 5.9 ± 1.4 6.7 ± 1.8 7.0 ± 2.0 7.3 ± 2.0 < 0.001

Fasting glucose (mg/dL) 129 ± 54.2 115 ± 47.0 134 ± 54.1 131 ± 56.7 147 ± 58.0 0.0002

Median AHI (25th, 75th) 9.8 (3.8, 20.5) 2.2 (0.7, 3.4) 9.1 (6.9, 11.6) 19.8 (17.4, 23.6) 42.6 (35.5, 53.7) < 0.001

Median ODI (25th, 75th) 5.3 (1.4, 12.2) 0.8 (0.3, 1.4) 5 (3.1, 6.3) 12 (9.4, 15.5) 31.1 (22.7, 44.6) < 0.001

Median T90 (min) (25th, 75th) 4.7 (0, 4.7) 0 0.3 (0, 1.2) 4.4 (1.4, 9.8) 21.4 (8.0, 46.7) < 0.001

Median galectin-3 (ng/mL) (25th, 75th) 6.7 (5.5, 8.0) 6.2 (5.3, 7.3) 6.5 (5.5, 7.7) 7.4 (6.1, 8.8) 7.3 (5.9, 8.8) < 0.001

Detectable hsTnT (%) 56.7 33.6 59.9 65.0 83.1 < 0.001

Median hsTnT (ng/L) 5 (1, 9) 3 (1, 6) 6 (1, 9) 6 (4, 10) 8 (6, 12.5) < 0.001

Elevated hsTnT (%) 122 (25.9) 20 (13.7) 40 (26.3) 32 (33.0) 30 (39.5) < 0.001

Median NT-Pro-BNP, (pg/mL) (25th,75th) 59.2 (34.8, 114) 54.6 (34.8, 83.6) 60.9 (37.5, 131) 63.1 (32.6, 115) 76.2 (32.2, 133) 0.23

Data are presented as mean ± SD, median (25th, 75th percentiles), or percentage

BMI body mass index, SBP systolic blood pressure, CVD cardiovascular disease, AHI apnea hypopnea index, ODI oxygen desaturation index, T90 the
total time a person had nocturnal oxygen saturation below 90%, hsTnT high-sensitivity troponin T,NT-proBNPN-terminal pro-B-type natriuretic peptide

*Elevated hsTnT: ≥ 14 ng/L for men or ≥ 8 ng/L for women
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3 being present in women, but not in men. While multiple
epidemiologic studies have demonstrated that sleep apnea is

associated with abnormalities of cardiac structure and in-
creased risk of cardiovascular disease, including coronary

Table 2 Baseline characteristics by sex and category of sleep apnea

Baseline characteristics Female (n = 351) Male (n = 120)

No/mild sleep
apnea (n = 235)

Mod/severe sleep
apnea (n = 116)

p value No/mild sleep
apnea (n = 63)

Mod/severe sleep
apnea (n = 57)

p value

Age (years) 49.6 ± 10.9 57.2 ± 10.9 < 0.001 54.3 ± 12.5 56.8 ± 9.9 0.24

BMI (kg/m2) 30.7 ± 6.0 36.0 ± 7.4 < 0.001 29.7 ± 4.5 33.1 ± 6.5 0.001

Waist circumference (cm) 99.1 ± 13.7 111.8 ± 16.1 < 0.001 104.5 ± 12.6 111.4 ± 14.3 0.006

SBP (mm Hg) 122 ± 19 133 ± 23 < 0.001 138 ± 22 137 ± 18 0.81

Hypertension (%) 102 (43.4) 91 (78.5) < 0.001 42 (66.7) 43 (75.4) 0.29

History of CVD (%) 14 (6.0) 16 (13.8) 0.01 11 (17.5) 13 (22.8) 0.47

Current smoker (%) 30 (12.8) 8 (6.9) 0.25 12 (19.1) 16 (28.6) 0.21

Diabetes (%) 75 (31.9) 73 (62.9) < 0.001 41 (65.1) 36 (63.2) 0.97

HbA1c (%) 6.1 ± 1.5 7.3 ± 2.1 < 0.001 7.1 ± 2.0 6.8 ± 1.7 0.29

Fasting glucose (mg/dL) 116 ± 44.5 140 ± 59.9 < 0.001 154 ± 63.8 135 ± 53.2 0.08

Median AHI (25th, 75th) 4.3 (1.7, 8.7) 24.9 (18.8, 40.1) < 0.001 7.3 (3.8, 10.9) 29.1 (18.1, 40) < 0.001

Median ODI (25th, 75th) 1.7 (0.7, 4.6) 16.4 (11.1, 28.6) < 0.001 3.1 (1.5, 5.6) 19.8 (11.2, 32.4) < 0.001

Median T90 (min) (25th,75th) 0 (0, 0.3) 8.7 (2.2, 19.3) < 0.001 0.1 (0, 0.6) 8.1 (2.5, 26.5) < 0.001

Median galectin-3 (ng/mL) (25th, 75th) 6.29 (5.45, 7.39) 7.73 (6.46, 9.19) < 0.001 6.62 (5.11, 7.81) 6.55 (5.23, 8.33) 0.86

Detectable hsTnT (%) 96 (40.9) 78 (67.3) < 0.001 44 (69.8) 49 (86.0) 0.04

Median hsTnT (ng/L) 4 (1, 7) 6 (4, 9.5) < 0.001 8 (4. 12) 9 (6, 15) 0.13

Elevated hsTnT* 46 (19.6) 44 (37.9) < 0.001 14 (22.2) 18 (31.6) 0.25

Median NT-Pro-BNP (pg/mL) (25th, 75th) 58.8 (38.3, 91.7) 78.5 (38.8, 126) 0.046 44.5 (27.5, 132) 47.8 (19.4, 127) 0.33

