

Sleep apnea and galectin-3: possible sex-specific relationship

Mohita Singh¹ · Craig L. Hanis² · Susan Redline³ · Christie M. Ballantyne⁴ · Ihab Hamzeh⁴ · David Aguilar²

Received: 30 August 2018 / Revised: 10 January 2019 / Accepted: 23 January 2019 / Published online: 5 February 2019
© Springer Nature Switzerland AG 2019

Abstract

Purpose Sleep apnea is associated with increased risk of cardiovascular disease. Elevated plasma galectin-3 levels, a biomarker associated with myocardial fibrosis, are also associated with adverse cardiovascular events, including heart failure. Our objective was to determine the relationship between severity of sleep apnea and plasma levels of galectin-3 and to determine whether this relationship was modified by sex.

Methods We performed a cross-sectional study of 471 Mexican Americans from Starr County, TX who underwent an overnight, in-home sleep evaluation, and plasma measurement of galectin-3. Severity of sleep apnea was based on apnea hypopnea index (AHI). Multivariable linear regression modeling was used to determine the association between categories of sleep apnea and galectin-3. We also tested for interactions by sex.

Results The mean age was 53 years, and 74% of the cohort was female. The prevalence of moderate to severe sleep apnea (AHI > 15 apnea–hypopnea events per hour) was 36.7%. Moderate to severe sleep apnea was associated with increased levels of galectin-3 in the entire population, but we identified a statistically significant interaction between galectin-3 levels and category of sleep apnea by sex (p for interaction = 0.02). Plasma galectin levels were significantly higher in women with moderate or severe sleep apnea than women with no/mild sleep apnea (multivariable adjusted p < 0.001), but not in men (p = 0.5).

Conclusions Sleep apnea is associated elevated galectin-3 levels in women but not men. Our findings highlight a possible sex-specific relationship between sleep apnea and galectin-3, a biomarker of potential myocardial fibrosis that has been associated with increased cardiovascular risk.

Keywords Sleep apnea · Galectin-3 · High-sensitivity troponin

Abbreviations

AHI	Apnea hypopnea index
CPAP	Continuous positive airway pressure
ODI	Oxygen desaturation index

T90	Time spent (minutes) below nocturnal oxygen saturation of 90%
hsTnT	High-sensitivity troponin-T
NT-proBNP	N-terminal pro-B-type natriuretic peptide

✉ David Aguilar
david.aguilar@uth.tmc.edu

¹ Department of Medicine, Baylor College of Medicine, Houston, TX, USA

² Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, 1200 Pressler Street, Suite E431, Houston, TX 77030, USA

³ Departments of Medicine, Brigham and Women's Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

⁴ Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA

Introduction

Galectin-3 is a beta-galactoside binding lecithin protein that is expressed in several cell types including inflammatory cells, epithelial cells, and fibroblasts and is involved in important regulatory roles in adhesion, inflammation, immunity, and fibrosis [1, 2]. Galectin-3 functions as a paracrine signal that leads to macrophage and fibroblast proliferation and the development of fibrosis [3]. Elevated plasma levels of galectin-3 are associated with increased risk of total mortality and mortality secondary to cardiovascular disease and incident heart failure in the general population [4–8]. Similarly, sleep apnea is associated with an increased risk of cardiovascular disease, including atrial fibrillation, coronary artery disease, and heart

failure [9–12]. Although sleep apnea has been associated with increased levels of other biomarkers of cardiac injury and hemodynamic stress [13–16], the relationship between severity of sleep apnea and galectin-3 has not been well studied. We sought to investigate the relationship between sleep apnea and plasma levels of galectin-3 in a Mexican American population, a group with a high prevalence of obstructive sleep apnea [17]. In addition, we investigated whether the relationship between galectin-3 and sleep apnea was modified by sex, as previous studies have suggested potential sex-specific differences in the relationship between sleep apnea and cardiovascular disease [11, 14, 18].

Methods

The cohort for this study included 471 individuals from Starr County, Texas. Starr County is a Texas county located on the border of Mexico, and 96% of residents are Hispanic/Latino in origin [19]. All individuals in this study were classified as Mexican American. The cohort represents a subgroup of 1200 individuals from a recent study exploring the genetic underpinnings of sleep apnea and arterial stiffness [20]. The larger cohort of 1200 individuals was examined with the intent of sampling equal number of individuals with and without type 2 diabetes. We measured galectin-3 in the first 526 individuals that were enrolled in the study. Of these 526 individuals, 471 had sleep evaluations performed, and this group represents the population for our analyses. All aspects of the protocol were approved by the institutional review boards at participating institutions, and informed consent was obtained from all participants.

Examinations in the research center were performed in the morning after an overnight fast. The examination included medical and medication history, anthropometric measurements, glucose, hemoglobin A1c (point of care analyzer, DCA Vantage Analyzer, Siemens, Malvern, PA), and oral glucose tolerance testing in individuals not previously known to have diabetes. Blood pressure was measured three times following a 5-min sitting rest using an automated device (Critikon Dinamap Model 1846SX, Tampa, FL) with the average of the second and third values used as the final measures. Hypertension was defined as a history of hypertension, taking an antihypertensive medication, or a blood pressure > 140/90. Examinations occurred between December 2010 and January 2014.

All participants underwent an overnight, in-home sleep apnea evaluation. The sleep study was performed using the WatchPat 2000 monitor (Itamar Medical, Caesarea, Israel), an American Academy of Sleep Medicine approved type 3 monitor that provides a validated estimate of the Apnea Hypopnea Index (AHI) using information from digital peripheral arterial tonometry, finger pulse oximetry, and movement

[21]. Snoring and body position were also recorded. The severity of sleep apnea was defined by using conventional clinical categories: none (AHI \leq 5 apnea–hypopnea events per hour), mild (AHI > 5 to \leq 15 apnea–hypopnea events per hour), moderate (AHI > 15 to \leq 30 apnea–hypopnea events per hour), and severe (AHI > 30 apnea–hypopnea events per hour). Oxygen desaturation index (ODI) and the total time a person had nocturnal oxygen saturation below 90% (T90) were also recorded. The ODI is the number of oxygen desaturation events (4% minimum desaturation) per estimate hour of sleep.

