Ebselen bearing polar functionality: Identification of potent antibacterial agents against multidrug-resistant Gram-negative bacteria

Cheng Chen, Kewu Yang

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an 710127, PR China

ABSTRACT

Antibiotic-resistant bacteria has become one of the greatest challenges to global human health today. Innovative strategies are needed to identify new therapeutic leads to tackle infections of drug-resistant Gram-negative bacteria. We herein synthesized a series of Ebselen analogues to investigate their antibacterial activities. Select polar functionality at N-terminus of EB exhibited higher activities against multi-drug-resistant Gram-negative pathogens, including *E. coli*, *P. aeruginosa* and *K. pneumoniae*. EB analogue 4i and 4j exhibited potent antibacterial activities against *E. coli*-ESBL (MIC = 1–4 µg/mL) and *E. coli* producing NDM-1 (MIC = 4–32 µg/mL), which is superior to the traditional antibiotics (cefazolin, imipenem). Furthermore, the time-kill kinetics studies and the inhibition zone tests indicated that analogue 4i effectively and rapidly cause death of *E. coli*-ESBL and *E. coli*-NDM-1. Additionally, accumulation assays and SEM images showed that 4i could permeate bacterial membranes, leading to an irregular cell morphology. Importantly, bacterial resistance for analogue 4i was difficult to induce against *E. coli*-ESBL. EB analogues here reported low cytotoxicity against L-929 cells and mice model *in vivo*. We believe that EB analogues with polar functionality could play a pivotal role in the development of novel antibacterial agents in eradicating multi-drug-resistant Gram-negative pathogens infections.

Keywords:
Gram-negative pathogens
Drug discovery
Ebselen analogues
Antibacterial activity

1. Introduction

The continuing and increasing prevalence of multidrug-resistant (MDR) Gram-negative bacteria (GNB) has become a tremendous threat to public health worldwide, these bacteria, including *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, *Acinetobacter baumannii* and *Escherichia coli*, are called antibiotic-resistant “priority pathogens” released by World Health Organization (WHO) in 2017 [1–3]. The dissemination of Extended Spectrum Beta-Lactamases (ESBL)-producing organisms and Carbapenem-resistant *Enterobacteriaceae* (CRE) are the major causes of healthcare-associated bacterial infection, such as those in the surgical site, urinary tract, intra-abdominal and bloodstream region [4,5]. In particular, CRE involves the most worrisome evolution of the antibiotic resistance crisis, which is almost resistant to all available antibiotics [6,7]. Currently, the clinically most important carbapenemases in *Enterobacteriaceae* consist of the class A enzymes of the *K. pneumoniae* carbapenemases (KPC) type, the zinc-dependent class B metallo-β-lactamases (MβLs) of the VIM, IMP, and NDM types and class D carbapenemases of the OXA-48 type [8,9]. These types of CRE are structurally and mechanistically different from each other, making it challenging to identify the antibacterial agent that is active against all types of CRE [10].

Gram-negative bacteria (GNB) have two cellular membranes, and the lipopolysaccharide-coated outer membrane impermeable to most small molecules is one of the largest of challenges in the discovery of new Gram-negative antibacterial agents [3,11]. In addition, there is a limited understanding of this type of compounds that can be accumulated in Gram-negative pathogens. One useful strategy for identifying the novel antimicrobials is to carefully monitor and tune these physicochemical properties of small-molecule that increase accumulation in GNB and enable broad antibacterial coverage [12]. The “eNTRy rules” reported by Richter et al showed the ability of diverse compounds to accumulate in *E. coli* led to the development of predictive guidelines for compound accumulation, which suggested that compounds are most likely to accumulate if they contain a primary amine, low globularity and relatively rigid. These guidelines were then successfully applied to convert a natural product that is active only against Gram-positive bacteria, into an antibiotic with activity against multi-drug-resistant Gram-negative pathogens [13].

In previous disclosures, Ebselen (EB) has antioxidant, anti-inflammatory and cytoprotective properties, and the safety of EB in humans has been demonstrated by three different clinical trials

Corresponding author.

