Design, synthesis and biological evaluation of resveratrol-cinnamoyl derivates as tubulin polymerization inhibitors targeting the colchicine binding site

Yong Yin, Bao-Ping Lian, Yuan-Zheng Xia, Yu-Ying Shao, Ling-Yi Kong

Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China

ARTICLE INFO

Keywords:
Resveratrol-cinnamoyl derivates
Tubulin polymerization inhibitors
Colchicine binding site
Anti-proliferative

ABSTRACT

A novel series of resveratrol-cinnamoyl hybrids as tubulin polymerization inhibitors were designed and synthesized, and evaluated for their anti-proliferative activities against A549, MCF-7, HepG2, HeLa and MDA-MB-231 five cancer cell lines. Most designed compounds showed better anti-proliferative activities. Particularly, compound 6h exhibited the potent anti-proliferative activities with the IC50 value of 0.12, 0.016, 0.44, 0.37 and 0.78 μM against A549, MCF-7, HepG2, HeLa and MDA-231, respectively, which was superior to that of reference drug colchicine. Besides, compound 6h displayed a remarkable inhibition of tubulin polymerization and a great potency to compete with [3H] colchicine in binding to tubulin. Further studies indicated that compound 6h could induce the MCF-7 cells arrest in the G2/M phase. What’s more, compound 6h induced cell apoptosis in a dose-dependent manner, and regulated the expression level of apoptosis-related proteins. These results revealed that compound 6h is a promising tubulin polymerization inhibitor for treatment of cancer and it is worthy of further exploitation.

1. Introduction

It has been recognized that microtubules play a critical role in regulating many cellular processes such as cellular proliferation and division, motility and shape maintenance, spindle formation, intracellular transportation and so on [1–4]. Microtubules are cylindrical structures and crucial components of cytoskeleton which made of α- and β-tubulin heterodimers in eukaryotic cells, and the heterodimers are always a highly dynamic equilibrium processes of polymerization and depolymerization, it is identified to be a critical characteristic of microtubule [5–8]. Breaking the dynamic equilibrium lead to disrupt the cell division, resulting in an increase in a large number of cells in metaphase arrest, and then cell death [9–11]. So tubulin has been well known to be an attractive target for exploring new anticancer agents [12].

Over the past decades, a large number of tubulin inhibitor have been developed and identified, and they are classified into two categories, one class is microtubule destabilizing agents which binding to the colchicine and vinblastine binding site and interfering with tubulin assembly, the other class is microtubule-stabilizing agents which binding to the tubulin paclitaxel binding site and disturbing the tubulin disassembly [13–16]. However, there is no candidate molecule binding at the colchicine site can be approved by FDA in the decades.

Nowadays, many tubulin inhibitors binding at the colchicine site have been designed and explored, such as Colchicine, CA-4, SAMRT and so on (Fig. 1) [5,17,18]. Many 4,5-dihydro-1H-pyrazole derivates (1) were developed to inhibit tubulin assembly, as can been see, the flexible of these tubulin inhibitors was enhanced and they can well bind the colchicine site, resulting in the potent anticancer activity [19–21]. Besides, chalcone derivates show the potent anticancer activity as tubulin inhibitor [22], and the framework was also employed to modify some natural compound as tubulin inhibitor, such as resveratrol, which showed the potent antiproliferative and proapoptotic effects on human cancer cells [23,24]. Chalcone-resveratrol derivates were explored to be tubulin inhibitor but the more rigidity of the compound was improved, it may lead to some unwanted side effect which limit the further preclinical study [22].

In order to improve the flexible of compound, the acyl ester group was introduced, which make compound bind well to the target protein. Meanwhile, the key fragments were remained, such as the α,β-unsaturated ketone of chalcone and methoxy group. Based on these strategies, a novel series of resveratrol-cinnamoyl derivates as tubulin
inhibitors were designed, and the bioactivities of these compounds was evaluated. Molecular docking was also performed to explore the binding modes of these compounds at the colchicine binding site.

2. Results and discussion

2.1. Chemistry

The desired compounds were synthesized as described in the Scheme 1. Methylation of resveratrol and then get the compound 3 using Vilsmeier-Haack reaction (POCl3/DMF). Compound 3 was reduced under NaBH4 catalyzing to obtain compound 4. Subsequently, compound 4 and various cinnamic acid were reacted to get the targeted compounds (6a–6o).

2.2. Anti-proliferative activities in vitro

All the desired compounds were evaluated the anti-proliferative activities against A549, MCF-7, HepG2, HeLa and MDA-MB-231 five cancer cell lines using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Meanwhile, as colchicine site tubulin inhibitor, colchicine and CA-4 were selected to be positive drug. The results were summarized in Table 1. As can be seen, most compounds exhibited good anti-proliferative activities against the five cancer cell lines, and the IC50 value of five compounds (6f, 6h–6k) were no more than 5 μM. Meanwhile, all the designed compounds showed low toxicity against human normal hepatocytes LO2 cells (the CC50 value ranged from 87.37 to 167.44 μM) and human embryonic kidney 293T cells (the CC50 value ranged from 93.61 to 127.79 μM). Particularly, compound 6h displayed the potent anti-proliferative activity with the IC50 value of 0.12, 0.016, 0.44, 0.37 and 0.78 μM against A549, MCF-7, HepG2, HeLa and MDA-231, respectively. It was superior to that of the reference drug colchicine, and not much worse than CA-4.