Biomarkers were measured at the Baylor College of Medicine Atherosclerosis Clinical Research Laboratory. Galectin-3 was measured using a chemiluminescent microparticle immunoassay on an Architect *i* 2000 sr instrument (Abbott, Abbott Park, IL) in EDTA-plasma. The Architect galectin-3 assay has a limit of detection of 1.1 ng/mL and a limit of quantitation of 4.0 ng/mL. Inter-assay coefficients of variation were 5.2%, 3.3%, and 2.3% at mean galectin-3 levels of 8.8 ng/mL, 19.2 ng/mL, and 72.0 ng/mL, respectively.

In addition, we also measured high-sensitivity troponin-T (hsTnT), a biomarker of myocardial injury [22, 23], and N-terminal pro-B-type natriuretic peptide (NT-proBNP), a biomarker of hemodynamic stress and neurohormonal activation [24–26]. High-sensitivity troponin T was measured using a highly sensitive (precommercial) sandwich immunoassay method (Roche Elecsys T, Roche Diagnostic, Indianapolis, IN). The lower limit of blank for the hsTnT is 3.0 ng/L, and the limit of detection is 5.0 ng/L as reported previously (Roche Diagnostics, Indianapolis, IN) [22]. NT-proBNP was measured by using an electrochemiluminescent immunoassay on an automated Cobas e411 analyzer.

Baseline characteristics for the study population were tabulated by grouping individuals into categories of sleep apnea severity. Given the limited sample size in subcategories, sleep apnea was subsequently categorized into two clinically relevant groups: no/mild sleep apnea (AHI \leq 15) and moderate/severe sleep apnea (AHI > 15). Continuous variables were presented as means with standard deviations or median with 25th and 75th percentiles. Categorical variables were presented as percentages. Differences in baseline variables were ascertained using chi-square tests for categorical variables and *t* test for continuous variables and Kruskal–Wallis tests for non-normal variables. Correlations between galectin-3 and continuous measures of severity of sleep apnea were performed with Spearman correlation coefficients. Linear regression models were created to determine the relationship between galectin-3 and the categories of sleep apnea. The model was adjusted for age, sex, body mass index (BMI), waist circumference, hypertension status, smoking status, diabetes status, and history of cardiovascular disease. Because of non-normality, galectin-3 was natural log (ln) transformed for model analyses. We tested for sex-galectin interaction by

adding an interaction term into the adjusted linear regression model. Because hs-TnT varies by sex, we used sex-specific cut-points to define elevated hsTnT levels as a categorical variable (≥ 14 ng/L for males and ≥ 8 ng/L for females) [14]. Logistic regression models were used to assess the relationship between elevated hsTnT levels and categories of sleep apnea, as hsTnT could not be transformed into a normal distribution. NT-proBNP levels were ln-transformed for analyses.

Analyses were performed with STATA/IC version 12.1 (StataCorp). All tests were two-tailed with a p value < 0.05 considered as statistically significant.

Results

The analytical sample consisted of a total of 471 participants. The median age was 53 years, and 74% were female. The prevalence of mild, moderate, and severe obstructive sleep apnea was 32.3%, 20.6%, and 16.1%, respectively. Baseline characteristics for the study population by categories of sleep apnea are detailed in Table 1. Individuals with moderate to severe sleep apnea were older, more often male, had a higher BMI, higher waist circumference, higher systolic blood pressure, and a higher prevalence of cardiovascular disease. Diabetes prevalence, hemoglobin A1c, and fasting glucose were higher in those with sleep apnea. The percentage of individuals with detectable hsTnT, median levels of hsTnT, and the proportion of individuals with elevated hsTnT levels increased with increasing severity of sleep apnea. No association was noted amongst severity of sleep apnea and NT-proBNP levels.

The median galectin-3 concentration increased with increasing severity of sleep apnea in the total population (Table 1). Utilizing two clinically relevant categories of sleep apnea, the median galectin-3 concentration was higher in those with moderate/severe sleep apnea (7.63 ng/mL, 25th–75th percentiles 6.10, 8.84) compared to those with no/mild sleep apnea (6.53 ng/mL, 25th–75th percentiles 5.35, 7.57 ng/mL). In multivariable linear regression models for the entire population, moderate/severe sleep apnea was associated with increased levels of ln-galectin-3 in models adjusted for age, body mass index, waist circumference, hypertension, smoking status, diabetes mellitus, and history of cardiovascular disease (β -coefficient 0.077, $p = 0.015$). When we tested for interaction by sex in full models, we found a statistically significant interaction between sex and categories of sleep apnea (p for interaction = 0.02). Therefore, we subsequently performed sex-specific analyses.

Baseline characteristics by categories of sleep apnea (no/mild sleep apnea and moderate/severe sleep apnea) and sex are shown in Table 2. A total of 351 women were enrolled in the study, and 116 (33%) had moderate to severe sleep apnea.

Women with moderate to severe sleep apnea were more likely to be older, have a higher BMI, and have a history of hypertension, diabetes, and cardiovascular disease. Plasma galectin levels were significantly higher in women with moderate or severe sleep apnea (median galectin-3 levels 7.73 ng/mL, 25th–75th percentiles 6.46–9.19 ng/mL) than women with no/mild sleep apnea (median galectin-3 levels 6.29 ng/mL, 25th–75th percentiles 5.45–7.39 ng/mL, $p < 0.001$) (Table 2; Fig. 1). Spearman correlation coefficients for continuous measures of severity of sleep apnea and plasma galectin-3 levels are shown in Table 3.