E-mail address: kwyang@nwu.edu.cn (K. Yang).

https://doi.org/10.1016/j.bioorg.2019.103286

Received 25 April 2019; Received in revised form 20 August 2019; Accepted 15 September 2019

Available online 16 September 2019

0045-2068/ © 2019 Elsevier Inc. All rights reserved.
investigating the treatment of stroke patients [14–16]. Moreover, EB has been shown to have excellent antimicrobial activity against clinical multidrug-resistant Gram-positive pathogens, including Methicillin-resistant \textit{S. aureus} (MRSA) and Vancomycin-resistant \textit{Enterococcus faecium} (VRE) [17]. Lu et al. revealed that EB, a substrate of mammalian thioredoxin reductase (TrxR) but an irreversible inhibitor of bacterial TrxR, blocks the electron transfer via TrxR and displays selectively antibacterial activity toward GSH-negative bacteria, with no inhibitory effect on GSH-positive bacteria, for example, \textit{Escherichia coli} [18]. Additionally, Chiou et al. and our previous studies showed that EB is a potent covalent inhibitor of NDM-1 binding the Cys208 at active site of enzyme, in combination \(\beta\)-lactams to combat effectively clinically isolates producing NDM-1 [8,19]. Ngo et al. also reported that EB and its sulfur analogues (Ebsulfur) showed potent antibacterial efficacy against MRSA and also exhibited broad-spectrum antifungal activity [20,21]. However, EB did not show potent antimicrobial activity against Gram-negative pathogens, which might be due to its reduced ability to cross outer membrane barrier or the efflux pump rather than lack of target of EB inside Gram-negative bacteria [22]. Inspired by the above information, we herein synthesized a series of EB-based analogues appending various polar functionality at the N-terminus to further investigate antibacterial activities of these EB analogues in fighting against some of the most problematic Gram-negative bacteria in the clinic.

2. Results and discussion

2.1. Chemistry

To gain insights into the relationship that exists between physicochemical properties and antibacterial activity against GNB, we targeted the N-terminus of the EB scaffold for optimization through the incorporation of polar functionality with the goal of increasing accumulation of new EB small molecules. We initiated this study with a series of amidation for 2-(chloranylidene)-selanyl)benzoyl chloride (3) using small, different polar amines (Scheme 1). The synthetic procedure involved preparation of acyl chloride through reflux of diselenide and SOCl\(_2\) at 85 °C and recrystallization using cyclohexane, then acyl chloride was dropwise added to solution of the appropriate amine and trimethylamine (TEA) at 0 °C to furnish the desired amidation product. Through this procedure, we synthesized Ebselen 4a and eight EB analogues 4b-g in 56–75% yield (Scheme 1). Analogues 4e and 4f with Boc-group were deprotected using hydrochloric acid in methanol to afford 4h (86% yield) and 4i (92% yield), respectively. Ebselen and eight EB analogues we reported here had ClogP values with a range of 1.16–4.41, all EBs synthesized were advanced to antibacterial investigation.

2.2. Antimicrobial activity evaluation

Following chemical synthesis of these EB analogues bearing polarity at the N-terminus, EB 4a-i were firstly assayed for antibacterial activities against Gram-positive strains: \textit{S. aureus}, methicillin-resistant \textit{S. aureus} (MRSA) and vancomycin-resistant \textit{E. faecium} (VRE). Antibacterial activity was determined via microdilution minimum inhibitory concentration (MIC) assays that were performed in 96-well plates [23]. The tested compounds were screened in MIC assays using 2-fold serial dilutions (0.125 to 128 µg/mL) in three independent experiments. MIC data (Table 1) indicated that the EB analogues display 4–32-fold stronger antibacterial effect than the vancomycin as control (MIC = 2–256 μg/mL) on three Gram-positive strains tested, with an MIC value ranging from 0.25 to 64 μg/mL, the data previously reported also indicated EB against \textit{S. aureus} ATCC strains with a MIC range of 0.125–7.8 μg/mL [17,20,22], and 4g and 4i were found to be the most potent compounds (MIC = 0.25–16 μg/mL). More importantly, both 4g and 4i with ClogP reducing appendage exhibited higher antibacterial property than the control (EB, 4a).