Data are presented as mean ± SD, median (25th, 75th percentile), or percentage

BMI body mass index, SBP systolic blood pressure, CVD cardiovascular disease, AHI apnea hypopnea index, ODI oxygen desaturation index, T90 the
total time a person had nocturnal oxygen saturation below 90, hsTnT high-sensitivity troponin T, NT-proBNP N-terminal pro-B-type natriuretic peptide

*Elevated hsTnT: ≥ 14 ng/L for men or ≥ 8 ng/L for women

Fig. 1 Plasma galectin-3 levels
by sleep apnea categories. Data
are median (interquartile range)
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artery disease, atrial fibrillation, and heart failure, some studies
have suggested that the adverse cardiovascular consequences
of sleep apnea may be particularly relevant to women [13, 18].
For example, in a community-based cohort of 1645 individ-
uals, obstructive sleep apnea was associated with higher levels
of hsTnT in women, but not in men [14]. Furthermore, in the
same community-based sample, obstructive sleep apnea was
associated with left ventricular hypertrophy and incident heart
failure in women but not men [14]. Despite these studies, not
all studies have been consistent, as others have demonstrated
stronger associations with mortality [37] and incident HF [11]
in men with sleep apnea compared to women. In our study,
hsTnT levels were increased in women with moderate to se-
vere sleep apnea compared to those with no or mild sleep
apnea, but this relationship did not persist after adjustments
for baseline characteristics, which may be related to our small-
er sample size or differences in baseline characteristics be-
tween studies. Future work is needed to confirm our findings
and to understand the mechanisms contributing to potential
sex differences in the relationship between sleep apnea and
cardiovascular disease. Studies have suggested that women
with sleep apnea may have more endothelial dysfunction
[38], potential microvascular abnormalities [39], and abnor-
malities of autonomic function [40]. Whether these or other
pathways could contribute to increased markers of fibrosis
remains unclear and deserves further work. A recent trial re-
ported that treatment with continuous positive airway pressure
did not lower the risk of serious cardiovascular outcomes in
2717 non-sleepy patients with previously established moder-
ate to severe obstructive sleep apnea [41]. There was no dif-
ference in the efficacy of continuous positive airway pressure
(CPAP) to reduce the primary cardiovascular outcome in
women compared to men, but only 20% of the participants
in the study were females [41]. As moderate to severe sleep
apnea in women appears to be associated with markers of
adverse cardiovascular outcomes, studies with larger numbers
of women are needed to determine if CPAP treatment would
have potential sex-specific salutary effects.

Our study also highlights the high prevalence of unrecog-
nized sleep apnea in the Hispanic American population. Over
30% of our study population was found to have moderate to
severe sleep apnea. It is important to note that our sample was
selected from a larger cohort that was examinedwith the intent
of sampling an equal number of individuals in the community
with and without type 2 diabetes. Therefore, our cohort had
higher rates of diabetes and obesity, risks factors that have
been shown to be strongly associated with sleep apnea [42].
Nonetheless, data from the Hispanic Community Health
Study/Study of Latinos demonstrates that sleep apnea is high-
ly prevalent in the Hispanic community, and, despite the high
prevalence of sleep apnea, only 1.3% had previously received
a diagnosis of sleep apnea [17]. The high prevalence in this
population without a previous diagnosis, coupled with in-
creased levels of adverse cardiovascular biomarkers, suggests
a large population that may be at risk for adverse cardiovas-
cular events.

There are several limitations to our present study. As de-
scribed, our cohort was a Mexican American population, and
future studies are necessary to examine the relationship between
galectin-3 and sleep apnea in other populations. Nonetheless, our
finding in this population is important, as previous studies of
sleep apnea and cardiovascular biomarkers, such as troponin,
have been limited to predominantly non-Hispanic populations
[13]. Similarly, the number of men included in our study was
smaller than women, and future studies with larger sample sizes
of men should be performed to confirm our findings and exclude
any potential selection bias of our study as the result of the
relatively small sample of men. While we adjusted for potential
confounders, residual confounding may still be present. For ex-
ample, we did not have measures of baseline renal function,
which may attenuate the relationship between galectin-3 and
incident heart failure [5]. The cross-sectional design precluded
assessment of the temporal association between changes in bio-
markers and sleep apnea. While sleep apnea assessment was
determined using a reliable and validated home sleep apnea test,
it did not record information on electro-encephalography (EEG)
needed to additionally assess the role of EEG arousals or changes
in sleep architecture with our study outcomes.

In conclusion, we demonstrate a relationship between
severity of sleep apnea and plasma levels of galectin-3, a
biomarker of myocardial fibrosis that has been associated
with increased cardiovascular risk. In addition, our find-
ing that the galectin-3 relationship is present in women
with moderate/severe sleep apnea and not in men adds
to a small, but growing body of literature of potential
sex-specific associations between sleep apnea and cardio-
vascular risk and the potential for women with sleep ap-
nea to be at increased risk for heart failure. Finally, our
study highlights the high prevalence of sleep apnea in this
cohort of Mexican American and the need for further ef-
forts to raise awareness, screening, and treatment.

Table 3 Spearman correlation coefficients between plasma galectin-3
and select measures of severity of sleep apnea by sex

Females (n = 351) Men (n = 120)

Correlation
coefficient

p value Correlation
coefficient

p value

AHI 0.29 < 0.001 0.06 0.48

ODI 0.31 < 0.001 0.07 0.47

Mean oxygen
saturation

− 0.28 < 0.001 − 0.16 0.08

T90 0.31 < 0.001 0.13 0.16

AHI apnea hypopnea index,ODI oxygen desaturation index, T90 the total
time a person had nocturnal oxygen saturation below 90%
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