The relationship between ln-galectin-3 and moderate/severe sleep apnea remained significant after adjusting for age, BMI, waist circumference, hypertension, smoking status, diabetes mellitus, and history of cardiovascular disease (β -coefficient moderate/severe sleep apnea 0.14, $p < 0.001$). In fully adjusted multivariable model utilizing quartiles of ODI, women with the highest ODI quartile (> 13.9 hypoxic events/h) had increased levels of ln-galectin-3 compared to the lowest quartile (< 1.6 hypoxic events per hour) (β -coefficient Q4 vs Q1 0.11, $p = 0.03$). The relationship between quartiles of time spent below a nocturnal oxygen saturation less than 90% and ln-galectin-3 levels was not statistically significant in women after adjustments in multivariable models (data not shown).

Women with moderate to severe obstructive sleep apnea also had higher levels of detectable, median hs-TnT, and elevated hs-TnT levels compared to women with mild or no obstructive sleep apnea (Table 2). The relationship between sleep apnea and elevated hsTnT was no longer significant after adjustment for age ($p = 0.22$) or in fully adjusted models ($p = 0.57$). In unadjusted analyses, median NT-proBNP levels were higher in women with moderate to severe sleep apnea compared to women with mild or no sleep apnea ($p = 0.046$), but this was no longer significant after adjustments for age ($p = 0.41$) or fully adjusted models ($p = 0.6$). In exploratory analysis, the relationship between ln-galectin-3 and moderate to severe sleep apnea in women remained statistically significant when NT-proBNP was added to the fully adjusted multivariable model ($p = 0.001$).

A total of 120 men were enrolled in the study. There was no statistical difference in age, hypertension status, or history of cardiovascular disease or diabetes in men with moderate to severe sleep apnea compared to men who had no or mild sleep apnea. Men with moderate to severe sleep apnea had a higher BMI than those with mild or no sleep apnea. In men, the median plasma galectin level was similar between those with moderate/severe sleep apnea (median galectin-3 levels 6.55 ng/mL, 25th–75th percentiles 5.23–8.33 ng/mL) and those with mild/no sleep apnea (median galectin-3 levels 6.62 ng/mL, 25th–75th percentiles 5.11–7.81 ng/mL, $p = 0.86$) (Table 2; Fig. 1). Similarly, in multivariable models, there was no statistically significant relationship between ln-

Table 1 Baseline characteristics for the cohort and by categories of sleep apnea

Baseline characteristics	Entire cohort (n = 471)	No sleep apnea (n = 146)	Mild sleep apnea (n = 152)	Moderate sleep apnea (n = 97)	Severe sleep apnea (n = 76)	P value
Age (years)	53 ± 11.5	50.0 ± 11.0	54.1 ± 10.7	56.5 ± 10.7	57.9 ± 10.3	< 0.001
Female sex (%)	351 (74.5)	125 (85.6)	110 (72.4)	68 (70.1)	48 (63.2)	0.001
BMI (kg/m ²)	32.1 ± 6.7	29.0 ± 5.1	31.9 ± 5.9	33.8 ± 6.7	36.6 ± 7.6	< 0.001
Waist circumference (cm)	104.4 ± 15.3	95.8 ± 12.0	104.4 ± 13.8	109.2 ± 15.3	114.8 ± 15.2	< 0.001
SBP (mm Hg)	129 ± 21	120 ± 19	131 ± 21	132 ± 22	136 ± 20	< 0.001
Hypertension (%)	278 (59.0)	51 (34.9)	93 (61.2)	75 (77.3)	59 (77.6)	< 0.001
History of CVD (%)	54 (11.5)	9 (6.2)	16 (10.5)	16 (16.5)	13 (17.1)	0.03
Current smoker (%)	66 (14.0)	23 (15.8)	19 (12.5)	12 (12.5)	12 (15.8)	0.08
Diabetes (%)	225 (47.8)	40 (27.4)	76 (50.0)	56 (57.7)	53 (69.7)	< 0.001
HbA1c (%)	6.6 ± 1.8	5.9 ± 1.4	6.7 ± 1.8	7.0 ± 2.0	7.3 ± 2.0	< 0.001
Fasting glucose (mg/dL)	129 ± 54.2	115 ± 47.0	134 ± 54.1	131 ± 56.7	147 ± 58.0	0.0002
Median AHI (25th, 75th)	9.8 (3.8, 20.5)	2.2 (0.7, 3.4)	9.1 (6.9, 11.6)	19.8 (17.4, 23.6)	42.6 (35.5, 53.7)	< 0.001
Median ODI (25th, 75th)	5.3 (1.4, 12.2)	0.8 (0.3, 1.4)	5 (3.1, 6.3)	12 (9.4, 15.5)	31.1 (22.7, 44.6)	< 0.001
Median T90 (min) (25th, 75th)	4.7 (0, 4.7)	0	0.3 (0, 1.2)	4.4 (1.4, 9.8)	21.4 (8.0, 46.7)	< 0.001
Median galectin-3 (ng/mL) (25th, 75th)	6.7 (5.5, 8.0)	6.2 (5.3, 7.3)	6.5 (5.5, 7.7)	7.4 (6.1, 8.8)	7.3 (5.9, 8.8)	< 0.001
Detectable hsTnT (%)	56.7	33.6	59.9	65.0	83.1	< 0.001
Median hsTnT (ng/L)	5 (1, 9)	3 (1, 6)	6 (1, 9)	6 (4, 10)	8 (6, 12.5)	< 0.001
Elevated hsTnT (%)	122 (25.9)	20 (13.7)	40 (26.3)	32 (33.0)	30 (39.5)	< 0.001
Median NT-Pro-BNP, (pg/mL) (25th, 75th)	59.2 (34.8, 114)	54.6 (34.8, 83.6)	60.9 (37.5, 131)	63.1 (32.6, 115)	76.2 (32.2, 133)	0.23