Subsequently, to further investigate whether EB analogues with various polarity enhanced antibacterial activities against multi-drug-resistant Gram-negative strains, five clinical isolates Extended Spectrum Beta-Lactamases \textit{E. coli} (\textit{E. coli}-ESBL), Extended Spectrum Beta-Lactamases \textit{K. pneumonia} (\textit{K. pneumonia}-ESBL), \textit{P. aeruginosa} and...
K. pneumoniae-NDM-1 were used for evaluation of the EB analogues. MIC data (Table 1) showed that the 4g and 4i had the lowest ClogP (1.16 and 1.27), and both compounds were found to be effectively inactive against all Gram-negative strains tested with a MIC range of 1–64 μg/mL. Particularly, for E. coli-ESBL, 4i proved to be the best MIC value of 1 μg/mL, being 256-fold more potent than the antibiotic cefazolin (Czo) and imipenem (IMI) against clinical isolates EC01-EC24 (E. coli producing NDM-1), cefazolin (Czo) and imipenem (IMI) against clinical isolates EC01-EC24 (E. coli producing NDM-1).

Table 1

<table>
<thead>
<tr>
<th>Strains</th>
<th>4a</th>
<th>4b</th>
<th>4c</th>
<th>4d</th>
<th>4e</th>
<th>4f</th>
<th>4g</th>
<th>4h</th>
<th>4i</th>
<th>Van</th>
<th>Czo</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>128</td>
</tr>
<tr>
<td>MRSA</td>
<td>128</td>
</tr>
<tr>
<td>VRE</td>
<td>128</td>
</tr>
<tr>
<td>E. coli-Cpx</td>
<td>128</td>
</tr>
<tr>
<td>E. coli-IMI</td>
<td>128</td>
</tr>
</tbody>
</table>

Notes: all the clinical isolates MRSA, VRE, E. coli-ESBLa, b, K. pneumoniae-ESBL, K. pneumoniae-NDM-1, P. aeruginosa from the Health Science Center at Xi'an Jiaotong University China. All these isolates were identified by VITEK2 Compact (bioMérieux, France) and 16S rRNA gene sequencing. PCR and nucleotide sequencing were employed to screen for the presence of NDM genes. a: all ClogP calculated from ChemBioDraw Ultra 14.0. G+: Gram-positive bacteria, G−: Gram-negative bacteria.

Table 2

Antibacterial activities (MIC, μg/mL) of EB 4a and analogues 4b-i against multi-drug-resistant Gram-positive and Gram-negative bacteria, using vancomycin (Van) and cefazolin (Czo) as control.

<table>
<thead>
<tr>
<th>Strains</th>
<th>4a</th>
<th>4b</th>
<th>4c</th>
<th>4d</th>
<th>4e</th>
<th>4f</th>
<th>4g</th>
<th>4h</th>
<th>4i</th>
<th>Czo</th>
<th>IMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli-ESBLa</td>
<td>>128</td>
</tr>
<tr>
<td>E. coli-ESBLb</td>
<td>>128</td>
</tr>
<tr>
<td>E. coli-ESBLc</td>
<td>>128</td>
</tr>
<tr>
<td>E. coli-ESBLd</td>
<td>>128</td>
</tr>
<tr>
<td>E. coli-ESBLe</td>
<td>>128</td>
</tr>
<tr>
<td>E. coli-ESBLf</td>
<td>>128</td>
</tr>
<tr>
<td>E. coli-ESBLg</td>
<td>>128</td>
</tr>
<tr>
<td>E. coli-ESBLh</td>
<td>>128</td>
</tr>
<tr>
<td>E. coli-ESBLi</td>
<td>>128</td>
</tr>
</tbody>
</table>

Notes: all the clinical isolates E. coli producing NDM-1 (EC01-24) from the Health Science Center at Xi'an Jiaotong University, China.