It was interesting to find that compound 6h containing methoxy group showed the potent activities, indicating that the methoxy group play an important role in improvement of anti-proliferative activity, and some compounds containing the group such as 6d–6f also displayed a certain extent of anti-proliferative activity. Meanwhile, when the methoxy substituted in ortho-position, the compound exhibited the unfavorable activity against the five cancer cell lines, such as compound 6c and 6g. What’s more, the substituent in the benzene ring of cinnamoyl affected the activities of compounds, compound with the halogen substituent also exhibited the better anti-proliferative activity, and the tendency of the order is F > Br > Cl. Besides, compounds (6n, 6o) containing electron with-drawing groups (NO2, CF3) displayed the poor anti-proliferative activity, and the electron with-drawing groups (NO2, CF3) have no contribute to the anti-proliferative activity of compounds.

In summarized, electron-donating group (such as OCH3) in the benzene ring could help to improve the anti-proliferative activity. In contrast, the electron with-drawing groups (NO2, CF3) in the benzene ring could decrease activities of compounds. Meanwhile, compound 6h was selected to evaluate the anti-proliferative activity against some drug resistant cancer cells to investigate its effect on drug resistant cancer cells. The result was shown in Table 2.

![Fig. 1. The structure of tubulin assembly inhibitors and the strategy of molecular design.](image-url)
compound 6h exhibited the 14-fold resistances to the corresponding drug-resistant cells, which was similar to CA-4. Compared to taxol and vincristine, compound 6h revealed the moderate antiproliferative activity against drug resistant cancer cells.

2.3. Tubulin polymerization inhibitory in vitro

To evaluate whether these resveratrol-cinnamoyl derivates target the tubulin-microtubules system, the representative compounds (6f, 6h-6m) were selected to test their inhibitory activities against tubulin polymerization in vitro. As can be seen in Table 3, compound 6h exhibited the potent activity in inhibiting tubulin polymerization and the IC₅₀ value was 1.03 μM, slightly better than that of the reference compound CA-4 (IC₅₀ = 1.32 μM). As shown in Fig. 2, colchicine exhibited a significant inhibition of tubulin polymerization. Interestingly, compound 6h displayed the superior action to that of colchicine, it was indicated that compound 6h could be an anti-tubulin inhibitor. Meanwhile, compound 6h was also tested for potential inhibition of the binding of [³H] colchicine to tubulin and the result was listed in Table 3, indicating that compound 6h competed with [³H] colchicine in binding to tubulin, the binding potency to the colchicine binding site was up to 91.31% at 4 μM, identifying that compound 6h display the tubulin polymerization inhibition and bind to the colchicine binding site.

2.4. Induce cell cycle arrest

Most tubulin destabilizing agents generally could disrupt the mitosis to arrest normal cell cycle, lead to decrease growth and proliferation of cancer cells. The effect of 6h on MCF-7 cell cycle progression was examined by flow cytometry analysis using PI staining assay. The results were showed in Fig. 3, compound 6h could induce the MCF-7 cell arrest in the G2/M phase, which increased to 77% at 1 μM. What’s more, the percentage of cells at the G2/M phase from 13.92 to 77%, indicating compound 6h induced a markedly cell cycle arrest at the G2/M phase in a dose-dependent manner, compared to 12.92% of untreated control.

Moreover, the alterations in G2/M regulatory protein expressions were studied after treatment of compound 6h in MCF-7 cell. As shown in Fig. 3, compound 6h caused a decrease in CDK1 expression and CDC25C expression, resulting cell cycle arrest in G2/M phase, and the expression of p-CDK1 was up-regulated. All the results exhibited the dose-dependent manner.

<table>
<thead>
<tr>
<th>compound</th>
<th>R</th>
<th>compound</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>6a</td>
<td>H</td>
<td>6i</td>
<td>4-F</td>
</tr>
<tr>
<td>6b</td>
<td>4-CH₃</td>
<td>6j</td>
<td>3-Cl</td>
</tr>
<tr>
<td>6c</td>
<td>2-OCH₃</td>
<td>6k</td>
<td>4-Cl</td>
</tr>
<tr>
<td>6d</td>
<td>3-OCH₃</td>
<td>6l</td>
<td>3-Br</td>
</tr>
<tr>
<td>6e</td>
<td>4-OCH₃</td>
<td>6m</td>
<td>4-Br</td>
</tr>
<tr>
<td>6f</td>
<td>3,4-OCH₂O⁻</td>
<td>6n</td>
<td>4-NO₂</td>
</tr>
<tr>
<td>6g</td>
<td>2,3,4-OCH₃</td>
<td>6o</td>
<td>4-CF₃</td>
</tr>
<tr>
<td>6h</td>
<td>3,4,5-OCH₃</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scheme 1. Synthesis of the desired compounds 6a-6o. Reagents and conditions: (i) CH₃I/K₂CO₃, acetone, reflux; (ii) POCl₃/DMF, 0°C-rt.; (iii) NaBH₄, EtOH, rt; (iv) DCC/DMAP, DCM, reflux.
In order to investigate the effects of compound 6h to microtubules in living cells, immunofluorescence assay in MCF-7 cells by staining tubulin was carried out. As shown in Fig. 5, cells in the control group exhibited the normal arrangement and organization, the microtubule network was well-assembled. In contrast, after treatments with colchicine (0.25μM) and 6h, respectively, cell morphology has been changed and the cytoskeleton was destroyed, the microtubule network was broken down. It was indicated that compound 6h could disturb the assembly of microtubule and be a novel tubulin polymerization inhibitor.