Data are presented as mean ± SD, median (25th, 75th percentiles), or percentage

BMI body mass index, SBP systolic blood pressure, CVD cardiovascular disease, AHI apnea hypopnea index, ODI oxygen desaturation index, T90 the total time a person had nocturnal oxygen saturation below 90%, hsTnT high-sensitivity troponin T, NT-proBNP N-terminal pro-B-type natriuretic peptide

*Elevated hsTnT: ≥ 14 ng/L for men or ≥ 8 ng/L for women

galectin-3 levels and categories of sleep apnea (β -coefficient moderate/severe sleep apnea -0.04, p = 0.5). No significant correlations were identified for other continuous measures of severity of sleep apnea and plasma galectin-3 levels in men (Table 3). There was also no significant association between severity of obstructive sleep apnea and median troponin or NT-pro-BNP levels (Table 2).

Discussion

In this community-based cohort of Mexican Americans from Starr County, Texas, we demonstrate a relationship between moderate/severe sleep apnea and elevated galectin-3 levels. Elevated plasma levels of galectin-3, a beta-galactoside-binding lecithin, have been associated with increased risk of heart failure and mortality in multiple epidemiologic studies in the general population [4–8]. Galectin-3 functions as a paracrine signal that is secreted in the bloodstream and directly in the extracellular matrix and leads to macrophage and fibroblast proliferation and the development of fibrosis. Galectin-3 has been shown to be a mediator of aldosterone-induced vascular fibrosis [27]. In a heart failure-prone rat model, upregulation of myocardial galectin-3 is seen early in the development of left

ventricular hypertrophy and is increased in rats developing heart failure [3]. A potential causal role of galectin-3 is further supported by animal studies where administration of galectin-3 results in myocardial fibrosis and heart failure [3], while pharmacologic or genetic disruption of galectin-3 attenuates myocardial fibrosis and alleviates cardiac dysfunction [28, 29].

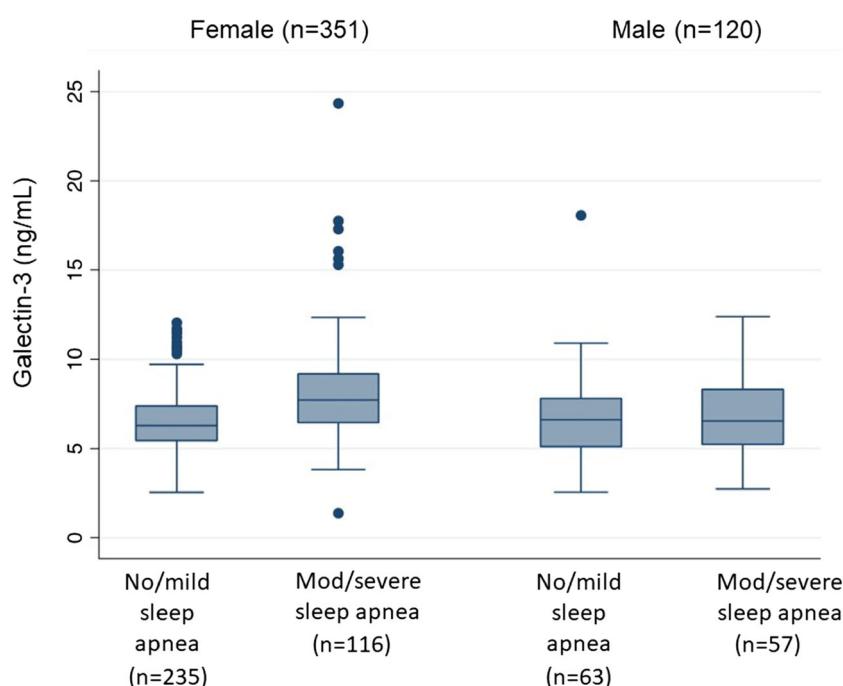
Sleep apnea is associated with an increased risk of arterial hypertension, atrial fibrillation, coronary artery disease, and heart failure [9–12, 30]. Similarly, sleep apnea has been associated with cardiac structural changes including left atrial enlargement and abnormalities of diastolic function that may predispose to development of atrial fibrillation and heart failure [31, 32]. Mechanisms behind sleep apnea-associated cardiovascular disease are thought to be related to intermittent hypoxia, increased sympathetic activity, increased ventricular afterload, inflammation, oxidative stress, and endothelial dysfunction [12, 33, 34]. Our study implicates a potential role of galectin-3 and myocardial fibrosis in the cardiovascular dysfunction associated with obstructive sleep apnea. These findings are consistent with animal studies that have demonstrated that intermittent hypoxia is associated with myocardial fibrosis [35, 36].

