Rational design of some substituted phenyl azanediyl (bis) methylene phosphonic acid derivatives as potential anticancer agents and imaging probes: Computational inputs, chemical synthesis, radiolabeling, biodistribution and gamma scintigraphy

Mohammed A. Khedra, Hassan M. Rashedb,c,⁎, Hamed Faragd, Tamer M. Sakre,⁎

a Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Postal Code: 11795, Cairo, Egypt
b Labeled Compounds Department, Hot Labs Center, Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
c Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Egypt
d Radiotherapy and Nuclear Medicine Department, National Cancer Institute, Cairo University, Cairo, Egypt
e Radioactive Isotopes and Generator Department, Hot Labs Center, Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt

ARTICLE INFO

Keywords:
Rational design
Bis (methylene phosphonic acid)
Docking
Molecular dynamics
Radiolabeling/Gamma scintigraphy

ABSTRACT

Bisphosphonates are widely used for treatment of osteoporosis. Recently, they have been reported to be effective anticancer agents. In this work, we designed some substituted phenyl (azanediyl) bis (methylene phosphonic acid) to be tested for their anticancer effect. Both molecular docking and dynamics studies were used to select the top ranked highly scored compounds. The selected hits showed potential in vitro anticancer effect against some cell lines. Biodistribution pattern and gamma scintigraphy were conducted to the most effective derivative (BMBP) after radiolabeling with 99mTc. Results of biodistribution and scintigraphic imaging of 99mTc-BMBP in tumor bearing mice showed a notable tumor affinity, and confirmed the targeting affinity of BMBP to the tumor tissues. As a conclusion, BMBP could act as potential anticancer agent and imaging probe.

1. Introduction

Bone-seekers (compounds that have a high affinity to bones) are used in complexes with radioisotopes as imaging agents for bone tumors [1–3]. Their uptake into bone is still under investigation to understand the real mechanism, but the main uptake mechanism can be attributed to their coordination features with metals especially calcium [3–5]. Technetium-99 m is one of the most used radioisotopes in complex with bone seekers due to its excellent diagnostic characteristics (t1/2 of 6 h and gamma energy = 140 KeV) [6,7]. The bone-seekers needs specific ligands to complex with in order to direct the complex to the binding sites of bone tissue [3].

Bisphosphonates (BPs) are a class of drugs, with high affinity for bone tissues, that can form a complex with bone seekers easily [8,9]. Examples of BPs are etidronate, clodronate, pamidronate, alendronate, risedronate, ibandronate and zoledronate [10,11]. BPs' mode of action is via inhibition of human farnesyl pyrophosphate synthase (HFPPS) that is found in bone tissue that can be considered the main target of their action. 99mTc-methylene diphosphonate (99mTc-MDP) and 99mTc-ethanediyl bis [nitrilo bis-(methylene)] tetrakis-phosphonic acid (99mTc-EDTMP) are examples of 99mTc-BP complexes used for bone imaging [12,13]. The presence of anionic phosphonate groups results in chelation of calcium ions; besides attaining strong binding with the HFPPS binding sites that features cationic properties [14–16]. The HFPPS inhibitors have been reported to have anticancer activity [17,18].

In our previous study, we have reported that a one carbon linker between the –N atom and the phosphate group may be useful for getting better fitting and high affinity toward farnesyl pyrophosphatase synthase enzyme [2]. The study was for a natural compound. The main aim of this study was to maximize the pharmacodynamic interactions of BPs via optimization of the chemical structure by some modifications that aimed to increase its affinity of binding to farnesyl pyrophosphatase synthase enzyme, then, choosing the best compounds with high affinity to be tested and evaluated for their anticancer effect. Tracking the biodistribution using radiolabeling technique was the best choice for assessment of the selectivity of our compounds toward tumor cells.
2. Experimental

2.1. Materials

All chemicals were purchased from Sigma-Aldrich. Chemical synthesis was conducted as per scheme 1 synthesis pathway. The used mice weight was in the range of (20–25 g). All mice were males and from the type Swiss albino. They were supplied from the National Cancer Institute (Doki, Egypt). Molecular Operating Environment MOE 2016.08 was purchased from Chemical Computing Group Inc. (Montreal, QC, Canada). HPLC is Hitachi model, Alpha bond RP-18 C18 125A 10U column with I.D. 3.9 and length 300 mm, with UV spectrophotometer detector (SPD-6A), and consists of pumps LC-9A, Japan. 125A 10U column with I.D. 3.9 and length 300mm, with UV spectro-treal, QC, Canada). HPLC is Hitachi model, Alpha bond RP-18 C18 column with I.D. 3.9 and length 300 mm, with UV spectrophotometer detector (SPD-6A), and consists of pumps LC-9A, Japan. M.A. Khedr, et al. Bioorganic Chemistry 92 (2019) 103282

2.2. Molecular docking

2.2.1. Molecular docking using MOE 2016.08

The 3D structure of HFPPS was obtained from pdb (code = 2f92) with resolution of 2.15 Å. Alendronate was the ligand that is co-crystallized with the protein. All coordinates were derived from pdb. The used docking protocol was the triangle matcher as a placement method. London dG and MMFF94x were used as a rescoring method and Force field, respectively.