2.7. Molecular modelling

In order to better understand the mode of compound 6h binding to tubulin, molecular docking of 6h into the colchicine binding pocket of tubulin (PDB: 1SA0) was performed using Discovery Studio 3.5 software. As shown in Fig. 6A and B, compound 6h could well bind to the colchicine site of tubulin, and the binding mode was similar to that of 3,4,5-Trimethoxyphenyl of CA-4 was formed a hydrogen bond (distance: 2.02Å) with Cys241, which is a critical amino acid that was the marker of cells undergoing apoptosis, were both up-regulated by treatment with 6h in a dose-dependent manner. All the results conform to cell apoptosis results.

2.5. Induce cell apoptosis

To identify if the compound 6h could induce cell apoptosis in MCF-7 cell, apoptosis assay was explored using Annexin V-FITC/PI assay. As shown in Fig. 4, after treatment by compound 6h for 48h at different concentrations (0.25, 0.5μM) and 6m, the level expression of proapoptotic protein Bax was increased by 6h treatment in a dose-dependent manner. In contrast, the anti-apoptotic protein Bcl-2 expression was decreased. In addition, the expression level of Cleaved-PARP and Cleaved Caspase-3, which were the marker of cells undergoing apoptosis, were both up-regulated by treatment with 6h in a dose-dependent manner. All the results confirm to cell apoptosis results.

2.6. Immunofluorescence of compound 6h

Table 1

The antiproliferative activities of all designed compounds against cancer cell lines.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>IC50 ± SD (μM)</th>
<th>Compounds</th>
<th>IC50 ± SD (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A549</td>
<td>MCF-7</td>
<td>HepG2</td>
<td>Hela</td>
</tr>
<tr>
<td>6a</td>
<td>7.19 ± 0.25</td>
<td>4.32 ± 0.37</td>
<td>8.48 ± 0.63</td>
</tr>
<tr>
<td>6b</td>
<td>28.96 ± 1.08</td>
<td>23.65 ± 2.03</td>
<td>19.17 ± 1.81</td>
</tr>
<tr>
<td>6c</td>
<td>&gt; 50</td>
<td>46.82 ± 2.41</td>
<td>49.91 ± 3.79</td>
</tr>
<tr>
<td>6d</td>
<td>12.47 ± 0.94</td>
<td>8.37 ± 0.94</td>
<td>11.78 ± 1.42</td>
</tr>
<tr>
<td>6e</td>
<td>17.83 ± 0.88</td>
<td>14.19 ± 0.98</td>
<td>21.03 ± 1.65</td>
</tr>
<tr>
<td>6f</td>
<td>0.87 ± 0.01</td>
<td>0.091 ± 0.003</td>
<td>0.51 ± 0.03</td>
</tr>
<tr>
<td>6g</td>
<td>49.86 ± 1.79</td>
<td>&gt; 50</td>
<td>&gt; 50</td>
</tr>
<tr>
<td>6h</td>
<td>0.12 ± 0.008</td>
<td>0.016 ± 0.001</td>
<td>0.44 ± 0.004</td>
</tr>
<tr>
<td>6i</td>
<td>0.98 ± 0.01</td>
<td>0.23 ± 0.02</td>
<td>0.76 ± 0.02</td>
</tr>
<tr>
<td>6j</td>
<td>1.39 ± 0.02</td>
<td>0.88 ± 0.03</td>
<td>1.19 ± 0.07</td>
</tr>
<tr>
<td>6k</td>
<td>1.46 ± 0.02</td>
<td>1.03 ± 0.11</td>
<td>1.21 ± 0.09</td>
</tr>
<tr>
<td>6l</td>
<td>3.95 ± 0.18</td>
<td>2.17 ± 0.23</td>
<td>5.18 ± 1.44</td>
</tr>
<tr>
<td>6m</td>
<td>2.07 ± 0.23</td>
<td>2.29 ± 0.18</td>
<td>3.04 ± 1.76</td>
</tr>
<tr>
<td>6n</td>
<td>48.74 ± 2.44</td>
<td>&gt; 50</td>
<td>38.81 ± 4.82</td>
</tr>
<tr>
<td>6o</td>
<td>&gt; 50</td>
<td>&gt; 50</td>
<td>44.75 ± 4.13</td>
</tr>
<tr>
<td>Colchicine</td>
<td>1.17 ± 0.03</td>
<td>0.74 ± 0.002</td>
<td>1.33 ± 0.07</td>
</tr>
<tr>
<td>CA-4</td>
<td>0.15 ± 0.006</td>
<td>0.037 ± 0.005</td>
<td>0.18 ± 0.009</td>
</tr>
</tbody>
</table>

* IC50 values are indicated as the mean ± SD (standard error) of at least three independent experiments.