Importantly, we demonstrate a possible novel sex-specific association between galectin-3 and sleep apnea, with the relationship between moderate to severe sleep apnea and galectin-

Table 2 Baseline characteristics by sex and category of sleep apnea

Baseline characteristics	Female (n = 351)			Male (n = 120)		
	No/mild sleep apnea (n = 235)	Mod/severe sleep apnea (n = 116)	p value	No/mild sleep apnea (n = 63)	Mod/severe sleep apnea (n = 57)	p value
Age (years)	49.6 ± 10.9	57.2 ± 10.9	< 0.001	54.3 ± 12.5	56.8 ± 9.9	0.24
BMI (kg/m ²)	30.7 ± 6.0	36.0 ± 7.4	< 0.001	29.7 ± 4.5	33.1 ± 6.5	0.001
Waist circumference (cm)	99.1 ± 13.7	111.8 ± 16.1	< 0.001	104.5 ± 12.6	111.4 ± 14.3	0.006
SBP (mm Hg)	122 ± 19	133 ± 23	< 0.001	138 ± 22	137 ± 18	0.81
Hypertension (%)	102 (43.4)	91 (78.5)	< 0.001	42 (66.7)	43 (75.4)	0.29
History of CVD (%)	14 (6.0)	16 (13.8)	0.01	11 (17.5)	13 (22.8)	0.47
Current smoker (%)	30 (12.8)	8 (6.9)	0.25	12 (19.1)	16 (28.6)	0.21
Diabetes (%)	75 (31.9)	73 (62.9)	< 0.001	41 (65.1)	36 (63.2)	0.97
HbA1c (%)	6.1 ± 1.5	7.3 ± 2.1	< 0.001	7.1 ± 2.0	6.8 ± 1.7	0.29
Fasting glucose (mg/dL)	116 ± 44.5	140 ± 59.9	< 0.001	154 ± 63.8	135 ± 53.2	0.08
Median AHI (25th, 75th)	4.3 (1.7, 8.7)	24.9 (18.8, 40.1)	< 0.001	7.3 (3.8, 10.9)	29.1 (18.1, 40)	< 0.001
Median ODI (25th, 75th)	1.7 (0.7, 4.6)	16.4 (11.1, 28.6)	< 0.001	3.1 (1.5, 5.6)	19.8 (11.2, 32.4)	< 0.001
Median T90 (min) (25th, 75th)	0 (0, 0.3)	8.7 (2.2, 19.3)	< 0.001	0.1 (0, 0.6)	8.1 (2.5, 26.5)	< 0.001
Median galectin-3 (ng/mL) (25th, 75th)	6.29 (5.45, 7.39)	7.73 (6.46, 9.19)	< 0.001	6.62 (5.11, 7.81)	6.55 (5.23, 8.33)	0.86
Detectable hsTnT (%)	96 (40.9)	78 (67.3)	< 0.001	44 (69.8)	49 (86.0)	0.04
Median hsTnT (ng/L)	4 (1, 7)	6 (4, 9.5)	< 0.001	8 (4, 12)	9 (6, 15)	0.13
Elevated hsTnT*	46 (19.6)	44 (37.9)	< 0.001	14 (22.2)	18 (31.6)	0.25
Median NT-Pro-BNP (pg/mL) (25th, 75th)	58.8 (38.3, 91.7)	78.5 (38.8, 126)	0.046	44.5 (27.5, 132)	47.8 (19.4, 127)	0.33

Data are presented as mean ± SD, median (25th, 75th percentile), or percentage


BMI body mass index, SBP systolic blood pressure, CVD cardiovascular disease, AHI apnea hypopnea index, ODI oxygen desaturation index, T90 the total time a person had nocturnal oxygen saturation below 90, hsTnT high-sensitivity troponin T, NT-proBNP N-terminal pro-B-type natriuretic peptide

*Elevated hsTnT: ≥ 14 ng/L for men or ≥ 8 ng/L for women

3 being present in women, but not in men. While multiple epidemiologic studies have demonstrated that sleep apnea is

associated with abnormalities of cardiac structure and increased risk of cardiovascular disease, including coronary

Fig. 1 Plasma galectin-3 levels by sleep apnea categories. Data are median (interquartile range)

Table 3 Spearman correlation coefficients between plasma galectin-3 and select measures of severity of sleep apnea by sex

	Females (n = 351)		Men (n = 120)	
	Correlation coefficient	p value	Correlation coefficient	p value
AHI	0.29	< 0.001	0.06	0.48
ODI	0.31	< 0.001	0.07	0.47
Mean oxygen saturation	−0.28	< 0.001	−0.16	0.08
T90	0.31	< 0.001	0.13	0.16

AHI apnea hypopnea index, ODI oxygen desaturation index, T90 the total time a person had nocturnal oxygen saturation below 90%

artery disease, atrial fibrillation, and heart failure, some studies have suggested that the adverse cardiovascular consequences of sleep apnea may be particularly relevant to women [13, 18]. For example, in a community-based cohort of 1645 individuals, obstructive sleep apnea was associated with higher levels of hsTnT in women, but not in men [14]. Furthermore, in the same community-based sample, obstructive sleep apnea was associated with left ventricular hypertrophy and incident heart failure in women but not men [14]. Despite these studies, not all studies have been consistent, as others have demonstrated stronger associations with mortality [37] and incident HF [11] in men with sleep apnea compared to women. In our study, hsTnT levels were increased in women with moderate to severe sleep apnea compared to those with no or mild sleep apnea, but this relationship did not persist after adjustments for baseline characteristics, which may be related to our smaller sample size or differences in baseline characteristics between studies. Future work is needed to confirm our findings and to understand the mechanisms contributing to potential sex differences in the relationship between sleep apnea and cardiovascular disease. Studies have suggested that women with sleep apnea may have more endothelial dysfunction [38], potential microvascular abnormalities [39], and abnormalities of autonomic function [40]. Whether these or other pathways could contribute to increased markers of fibrosis remains unclear and deserves further work. A recent trial reported that treatment with continuous positive airway pressure did not lower the risk of serious cardiovascular outcomes in 2717 non-sleepy patients with previously established moderate to severe obstructive sleep apnea [41]. There was no difference in the efficacy of continuous positive airway pressure (CPAP) to reduce the primary cardiovascular outcome in women compared to men, but only 20% of the participants in the study were females [41]. As moderate to severe sleep apnea in women appears to be associated with markers of adverse cardiovascular outcomes, studies with larger numbers of women are needed to determine if CPAP treatment would have potential sex-specific salutary effects.