2.3. Uptake of EB analogues by ESBL-E. coli

To investigate the uptake of EB analogues by ESBL-E. coli cells, ICP-AES (inductively coupled plasma absorption emission spectroscopy) studies were carried out. Experiments to investigate the accumulation of selenium (Se) in the ESBL-E. coli were conducted at high concentrations. As shown in Fig. 1, accumulation of 4g and 4i uptake to 8 × 10^{-8} μg per cell about 2h, which is obvious higher than other analogues. The presence of a primary amine or polar group is clearly important for accumulation in E. coli. The above accumulation results are consistent with their antibacterial activity.

Fig. 1. ICP-AES data for the uptake of Se by ESBL-E. coli after exposure to different EB analogues. Se contents per cell are expressed as Se (μg) per cell.
The cefazolin samples were cloudy after 10h treatment, but the both whereas cefazolin (2×MIC) did not kill E. coli (8×MIC) killed early exponential phase populations. Moreover, ESBL and EC08, showing superior activity compared with that of cefazolin in killing early exponential phase populations. Moreover, 4i (8 × MIC) killed early exponential phase E. coli-ESBL and EC08 at 6h, whereas cefazolin (2 × MIC) did not kill E. coli-ESBL and EC08 at 24h. The cefazolin samples were cloudy after 10h treatment, but the both samples treated with 4i were clear (Fig. S3). These results suggest that 4i rapidly kills both E. coli-ESBL and E. coli producing NDM-1.

2.4. Time-dependent killing

To determine the bactercidal rate of EB analogues against Gram-negative bacteria, the time-kill kinetics of analogue 4i was performed [24]. E. coli-ESBL and EC08 were grown to early exponential phase and challenged with 4i (2 ×, 4 ×, 8 × MIC), and cefazolin (2 × MIC). As shown in Figs. 2 and S2, 4i had excellent bactercidal activity against E. coli-ESBL and EC08, showing superior activity compared with that of cefazolin in killing early exponential phase populations. Moreover, 4i (8 × MIC) killed early exponential phase E. coli-ESBL and EC08 at 6h, whereas cefazolin (2 × MIC) did not kill E. coli-ESBL and EC08 at 24h. The cefazolin samples were cloudy after 10h treatment, but the both samples treated with 4i were clear (Fig. S3). These results suggest that 4i rapidly kills both E. coli-ESBL and E. coli producing NDM-1.

2.5. Zeta potential (ζ) measurement

To obtain deeper insights into the interactions between EB analogues and E. coli-ESBL, Zeta potential (ζ) was employed to this study [25]. As shown in Fig. 3, after incubation with all analogues, only the ζ potential of E. coli-ESBL by treated with analogue 4h and 4i became more positive compared with other EB analogues. Clearly, the interaction of 4h and 4i with E. coli-ESBL was influenced obviously by the ionic strength, indicating that the accumulation of 4h and 4i to E. coli-ESBL was dominated by electrostatic interactions. 4i showed the electrostatic interactions with negatively charged lipopolysaccharide of an outer membrane, so as to promote the accumulation of it on the cell surface and then enter into cell through bacterial porins. Though 4h also accumulates on the surface of cell by electrostatic interactions, and make zeta potential of cell became more positive, it is difficult to cross the porins due to sterically encumbered primary amine, and could not exhibit antibacterial activity.

2.6. Inhibition zone tests

Thenceforward, to further elucidate the antibacterial effect of 4i against different Gram-negative bacteria including: E. coli producing NDM-1, E. coli-ESBL, P. aeruginosa and K. Pneumoniae-NDM-1, the inhibition zone tests were carried out [26]. As shown in Fig. S4, there are gradually increasing diameter of inhibition zones for the antibacterial test with the concentration of 4i raising. It clearly demonstrated that the introduction of a primary amine makes EB analogue 4i had excellent antibacterial properties against the multidrug-resistant Gram-negative bacteria.