Table 2

The IC50 values of compound 6h in different drug-resistant cancer cells.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>IC50 ± SD (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A549</td>
<td>MCF-7</td>
</tr>
<tr>
<td>6h</td>
<td>0.12 ± 0.008</td>
</tr>
<tr>
<td>CA-4</td>
<td>0.15 ± 0.006</td>
</tr>
<tr>
<td>Taxol</td>
<td>0.027 ± 0.006</td>
</tr>
<tr>
<td>Vinristine</td>
<td>ND</td>
</tr>
</tbody>
</table>

* DRI: drug-resistant index = (IC50 of drug resistant cancer cell)/(IC50 of parental cancer cell).

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Inhibition of tubulin polymerization ± SD</th>
<th>Inhibition of colchicine binding ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2μM</td>
<td>4μM</td>
</tr>
<tr>
<td>6f</td>
<td>3.72 ± 0.11</td>
<td>–</td>
</tr>
<tr>
<td>6h</td>
<td>1.03 ± 0.09</td>
<td>81.74 ± 1.72</td>
</tr>
<tr>
<td>6i</td>
<td>3.48 ± 0.13</td>
<td>–</td>
</tr>
<tr>
<td>6j</td>
<td>4.47 ± 0.43</td>
<td>–</td>
</tr>
<tr>
<td>6k</td>
<td>4.63 ± 0.28</td>
<td>–</td>
</tr>
<tr>
<td>6l</td>
<td>8.29 ± 0.57</td>
<td>–</td>
</tr>
<tr>
<td>6m</td>
<td>6.44 ± 0.44</td>
<td>–</td>
</tr>
<tr>
<td>CA-4</td>
<td>1.32 ± 0.11</td>
<td>82.23 ± 1.47</td>
</tr>
</tbody>
</table>

* Data are presented as mean from three independent experiments.

Table 3

Inhibition of tubulin polymerization and colchicine binding to tubulin.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Inhibition of tubulin polymerization ± SD</th>
<th>Inhibition of colchicine binding ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2μM</td>
<td>4μM</td>
</tr>
<tr>
<td>6h</td>
<td>3.72 ± 0.11</td>
<td>–</td>
</tr>
<tr>
<td>6i</td>
<td>4.47 ± 0.43</td>
<td>–</td>
</tr>
<tr>
<td>6j</td>
<td>6.44 ± 0.44</td>
<td>–</td>
</tr>
<tr>
<td>6k</td>
<td>8.29 ± 0.57</td>
<td>–</td>
</tr>
<tr>
<td>6l</td>
<td>1.32 ± 0.11</td>
<td>82.23 ± 1.47</td>
</tr>
</tbody>
</table>

* Used as positive control.
anchors most of all CBS inhibitors [25], and the same interaction was found in the mode of colchicine binding to tubulin, the distance was 1.91 Å. In contrast, the π-cation interaction (formed by benzene ring and Lys352) formed instead of the hydrogen bond (distance: 2.29 Å) (formed by carbonyl and Val181) formed colchicine and tubulin. In the 3D model, it was observed that flexible of compound was improved by introducing the acyl ester group, resulting in binding to the colchicine site of tubulin with the great conformation. It was proved that the original strategy which introducing the acyl ester group to improve the flexible of desired compound is rational.

3. Conclusion

In summary, a novel series of resveratrol-cinnamoyl derivates as tubulin inhibitors were designed and synthesized, and their anti-proliferative activities against A549, MCF-7, HepG2, HeLa and MDA-MB-231 five cancer cell lines were evaluated, and most desired compounds showed better anti-proliferative activity. Out of them, compound 6h exhibited the potent anti-proliferative activity (IC50 ranging from 0.016 to 0.78 μM), which was superior to that of reference drug colchicine. In addition, compound 6h exhibited a significant inhibition of tubulin polymerization and a great potency to compete with [3H] colchicine in binding to tubulin. Further pharmacological studies indicated that compound 6h disturb the dynamic equilibrium processes of microtubule, inhibit tubulin polymerization, lead to cells cycle arrest in G2/M phase, make the cell cycle associated protein CDK1 and CDC25C down-regulate, p-CDK1 up-regulate. Meanwhile, compound 6h induced cell apoptosis in a dose-dependent manner, the apoptosis-related proteins such as Bax, Cleaved-PARP and Cleaved Caspase-3 were increased, Bcl-2 was decreased. Molecular docking demonstrated that 6h bind to the colchicine binding site of tubulin. In a word, these results revealed that compound 6h is a novel tubulin polymerization inhibitor for treatment of cancers, and it deserve to be explored furtherly.