Our study also highlights the high prevalence of unrecognized sleep apnea in the Hispanic American population. Over 30% of our study population was found to have moderate to severe sleep apnea. It is important to note that our sample was selected from a larger cohort that was examined with the intent of sampling an equal number of individuals in the community with and without type 2 diabetes. Therefore, our cohort had higher rates of diabetes and obesity, risks factors that have been shown to be strongly associated with sleep apnea [42]. Nonetheless, data from the Hispanic Community Health Study/Study of Latinos demonstrates that sleep apnea is highly prevalent in the Hispanic community, and, despite the high prevalence of sleep apnea, only 1.3% had previously received a diagnosis of sleep apnea [17]. The high prevalence in this population without a previous diagnosis, coupled with increased levels of adverse cardiovascular biomarkers, suggests a large population that may be at risk for adverse cardiovascular events.

There are several limitations to our present study. As described, our cohort was a Mexican American population, and future studies are necessary to examine the relationship between galectin-3 and sleep apnea in other populations. Nonetheless, our finding in this population is important, as previous studies of sleep apnea and cardiovascular biomarkers, such as troponin, have been limited to predominantly non-Hispanic populations [13]. Similarly, the number of men included in our study was smaller than women, and future studies with larger sample sizes of men should be performed to confirm our findings and exclude any potential selection bias of our study as the result of the relatively small sample of men. While we adjusted for potential confounders, residual confounding may still be present. For example, we did not have measures of baseline renal function, which may attenuate the relationship between galectin-3 and incident heart failure [5]. The cross-sectional design precluded assessment of the temporal association between changes in biomarkers and sleep apnea. While sleep apnea assessment was determined using a reliable and validated home sleep apnea test, it did not record information on electro-encephalography (EEG) needed to additionally assess the role of EEG arousals or changes in sleep architecture with our study outcomes.

In conclusion, we demonstrate a relationship between severity of sleep apnea and plasma levels of galectin-3, a biomarker of myocardial fibrosis that has been associated with increased cardiovascular risk. In addition, our finding that the galectin-3 relationship is present in women with moderate/severe sleep apnea and not in men adds to a small, but growing body of literature of potential sex-specific associations between sleep apnea and cardiovascular risk and the potential for women with sleep apnea to be at increased risk for heart failure. Finally, our study highlights the high prevalence of sleep apnea in this cohort of Mexican American and the need for further efforts to raise awareness, screening, and treatment.

Acknowledgements We thank the field staff in Starr County for their careful collection of these data and are especially grateful to the residents of Starr County who graciously participated in the study.