2.7. SEM characterization

We next advanced to be direct visualization of the morphological changes of bacteria in the presence of EB analogues using field-emission SEM [27,28]. As shown in Fig. 4, the control group exhibited a smooth cell surface and clear bacterial edges. After treatment with 4i, catastrophic structural damages to the E. coli-ESBL and P. aeruginosa were visualized, and almost all the bacteria were collapsed and fused. SEM images showed an irregular cell morphology caused by 4i possibly through permeabilizing bacterial membranes and then targeting related sulphydryl-dependent enzymes of thioredoxin system in bacteria [29]. These results were consistent with antibacterial experiments.

2.8. Bacterial resistance studies

Subsequently, we evaluate the ability of analogue 4i to suppress the development of resistance against Gram-negative E. coli-ESBL through resistance selection studies after a prolonged passage at sub-inhibitory concentrations. The control antibiotic cefazolin (Czo) was chosen for E. coli-ESBL. Only a 2-fold change was detected in the MIC of 4i against E. coli-ESBL after 20 passages. However, antibiotic Czo displayed a 64-folds increase in the MIC (Fig. 5). These results indicated that analogue 4i had major advantages compared to conventional antibiotic and induced less bacterial resistance.

2.9. Cytotoxicity assays

The potential toxicity of candidates is a major concern for development of clinically useful of broad-spectrum antibacterial agents. To verify the safety of EB analogues, analogue 4g and 4i were selected to a cytotoxicity assay with L929 cells at various concentrations (3.5, 7, 14, 28, 56, 112μg/mL) [30]. As shown in Fig. 6, both compounds exhibited relatively low cytotoxicity against L929 cell, with a cell viability of 70% or higher at a concentration up to 28μg/mL, which is higher than the effective antibacterial concentration. Furthermore, the median lethal dose (LD50), a helpful pointer of the substance’s acute toxicity, was established after intraperitoneal injection in Kunming mice 20–22 g followed by an observation period of 72 h. The LD50 values in mice was determined to be 61 mg/kg for 4i (Fig. 7), suggesting a relatively low toxicity of EB analogue 4i in vitro and in vivo.

3. Conclusions

In summary, a series of EB analogues 4a-i with various polarity were synthesized and evaluated. Analogue 4g and 4i, with the lowest ClogP (1.16 and 1.27), were found to have excellent antibacterial activity against the multidrug-resistant Gram-negative bacteria, particularly E. coli-ESBL (MIC = 1–4μg/mL) and carbapenem-resistant pathogens E. coli producing NDM-1 (MIC = 4–32 μg/mL), being more potent than the traditional antibiotics (cefazolin and imipenem). The MIC50/90 values for 4i against all Gram-negative pathogens tested was 2.56 and 16.32 μg/mL, respectively Furthermore, the time-kill kinetics studies, accumulation assays and SEM images revealed that the analogue 4i could permeate bacterial membranes, leading to an irregular
cell morphology and rapid death of *E. coli*-ESBL and *E. coli*-NDM-1. Moreover, EB analogues did not induce bacteria to develop resistance. Also, EB analogues tested exhibited low cytotoxicity against L-929 cells and mice model *in vivo*. These studies demonstrated that the EB analogues with polarity present a novel scaffold for the development of antibacterial agents in combating multi-drug-resistant Gram-negative pathogens infections.