4. Experimental

4.1. Chemistry

All the chemical agents were purchased from commercial suppliers and used without further purification. Reaction progress was monitored by analytical thin layer chromatography (TLC), which was performed on precoated silica gel GF254 plates (Qingdao Haiyang Chemical Plant, Qingdao, China) and the spots were detected by UV light (254 nm). 1H NMR and 13C NMR spectra were measured on a Bruker 500 and 600 spectrometer. Chemical shifts (d) are in parts per million (ppm) downfield from TMS (d); multiplicity; observed coupling constant (J) in hertz (Hz); proton count; assignment. Multiplicities are recorded as s (singlet), d (doublet), dd (doublet of doublet), t (triplet), q (quarter), m (multiplet) and br s (broad singlet) where appropriate. Mass spectra were obtained on a MS Agilent 1100 Series LC/MSD Trap mass spectrometer (ESI-MS).

4.1.1. Synthesis of intermediate 4

Intermediate 4 was synthesized as described in the literature [26,27].

To a solution of resveratrol (1) (1 mmol) in 30 ml acetone, potassium carbonate (6 mmol) was added. After stirring for 6 h at refluxing temperature, the mixture was cooled down and then filtered, and the solvent was removed to obtain...
the crude products, which were purified by column chromatography with EtOAc/PE (1:3) to afford the intermediate 2. To a solution of intermediate 2 (1 mmol) in 15 ml anhydrous DMF, phosphorus oxychloride (1.5 mmol) was added dropwise at 0°C or in the ice-bath. After vigorous stirring for 3 h in the ice-bath, the mixture was poured into 100 ml ice water and stirred for 30 min. The crude product was precipitated and filtered, purified by recrystallization from ethanol to get the intermediate 3. $^1$H NMR (DMSO-$d_6$, 500 MHz): 10.41 (s, 1H, CHO), 7.95 (d, $J = 16.25$ Hz, 1H, ArH), 7.50 (d, $J = 8.70$ Hz, 2H, ArH), 7.20 (d, $J = 16.25$ Hz, 1H, ArH), 6.97 (d, $J = 8.70$ Hz, 2H, ArH), 6.90 (d, $J = 1.90$ Hz, 1H, ArH), 6.62 (d, $J = 2.10$ Hz, 1H, ArH), 3.92 (s, 3H, OCH$_3$), 3.90 (s, 3H, OCH$_3$), 3.78 (s, 3H, OCH$_3$).

Intermediate 3 (1 mmol) was dissolved in 15 ml anhydrous ethanol, sodium borohydride (1 mmol) was added in the ice-bath. After stirring for 2 h at room temperature, the solvent was removed to afford the crude product (intermediate 4), and it was used to next reaction without further purification.

4.1.2. The general procedure for the preparations of compounds 6a-6o

To a solution of intermediate 4 (1 mmol) and various cinnamic acid (1 mmol) in 20 ml anhydrous DCM, dicyclohexylcarbodiimide (1.2 mmol) and 4-dimethylaminopyridine (1 mmol) were added. After stirring for 10 h at refluxing temperature, the mixture was washed by water (2 × 10 ml), and then washed with brine, dried over anhydrous...
sodium sulfate, and removed in vacuo to get the crude product, which was purified by column chromatography with EtOAc/PE (1:5) to obtain the desired compounds 6a-6o.

4.1.2.1. 2,4-Dimethoxy-6-((E)-4-methoxystyryl)benzyl cinnamate (6a).
White powder. Yield: 73.7%. m. p: 206–208°C. 1H NMR (500 MHz, CDCl₃): 7.68 (d, J = 16.00 Hz, 1H, ArH), 7.45 (m, 4H, ArH), 7.33 (m, 3H, ArH), 7.31 (d, J = 16.05 Hz, 1H, ArH), 6.98 (d, J = 16.05 Hz, 1H, ArH), 6.88 (d, J = 8.70 Hz, 2H, ArH), 6.78 (d, J = 2.25 Hz, 1H, ArH), 6.46 (d, J = 16.30 Hz, 1H, ArH), 6.43 (d, J = 3.10 Hz, 1H, ArH), 5.44 (s, 2H, CH₂), 3.88 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃). 13C NMR (150 MHz, CDCl₃): 167.31, 161.03, 159.89, 159.56, 144.71, 140.62, 131.50, 130.16(2), 129.94, 128.83(2), 128.08(2), 123.50, 118.33, 117.25, 114.19(2), 101.83, 97.68, 57.85, 55.90, 55.44, 55.34. MS (ESI) m/z: 431.22 [M+H]+ (calcd for 431.18, C₂₇H₂₇O₅).