Funding This work was supported in part by grants HL092585 and HL102830 from the National Institutes of Health.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent Informed consent was obtained from all individual participants included in the study.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Suthahar N, Meijers WC, Sillje HHW, Ho JE, Liu FT, de Boer RA (2018) Galectin-3 activation and inhibition in heart failure and cardiovascular disease: an update. *Theranostics* 8(3):593–609. <https://doi.org/10.7150/thno.22196>
2. Filipe MD, Meijers WC, Rogier van der Velde A, de Boer RA (2015) Galectin-3 and heart failure: prognosis, prediction & clinical utility. *Clin Chim Acta* 443:48–56. <https://doi.org/10.1016/j.cca.2014.10.009>
3. Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B, Andre S, Crijns HJ, Gabius HJ, Maessen J, Pinto YM (2004) Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. *Circulation* 110(19):3121–3128. <https://doi.org/10.1161/01.CIR.0000147181.65298.4D>
4. Daniels LB, Clopton P, Laughlin GA, Maisel AS, Barrett-Connor E (2014) Galectin-3 is independently associated with cardiovascular mortality in community-dwelling older adults without known cardiovascular disease: the Rancho Bernardo Study. *Am Heart J* 167(5):674–682 e671. <https://doi.org/10.1016/j.ahj.2013.12.031>
5. Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, Larson MG, Levy D (2012) Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. *J Am Coll Cardiol* 60(14):1249–1256. <https://doi.org/10.1016/j.jacc.2012.04.053>
6. de Boer RA, van Veldhuisen DJ, Gansevoort RT, Muller Kobold AC, van Gilst WH, Hillege HL, Bakker SJ, van der Harst P (2012) The fibrosis marker galectin-3 and outcome in the general population. *J Intern Med* 272(1):55–64. <https://doi.org/10.1111/j.1365-2796.2011.02476.x>
7. Djousse L, Matsumoto C, Petrone A, Weir NL, Tsai MY, Gaziano JM (2014) Plasma galectin 3 and heart failure risk in the Physicians' Health Study. *Eur J Heart Fail* 16(3):350–354. <https://doi.org/10.1002/ejhf.21>
8. Jagodzinski A, Havulinna AS, Appelbaum S, Zeller T, Jousilahti P, Skytte-Johanssen S, Hughes MF, Blanckenberg S, Salomaa V (2015) Predictive value of galectin-3 for incident cardiovascular disease and heart failure in the population-based FINRISK 1997 cohort. *Int J Cardiol* 192:33–39. <https://doi.org/10.1016/j.ijcard.2015.05.040>
9. Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Nieto FJ, O'Connor GT, Boland LL, Schwartz JE, Samet JM (2001) Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. *Am J Respir Crit Care Med* 163(1):19–25. <https://doi.org/10.1164/ajrccm.163.1.2001008>
10. Cadby G, McArdle N, Briffa T, Hillman DR, Simpson L, Knuiman M, Hung J (2015) Severity of OSA is an independent predictor of incident atrial fibrillation hospitalization in a large sleep-clinic cohort. *Chest* 148(4):945–952. <https://doi.org/10.1378/chest.15-0229>
11. Gottlieb DJ, Yenokyan G, Newman AB, O'Connor GT, Punjabi NM, Quan SF, Redline S, Resnick HE, Tong EK, Diener-West M, Shahar E (2010) Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: the sleep heart health study. *Circulation* 122(4):352–360. <https://doi.org/10.1161/CIRCULATIONAHA.109.901801>
12. Cowie MR (2017) Sleep apnea: state of the art. *Trends Cardiovasc Med* 27(4):280–289. <https://doi.org/10.1016/j.tcm.2016.12.005>
13. Querejeta Roca G, Redline S, Punjabi N, Claggett B, Ballantyne CM, Solomon SD, Shah AM (2013) Sleep apnea is associated with subclinical myocardial injury in the community. The ARIC-SHHS study. *Am J Respir Crit Care Med* 188(12):1460–1465. <https://doi.org/10.1164/rccm.201309-1572OC>
14. Roca GQ, Redline S, Claggett B, Bello N, Ballantyne CM, Solomon SD, Shah AM (2015) Sex-specific association of sleep apnea severity with subclinical myocardial injury, ventricular hypertrophy, and heart failure risk in a community-dwelling cohort: the atherosclerosis risk in communities-sleep heart health study. *Circulation* 132(14):1329–1337. <https://doi.org/10.1161/CIRCULATIONAHA.115.016985>
15. Randby A, Namtvedt SK, Einvik G, Hrubos-Strom H, Hagve TA, Somers VK, Omland T (2012) Obstructive sleep apnea is associated with increased high-sensitivity cardiac troponin T levels. *Chest* 142(3):639–646. <https://doi.org/10.1378/chest.11-1779>
16. Ljunggren M, Lindahl B, Theorell-Haglow J, Lindberg E (2012) Association between obstructive sleep apnea and elevated levels of type B natriuretic peptide in a community-based sample of women. *Sleep* 35(11):1521–1527. <https://doi.org/10.5665/sleep.2202>
17. Redline S, Sotres-Alvarez D, Loredo J, Hall M, Patel SR, Ramos A, Shah N, Ries A, Arens R, Barnhart J, Youngblood M, Zee P, Daviglus ML (2014) Sleep-disordered breathing in Hispanic/Latino individuals of diverse backgrounds. The Hispanic Community Health Study/Study of Latinos. *Am J Respir Crit Care Med* 189(3):335–344. <https://doi.org/10.1164/rccm.201309-1735OC>
18. Young T, Finn L (1998) Epidemiological insights into the public health burden of sleep disordered breathing: sex differences in survival among sleep clinic patients. *Thorax* 53(Suppl 3):S16–S19
19. Bureau USC Quick Facts: Starr County Texas. <http://www.census.gov/quickfacts/table/PST045215/48427>. Accessed September 4 2016
20. Hanis CL, Redline S, Cade BE, Bell GI, Cox NJ, Below JE, Brown EL, Aguilar D (2016) Beyond type 2 diabetes, obesity and hypertension: an axis including sleep apnea, left ventricular hypertrophy, endothelial dysfunction, and aortic stiffness among Mexican Americans in Starr County, Texas. *Cardiovasc Diabetol* 15:86. <https://doi.org/10.1186/s12933-016-0405-6>
21. Yalamanchali S, Farajian V, Hamilton C, Pott TR, Samuelson CG, Friedman M (2013) Diagnosis of obstructive sleep apnea by peripheral arterial tonometry: meta-analysis. *JAMA Otolaryngol Head Neck Surg* 139(12):1343–1350. <https://doi.org/10.1001/jamaoto.2013.5338>
22. Nambi V, Liu X, Chambless LE, de Lemos JA, Virani SS, Agarwal S, Boerwinkle E, Hoogeveen RC, Aguilar D, Astor BC, Srinivas PR, Deswal A, Mosley TH, Coresh J, Folsom AR, Heiss G,

Ballantyne CM (2013) Troponin T and N-terminal pro-B-type natriuretic peptide: a biomarker approach to predict heart failure risk—the atherosclerosis risk in communities study. *Clin Chem* 59(12):1802–1810. <https://doi.org/10.1373/clinchem.2013.203638>

23. deFilippi CR, de Lemos JA, Christenson RH, Gottsdiener JS, Kop WJ, Zhan M, Seliger SL (2010) Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. *JAMA* 304(22):2494–2502. <https://doi.org/10.1001/jama.2010.1708>

24. Hill SA, Balion CM, Santaguida P, McQueen MJ, Ismaila AS, Reichert SM, McKelvie R, Worster A, Raina PS (2008) Evidence for the use of B-type natriuretic peptides for screening asymptomatic populations and for diagnosis in primary care. *Clin Biochem* 41(4–5):240–249. <https://doi.org/10.1016/j.clinbiochem.2007.08.016>

25. Saunders JT, Nambi V, de Lemos JA, Chambliss LE, Virani SS, Boerwinkle E, Hoogeveen RC, Liu X, Astor BC, Mosley TH, Folsom AR, Heiss G, Coresh J, Ballantyne CM (2011) Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the Atherosclerosis Risk in Communities Study. *Circulation* 123(13):1367–1376. <https://doi.org/10.1161/CIRCULATIONAHA.110.005264>

26. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Omland T, Wolf PA, Vasan RS (2004) Plasma natriuretic peptide levels and the risk of cardiovascular events and death. *N Engl J Med* 350(7):655–663. <https://doi.org/10.1056/NEJMoa031994>