4. Material and methods

4.1. Chemistry

1H and 13C NMR spectra were recorded on a Bruker Avance III 400-MHz spectrometer. Chemical shifts are given in parts per million (ppm) on the delta scale. The peak patterns are reported as singlet (s), doublet (d), triplet (t), quartet (q), doublet doublet (dd), and multiplet (m). The spectra were recorded with TMS as internal standard. Coupling constants (J) were reported in Hertz (Hz). Mass spectra were obtained on a micro TOF-Q (BRUKER) mass spectrometer. The reactions were followed by thin-layer chromatography (TLC) on glass packed precoated silica gel plates and visualized in an iodine chamber or with a UV lamp. Flash column chromatography was performed using silica gel (200–300 mesh) purchased from Qingdao Haiyang Chemical Co. Ltd. Activity evaluation of inhibitors was performed on an Agilent 8453 UV–Vis.
A solution of 2-(chloroseleno)benzoyl chloride (1 mmol) in dry ether (10 mL) was added dropwise over 30 min to a stirred solution of the appropriate amine (1.2 mmol) and triethylamine (3.5 mmol) in dry DCM (10 mL) at 0 °C. The reaction mixture was stirred at room temperature overnight. The solvent was removed under reduced pressure and the residue was washed with water (20 mL), and extracted with DCM (3 × 10 mL). The combined organic extracts were dried over anhydrous MgSO₄, the solvent removed was under reduced pressure, and the crude product was purified by flash column chromatography on silica gel (eluents: 10–50% ethyl acetate in petroleum gradient) [31]. All EB analogues except 4c and 4e have been reported.

4.1.7. 2-(2-hydroxyethyl)Benzo[d][1,2]selenanazol-3(2H)-one (4g)

White solid, yield 62%. ¹H NMR (400 MHz, DMSO-d₆) δ 8.04 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.40 (t, J = 7.3 Hz, 1H), 3.81 (t, J = 5.2 Hz, 2H), 3.63 (q, J = 5.1 Hz, 2H). ¹³C NMR (101 MHz, DMSO-d₆) δ 167.06, 140.66, 131.77, 128.11, 127.64, 126.08, 126.01, 60.89, 46.56. HRMS (ESI): m/z Calcd for: C₁₉H₁₉NO₃Se [M+H]+ 349.0367; found 349.0362.

4.1.8. 2-(3-oxobenzo[d][1,2]selenazol-2(3H)-yl)ethan-1-amin chloride (4h)

White solid, yield 86%. ¹H NMR (400 MHz, D₂O) δ 7.84 (t, J = 8.7 Hz, 1H), 7.68–7.59 (m, 2H), 7.48–7.41 (m, 1H), 4.08 (t, J = 5.8 Hz, 2H), 3.14 (q, J = 7.3 Hz, 2H). ¹³C NMR (101 MHz, D₂O) δ 169.59, 132.67, 128.24, 127.52, 126.46, 126.04, 125.98, 125.81, 124.81, 41.95, 39.48. HRMS (ESI): m/z Calcd for: C₁₃H₁₀N₄O₂Se [M+H]+ 293.0031; found 293.0042.
4.5. Uptake of all EB analogues by ESB-L-E. coli and determination of intracellular Se contents

Uptake and cellular accumulation of all EB analogues by ESB-L-E. coli was determined by measuring bacterial cell Se content by ICP-AES as follows. ESB-L-E. coli cultures were grown to OD_{600} = 1.0 in LB broth, washed in PBS, and then resuspended in PBS to approximately 10^{6}–10^{9} CFU/mL. EB analogues 4a-4i was added to cells at 20 μM, and then 5 mL samples of culture were harvested at 60 min after EB analogues addition. The untreated cells were also taken for comparison. Samples were centrifuged for 20 min to obtain cell pellets to discard unbound extracellular EB analogues. To prepare cell material for ICP-AES, cell pellets were resuspended in 0.5 mL nitric acid (69% (w/v)) and then placed in a sonicator bath for 30 min to completely dissolve cells. The resulting digest was then diluted to a final volume of 5 mL with diluted nitric acid, and then samples were analyzed on IRIS Advantage (Thermo Scientific) inductively-coupled plasma-atomic emission spectrophotometer. Levels of Se in the samples were determined by a calibration curve using multielement standard solutions containing 0.1, 0.2, 5 and 10 mg/L Se.