4.1.2.2. 2,4-Dimethoxy-6-((E)-4-methoxystyryl)benzyl(E)-3-(p-tolyl)acrylate (6b).
White powder. Yield: 83.4%. m. p: 216–218°C. 1H NMR (500 MHz, CDCl₃): 7.66 (d, J = 15.95 Hz, 1H, ArH), 7.45 (d, J = 8.70 Hz, 2H, ArH), 7.36 (d, J = 8.10 Hz, 2H, ArH), 7.31 (d, J = 16.05 Hz, 1H, ArH), 7.15 (d, J = 7.95 Hz, 2H, ArH), 6.99 (d, J = 16.05 Hz, 1H, ArH), 6.88 (d, J = 8.75 Hz, 2H, ArH), 6.79 (d, J = 2.30 Hz, 1H, ArH), 6.44 (d, J = 2.30 Hz, 1H, ArH), 6.41 (J = 15.95 Hz, 1H, ArH), 5.44 (s, 2H, CH₂), 3.88 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 2.35 (s, 3H, CH₃). 13C NMR (150 MHz, CDCl₃): 167.64, 161.01, 159.89, 159.55, 144.69, 140.61, 140.55, 131.80, 131.46, 129.95, 129.57(2), 128.06(2), 128.05(2), 123.53, 117.24, 114.39, 114.18(2), 101.81, 97.67, 57.73, 55.89, 55.43, 55.34, 21.47. MS (ESI) m/z: 445.12 [M+H]+ (calcd for 445.18, C₂₈H₂₉O₅).

4.1.2.3. 2,4-Dimethoxy-6-((E)-4-methoxystyryl)benzyl(E)-3-(2-methoxyphenyl)acrylate (6c).
White powder. Yield: 79.6%. m. p: 224–225°C. 1H NMR (500 MHz, CDCl₃): 8.01 (d, J = 16.15 Hz, 1H, ArH), 7.45 (m, 3H, ArH), 7.33 (d, J = 15.85 Hz, 1H, ArH), 7.31 (m, 1H, ArH), 6.98 (d, J = 16.05 Hz, 1H, ArH), 6.89 (m, 4H, ArH), 6.79 (d, J = 2.25 Hz, 1H, ArH), 6.58 (d, J = 16.10 Hz, 1H, ArH), 6.44 (d, J = 2.25 Hz, 1H, ArH), 5.44 (s, 2H, CH₂), 3.88 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃). 13C NMR (150 MHz, CDCl₃): 167.86, 160.97, 159.91, 159.52, 158.38, 140.62, 140.23, 131.43, 131.32, 129.99, 129.14, 128.06(2), 123.57, 123.52, 120.63, 118.93, 114.50, 114.17(2), 111.06, 101.79, 97.68, 57.68, 55.89, 55.43, 55.41, 55.33. MS (ESI) m/z: 461.08 [M+H]+ (calcd for 461.19, C₂₈H₂₉O₆).

4.1.2.4. 2,4-Dimethoxy-6-((E)-4-methoxystyryl)benzyl(E)-3-(3-methoxyphenyl)acrylate (6d).
White powder. Yield: 68.4%. m.p: 208–210°C. 1H NMR (500 MHz, CDCl₃): 7.71 (d, J = 16.00 Hz, 1H, ArH), 7.51 (d, J = 8.70 Hz, 2H, ArH), 7.36 (d, J = 16.05 Hz, 1H, ArH), 7.31 (d, J = 15.35 Hz, 1H, ArH), 6.49 (s, 1H, ArH), 5.50 (s, 2H, CH₂), 3.90 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃). 13C NMR (150 MHz, CDCl₃): 167.23, 161.05, 159.94, 159.83, 159.56, 144.62, 140.61, 131.51, 129.99, 129.82, 128.05(2), 123.47, 120.84, 118.62, 116.25, 116.25, 114.19(2), 113.14, 112.66, 101.82, 97.67, 57.85, 55.89, 55.44, 55.34, 55.27. MS (ESI) m/z: 461.08 [M+H]+ (calcd for 461.19, C₂₈H₂₉O₆).

4.1.2.5. 2,4-Dimethoxy-6-((E)-4-methoxystyryl)benzyl(E)-3-(4-methoxyphenyl)acrylate (6e).
White powder. Yield: 72.3%. m.p: 206–208°C.

![Fig. 6. (A) Molecular docking of 6h with tubulin (PDB ID: 1SA0). (B) Molecular docking of colchicine with tubulin.](image-url)
178–180 °C. 1H NMR (500 MHz, CDCl3): 7.65 (d, J = 15.90 Hz, 1H, ArH), 7.46 (d, J = 8.70 Hz, 2H, ArH), 7.41 (d, J = 8.80 Hz, 2H, ArH), 7.32 (d, J = 16.10 Hz, 1H, ArH), 6.98 (d, J = 16.05 Hz, 1H, ArH), 6.87 (m, 4H, ArH), 6.79 (d, J = 2.15 Hz, 1H, ArH), 6.44 (d, J = 2.25 Hz, 1H, ArH), 6.34 (m, J = 15.90 Hz, 1H, ArH), 5.44 (s, 2H, CH2), 3.88 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 3.81 (s, 3H, OCH3), 13C NMR (150 MHz, CDCl3): 167.61, 161.26, 160.99, 159.88, 159.54, 144.34, 140.59, 131.43, 129.96, 129.71 (2), 128.05 (2), 127.28, 123.55, 118.82, 114.45, 114.25 (2), 114.17 (2), 101.79, 97.67, 57.65, 55.89, 55.43, 55.36, 55.33. MS (ESI) m/z: 461.08 [M + H]+ (calf for 461.19, C26H20O8).