27. Calvier L, Miana M, Reboul P, Cachofeiro V, Martinez-Martinez E, de Boer RA, Poirier F, Lacolley P, Zannad F, Rossignol P, Lopez-Andres N (2013) Galectin-3 mediates aldosterone-induced vascular fibrosis. *Arterioscler Thromb Vasc Biol* 33(1):67–75. <https://doi.org/10.1161/ATVBAHA.112.300569>

28. Vergaro G, Prud'homme M, Fazal L, Merval R, Passino C, Emdin M, Samuel JL, Cohen Solal A, Delcayre C (2016) Inhibition of galectin-3 pathway prevents isoproterenol-induced left ventricular dysfunction and fibrosis in mice. *Hypertension* 67(3):606–612. <https://doi.org/10.1161/HYPERTENSIONAHA.115.06161>

29. Yu L, Ruifrok WP, Meissner M, Bos EM, van Goor H, Sanjabi B, van der Harst P, Pitt B, Goldstein IJ, Koerts JA, van Veldhuisen DJ, Bank RA, van Gilst WH, Sillje HH, de Boer RA (2013) Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. *Circ Heart Fail* 6(1):107–117. <https://doi.org/10.1161/CIRCHEARTFAILURE.112.971168>

30. Peppard PE, Young T, Palta M, Skatrud J (2000) Prospective study of the association between sleep-disordered breathing and hypertension. *N Engl J Med* 342(19):1378–1384. <https://doi.org/10.1056/NEJM200005113421901>

31. Otto ME, Belohlavek M, Romero-Corral A, Gami AS, Gilman G, Svatikova A, Amin RS, Lopez-Jimenez F, Khandheria BK, Somers VK (2007) Comparison of cardiac structural and functional changes in obese otherwise healthy adults with versus without obstructive sleep apnea. *Am J Cardiol* 99(9):1298–1302. <https://doi.org/10.1016/j.amjcard.2006.12.052>

32. Chami HA, Devereux RB, Gottsdiener JS, Mehra R, Roman MJ, Benjamin EJ, Gottlieb DJ (2008) Left ventricular morphology and systolic function in sleep-disordered breathing: the Sleep Heart Health Study. *Circulation* 117(20):2599–2607. <https://doi.org/10.1161/CIRCULATIONAHA.107.717892>

33. Javaheri S, Barbe F, Campos-Rodriguez F, Dempsey JA, Khayat R, Javaheri S, Malhotra A, Martinez-Garcia MA, Mehra R, Pack AI, Polotsky VY, Redline S, Somers VK (2017) Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. *J Am Coll Cardiol* 69(7):841–858. <https://doi.org/10.1016/j.jacc.2016.11.069>

34. Drager LF, McEvoy RD, Barbe F, Lorenzi-Filho G, Redline S, Initiative I (2017) Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science. *Circulation* 136(19):1840–1850. <https://doi.org/10.1161/CIRCULATIONAHA.117.029400>

35. Chen TI, Tu WC (2016) Exercise attenuates intermittent hypoxia-induced cardiac fibrosis associated with sodium-hydrogen exchanger-1 in rats. *Front Physiol* 7:462. <https://doi.org/10.3389/fphys.2016.00462>

36. Ding WX, Dong YB, Ding N, Zhang XF, Zhang SJ, Zhang XL, Liu JN, Lu G (2014) Adiponectin protects rat heart from left ventricular remodeling induced by chronic intermittent hypoxia via inhibition of TGF-beta/smad2/3 pathway. *J Thorac Dis* 6(9):1278–1284. <https://doi.org/10.3978/j.issn.2072-1439.2014.07.44>

37. Punjabi NM, Caffo BS, Goodwin JL, Gottlieb DJ, Newman AB, O'Connor GT, Rapoport DM, Redline S, Resnick HE, Robbins JA, Shahar E, Unruh ML, Samet JM (2009) Sleep-disordered breathing and mortality: a prospective cohort study. *PLoS Med* 6(8):e1000132. <https://doi.org/10.1371/journal.pmed.1000132>

38. Faulx MD, Larkin EK, Hoit BD, Aylor JE, Wright AT, Redline S (2004) Sex influences endothelial function in sleep-disordered breathing. *Sleep* 27(6):1113–1120

39. Chew M, Xie J, Klein R, Klein B, Cotch MF, Redline S, Wong TY, Cheung N (2016) Sleep apnea and retinal signs in cardiovascular disease: the multi-ethnic study of atherosclerosis. *Sleep Breath* 20(1):15–23. <https://doi.org/10.1007/s11325-015-1177-z>

40. Macey PM, Kumar R, Woo MA, Yan-Go FL, Harper RM (2013) Heart rate responses to autonomic challenges in obstructive sleep apnea. *PLoS One* 8(10):e76631. <https://doi.org/10.1371/journal.pone.0076631>

41. McEvoy RD, Antic NA, Heeley E, Luo Y, Ou Q, Zhang X, Mediano O, Chen R, Drager LF, Liu Z, Chen G, Du B, McArdle N, Mukherjee S, Tripathi M, Billot L, Li Q, Lorenzi-Filho G, Barbe F, Redline S, Wang J, Arima H, Neal B, White DP, Grunstein RR, Zhong N, Anderson CS, Investigators S, Coordinators (2016) CPAP for prevention of cardiovascular events in obstructive sleep apnea. *N Engl J Med* 375(10):919–931. <https://doi.org/10.1056/NEJMoa1606599>

42. Foster GD, Sanders MH, Millman R, Zammit G, Borradaile KE, Newman AB, Wadden TA, Kelley D, Wing RR, Sunyer FX, Darcey V, Kuna ST, Sleep ARG (2009) Obstructive sleep apnea among obese patients with type 2 diabetes. *Diabetes Care* 32(6):1017–1019. <https://doi.org/10.2337/dc08-1776>