4.6. Inhibition zone tests

EC08 producing NDM-1, E. coli-ESBL, P. aeruginosa and K. Pneumoniae-NDM-1 was administered to the liquid medium, and cultured on it by air bath oscillator for 5 h. The rotating speed was 150 rpm, the temperature was 37 °C. Then, bacteria were vaccinated to solid medium. After drilling holes on the Agar plate using the oxford ring, and 10 μL the different concentration of compound 4i (1–1024 μg/mL) was added, then developed under the incubator for 16–18 h at 37 °C and observed the bacteriostatic circle.

4.7. SEM characterization

To directly visualize the morphological changes of E. coli-ESBL and P. aeruginosa by compound 4i, SEM characterization was employed to this study. After the operation according to antibacterial experiments, the mixture of cells and 4i was centrifuged (3500 g) for 10 min. The supernatants were removed, and the bacterial pellets were fixed with 0.5% glutaraldehyde in PBS at room temperature for 30 min. Then, 2 μL aliquots of bacterial suspensions were transferred onto clean silicon wafers. Levels of Se in the samples were determined by a calibration curve using multielement standard solutions containing 0.1, 0.2, 5 and 10 mg/L Se.

4.8. Cytotoxicity assays

A cytotoxicity assay was performed to evaluate the toxicity of analogues 4g and 4i to mouse fibro-blast cells (L929). The cells were seeded into 96-well plates at cell density of 1.0 × 10^{4} cells/well in 100 μL of culture medium and maintained for 24 h. Then solutions of compound 4g and 4i with different concentrations were added to 96-well plates respectively, and incubated for another 48 h. Six wells containing only cells suspended in a mixture of 99 μL of complete medium and 1 μL of DMSO were used as the control for investigating cell-viability. Six wells containing only the complete medium were used as the blank control. Following that, the medium was removed. Finally, 100 μL of fresh culture medium and 10 μL of Cell Counting Kit solution (purchased from 7Sea) were added to each well. After incubation for 4 h, the 96-well plates were then vigorously shaken to solubilize the formazan product and the absorbance at a wavelength of 450 nm was read on a Microplate Reader and analyzed. All experiments were conducted in triplicate.

4.9. Determination of median lethal dose (LD_{50})

Kunming mice weighing 20–22 g were obtained from Experimental Animal Center, Health Science Center of Xi’an Jiaotong University. The animals were kept in a room temperature. For each compound, the animals were randomly divided into 7 groups of 6 animals. Each group of animals are administrated different doses of compound tested (10–120 mg/kg). The animals were observed during 72 h after administering the test compound. The geographic mean of the least dose that killed mice (LD_{50}) and the highest dose that did not induced mortality (LD_{0}) was taken as the LD_{50}.

Acknowledgements

This work was supported by grants 21572179 (to K.W.Y.) from the National Natural Science Foundation of China.

Declaration of Competing Interest

None.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioorg.2019.103286.

References

[22] S. Thangamani, W. Younis, M.N. Seleem, Repurposing clinical molecule ebselen to

[24] W. Chu, Y. Yang, S. Qin, et al., Low-toxicity amphiphilic molecules linked by an
aromatic nucleus show broad-spectrum antibacterial activity and low drug re-

cationic polyfluorene derivative for multimodal antimicrobial application, ACS

[26] P.Y. Bai, S.S. Qin, W.C. Chu, et al., Synthesis and antibacterial bioactivities of ca-

[28] S. Zhu, X. Wang, Y. Yang, et al., Conjugated polymer with aggregation-directed
intramolecular Förster resonance energy transfer enabling efficient discrimination

against multidrug-resistant Gram-negative bacterial infections, EMBO Mol. Med. 9

lysate mercaptoacetic acids jointly inhibit metallo-β-lactamase L1, Med. Chem.

[31] K. Macgooniuk, E. Greiša, J. Palus, et al., 1,2-Benzisoselenazol-3(2H)-one derivatives

[32] F.R. Cockerill, Methods for dilution antimicrobial susceptibility tests for bacteria
that grow aerobically: approved standard-ninth edition, MO7-A9. Clinical and
Laboratory Standards Institute, Wanye, PA, 2012.