1.2.4.6. 2,4-Dimethoxy-6-((E)-3-(benzo[d][1,3]dioxol-5-yl)acrylate (6f). White powder. Yield: 78.1%. m.p: 194–196 °C. 1H NMR (500 MHz, CDCl3): 7.58 (d, J = 15.90 Hz, 1H, ArH), 7.45 (d, J = 8.75 Hz, 2H, ArH), 7.30 (d, J = 16.05 Hz, 1H, ArH), 6.98 (d, J = 16.05 Hz, 1H, ArH), 6.95 (m, 2H, ArH), 6.88 (d, J = 8.75 Hz, 2H, ArH), 6.77 (m, 2H, ArH), 6.43 (d, J = 2.25 Hz, 1H, ArH), 6.28 (d, J = 15.85 Hz, 1H, ArH), 5.97 (s, 2H, CH2), 5.42 (s, 2H, CH2), 3.88 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 3.81 (s, 3H, OCH3). 13C NMR (150 MHz, CDCl3): 167.43, 161.00, 159.87, 159.55, 149.47, 148.26, 144.36, 140.59, 131.44, 129.95, 128.97, 128.04 (2), 124.36, 123.54, 116.30, 114.39, 114.18 (2), 108.49, 106.52, 101.80, 101.50, 97.67, 55.89, 55.43, 55.34. MS (ESI) m/z: 745.13 [M + H]+ (calf for 745.17, C30H24O10).

1.2.4.7. 2,4-Dimethoxy-6-((E)-3-(2,3,4-trimethoxyphenyl)acrylate (6g). White powder. Yield: 64.6%. m.p: 201–203 °C. 1H NMR (500 MHz, CDCl3): 7.99 (d, J = 16.10 Hz, 1H, ArH), 7.45 (d, J = 8.70 Hz, 2H, ArH), 7.32 (d, J = 16.05 Hz, 1H, ArH), 7.19 (d, J = 8.80 Hz, 1H, ArH), 6.98 (d, J = 16.00 Hz, 1H, ArH), 6.78 (d, J = 2.30 Hz, 1H, ArH), 6.64 (d, J = 8.85 Hz, 1H, ArH), 6.45 (d, J = 16.10Hz, 1H, ArH), 6.43 (d, J = 2.30 Hz, 1H, ArH), 5.43 (s, 2H, CH2), 3.88 (s, 3H, OCH3), 3.86 (s, 4H, 2OCH3), 3.85 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 3.81 (s, 3H, OCH3). 13C NMR (150 MHz, CDCl3): 167.82, 160.96, 159.88, 159.22, 155.93, 153.54, 141.95, 140.58, 139.66, 131.37, 129.99, 128.05 (2), 123.57, 123.51, 117.24, 114.16 (2), 107.62, 101.78, 97.68, 61.42, 60.90, 57.61, 56.04, 55.89, 55.43, 55.33. MS (ESI) m/z: 521.17 [M + H]+ (calf for 521.21, C26H20O8).
J = 2.25 Hz, 1H, ArH), 5.47(s, 2H, CH2), 3.89(s, 3H, OCH3), 3.85(s, 3H, OCH3), 3.81(s, 3H, OCH3).

13C NMR (150 MHz, CDCl3): 166.24, 161.17, 159.86, 159.62, 148.40, 141.66, 140.65, 140.60, 131.58, 129.85, 128.59(2), 128.04(2), 124(2), 123.38, 122.69, 114.20(2), 113.91, 101.85, 97.66, 58.26, 55.59, 55.45, 55.35. MS (ESI) m/z: 476.28 [M + H]+ (calcd for 476.16, C27H26NO7).

4.2.1.5. 2,4-Dimethoxy-6-(E)-4-methoxystyrylbenzyl(E)-3-(4-(trifluoromethyl)phenyl)acyrate (60). Yellow powder. Yield: 57.6%. m. p: 249–251 °C. 1H NMR (500 MHz, CDCl3): 7.67(d, J = 16.00 Hz, 1H, ArH), 7.60(d, J = 8.30 Hz, 2H, ArH), 7.54(d, J = 8.25 Hz, 2H, ArH), 7.45(d, J = 8.70 Hz, 2H, ArH), 7.29(d, J = 16.05 Hz, 1H, ArH), 6.99(d, J = 16.00 Hz, 1H, ArH), 6.88(d, J = 8.75 Hz, 2H, ArH), 6.78(d, J = 2.25 Hz, 1H, ArH), 6.51(d, J = 16.05 Hz, 1H, ArH), 6.44(d, J = 2.30 Hz, 1H, ArH), 5.46(s, 2H, CH2), 3.89(s, 3H, OCH3), 3.85(s, 3H, OCH3), 3.81(s, 3H, OCH3).

13C NMR (150 MHz, CDCl3): 166.65, 161.11, 159.87, 159.59, 140.72, 140.61, 136.17, 131.55, 129.88, 128.15(2), 128.05(2), 125.81, 125.78, 123.43, 120.93, 114.19(2), 114.06(2), 101.84, 97.66, 58.09, 55.89, 55.44, 55.34. MS (ESI) m/z: 499.21 [M + H]+ (calcd for 499.17, C28H26F3O5).

4.2.5. Cell apoptosis assay

1 × 105 MCF-7 cells in exponential growth was seeded into each well of 6-well plate, and treated with compound 6h at different concentrations for 24 h, the cells were collected, centrifuged and resuspended in 500 mL AnnexinV binding buffer, and incubated for 15 min on the ice in the darkness. Samples were analyzed using a FACS Calibur flow cytometer (Bectone Dickinson, San Jose, CA, USA).

4.2.6. Western blotting

MCF-7 cells were incubated in the presence of 6h for 24 h. Subsequently, trypsinized the cells and collected, the prepared 1 × RIPA lysis buffer (1% NP-40, 50 mM Tris-HCl, 150 mM NaCl, pH 7.4, 0.25% deoxycholic acid, 1 mM EDTA containing protease inhibitors PMSF) (Amresco, Solon, USA) was added to extract the total proteins. The proteins was separated by sodium dodecyl sulfate (8% or 10%) polyacrylamide gel electrophoresis (SDS-PAGE, BioRad Laboratories, Hercules, CA), and transferred from the gel onto PVDF membrane (BioRad Laboratories, Hercules, CA), blotted with primary antibodies, probed with secondary isotype specific antibodies tagged with horseradish peroxidase (Cell Signaling Technology). Bound immunocomplexes were detected using a Chemidoc™ XRS + system (BioRad Laboratories, Hercules, CA).

4.2.7. Immunofluorescence staining

MCF-7 cells were seeded into 6-well plates and then treated with different concentrations of tested compounds. Cells on cover slips were fixed by 4% paraformaldehyde. After permeabilized with 1% Triton X-100, cells were incubated in 3% BSA for 1 h. Then cells were incubated with anti b-tubulin monoclonal antibody at 500-fold dilution overnight at 4 °C and stained with Cy3-labeled rabbit anti-mouse secondary antibody at 500-fold dilution. Then DNA of cells were detected with DAPI. Cells were finally visualized using an LSM 570 laser confocal microscope (Carl Zeiss, Germany).

4.2.8. Molecular docking

Docking study was performed by Discovery Studio 3.5 and the tubulin protein (PDB:1SAO) was downloaded from RCSB Protein Data Bank (www.rcsb.org). The protein and all ligands were prepared by minimization with CHARMM force field. Molecular docking was carried out using DS-CDOCKER protocol without constraint, all bound water and ligands were eliminated from the protein and the polar hydrogen was added to the proteins.

Acknowledgments

This work was supported by National Natural Science Foundation of China (81602985 and 81703754), the Fundamental Research Funds for the Central Universities (2632018ZD19 and 2632018ZD18), the Natural Science Foundation of Jiangsu Province (BK20160763), the Program for Chang jiang Scholars and Innovative Research Team in University (IRT_15R63), the 111 Project from Ministry of Education of China (81670370 and 81703754), the Fundamental Research Funds for the Central Universities (2632018ZD19 and 2632018ZD18), the Natural Science Foundation of Jiangsu Province (BK20160763), the Program for Chang jiang Scholars and Innovative Research Team in University (IRT_15R63), the 111 Project from Ministry of Education of China (B18056) and the “Double First-Class” University Project (CPU2018GF03).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioorg.2019.103319.

References


[2] A. Anna, M.O. Steinmetz, Control of microtubule organization and dynamics: two

[3] A. Muroyama, T. Lechler, Microtubule organization, dynamics and functions in
differentiated cells, Development 144 (2017) 3012–3021.
P. Andreas, K. Marcel, G. Beno T. Design and characterization of modular scaffolds
induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in ab-
bearing N-methyl indole moiety as antitumor agents: Design, synthesis and evalu-
[12] V. Ilio, G. Lorenzo, C. Maria, K. Guido, Mitotic catastrophe: a mechanism for
[13] J. Xi, X. Zhu, Y. Feng, N. Huang, G. Luo, Y. Mao, X. Han, W. Tian, G. Wang, X. Han,
Development of a novel class of tubulin inhibitors with promising anticancer ac-
Insight into tubulin regulation from a complex with colchicine and a stathmin-like
155–183.
[16] L. Ling, S. Jiang, X. Li, L. Yao, S. Jing, J. Chen, Recent advances in trimethox-
yphenyl (TMP) based tubulin inhibitors targeting the colchicine binding site, Eur. J.
interact with the colchicine binding site, Pharm. Res. 29 (2012) 2943–2971.
D. Frost, H. Sham, S.H. Rosenberg, A.204197, a new tubulin binding agent with
antimitotic activity in tumor cell lines resistant to known microtubule inhibitors,
N.R. Farnsworth, A.D. Kinghorn, R.G. Mehta, Cancer chemopreventive activity of
induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in ab-
A class of novel tubulin polymerization inhibitors exert effective anti-tumor activity
[22] J. Xi, X. Zhu, Y. Feng, N. Huang, G. Luo, Y. Mao, X. Han, W. Tian, G. Wang, X. Han,
Development of a novel class of tubulin inhibitors with promising anticancer ac-
Insight into tubulin regulation from a complex with colchicine and a stathmin-like
155–183.