2.2.2. Molecular dynamics simulations

The simulations were performed using MOE package. The ideal pose of top ranked hits was kept inside the active site. The hydrogen atoms were added then the energy was minimized. Any solvent molecules in the system were deleted before the solvation followed by the addition of the salt atoms to the system in a spherical shape. Force field was selected as Amber 10:EHT. All non-bonded interactions were enabled. The temperature was increased from 0 to 300 K. Then this step was followed by equilibration and cooling until to 0 K was reached. The simulation was conducted over 30 ns period of time.

2.3. Chemical synthesis

2.3.1. General method for the synthesis of azanediyl (bis) methylene phosphonic acid derivatives

The compounds were synthesized according to Irani-Moedritzer method [19]. A mixture of phosphorous acid (0.1 mol) and aromatic amines (0.2 mol) in 100 ml ethanol and 50 ml of HCl was prepared. The mixture was refluxed for 3 h at 110 °C. Paraformaldehyde (0.4 mol) was added portion wise to the mixture. The reaction was kept at 110 °C for an additional three hours with stirring, in parallel; the reaction was monitored using TLC. At the end of the reaction, solvent was evaporated by a rotavaparator and the crude product was obtained. The pure product was received by recrystallization in ethanol (Scheme 1).

2.3.1.1. 4-Chlorophenylazanediyl(bis)methylenephosphonic acid II

Brown solid; yield 71%; M.P. 164–166 °C, 1HNMR δ ppm: 7.7 (d, 2H, J = 8.3 Hz), 7.5 (d, 2H, J = 8.3 Hz). IR: P=O stretching at (1140–1210) cm −1, P–O stretching (730–800) cm −1, P–C stretch (650–700), 4 (OH) at 3695. 3670, 3660, 3645 cm −1. C=C aromatic (1500–1660) cm −1. MS m/z %: 313 (63%), 315 (21%), 234 (100%), 219 (6.8%), 186 (51.8%), 140 (30.3%), 128 (12.8%), 110 (47%), 112 (65%), 94.9 (92.9%) and 80.9 (71.4%).

2.3.1.2. 4-Fluorophenyl azanediyl (bis) methylene phosphonic acid III. Yellowish brown solid; yield 82%; M.P. 158–160 °C, 1HNMR δ ppm: 7.19 (s, 4H, CH2), 7.2 (d, 2H, J = 8.3 Hz), δ 7.7 (d, 2H, J = 8.3 Hz). IR: P=O stretching (730–800) cm −1, 4 (OH) at 3695, 3670, 3660, 3645 cm −1. C=C aromatic (1555–1668) cm −1. MS m/z %: 297 (35%), 282 (12.5%), 220 (8%), 218 (65.6%), 186 (100%), 203.9 (1.5%), 124 (30.3%), 94.9 (92%) and 80.9 (70%).

2.3.1.3. 4-Bromo phenyl azanediyl (bis) methylene phosphonic acid III. Brown solid; yield 77%; M.P. 179–181 °C, 1HNMR δ ppm: 7.71 (d, 2H, J = 8.3 Hz), 7.51 (d, 2H, J = 8.3 Hz). IR: P=O stretching at (1140–1210) cm −1, P–O stretching (730–800) cm −1, P–C stretch (650–700), 4 (OH) at 3685. 3681, 3662, 3645 cm −1. C=C aromatic (1555–1668) cm −1. MS m/z %: 358.9 (49.8%), 360.9 (50%), 341 (12.6%), 279.9 (8.1%), 277 (100%), 183 (30.3%), 186 (51.8%), 155 (65.4%), 94.9 (90%) and 80.9 (70.5%).

2.3.1.4. 2-Bromo-5-methyl phenyl azanediyl (bis) methylene phosphonic acid IV. Brown crystals; yield 74%; M.P. 148–150 °C, 1HNMR δ ppm: 8.3 Hz), δ 7.2 (d, 2H, J = 8.3 Hz). IR: P=O stretching (730–800) cm −1, 4 (OH) at 3688. 3675, 3662, 3645cm−1. C=C aromatic (1555–1668) cm −1. MS m/z %: 297 (35%), 282 (12.5%), 220 (8%), 218 (65.6%), 186 (100%), 203.9 (1.5%), 124 (30.3%), 94.9 (92%) and 80.9 (70%).

2.3.1.5. 2-Chlorophenyl azanediyl (bis) methylene phosphonic acid V. Dark brown solid; yield 77%; M.P. 179–181 °C, 1HNMR δ ppm: 8.3 Hz), δ 7.2 (d, 2H, J = 8.3 Hz). IR: P=O stretching at (1140–1210) cm −1, P–O stretching (730–800) cm −1, P–C stretch (650–700), 4 (OH) at 3685. 3681, 3662, 3645 cm −1. C=C aromatic (1555–1668) cm −1. MS m/z %: 358.9 (49.8%), 360.9 (50%), 341 (12.6%), 279.9 (8.1%), 277 (100%), 183 (30.3%), 186 (51.8%), 155 (65.4%), 94.9 (90%) and 80.9 (70.5%).

2.3.1.6. 2-Chloro-5-methyl phenyl azanediyl (bis) methylene phosphonic acid VI. Brown crystals; yield 74%; M.P. 148–150 °C, 1HNMR δ ppm: 8.3 Hz), δ 7.2 (d, 2H, J = 8.3 Hz). IR: P=O stretching (730–800) cm −1, 4 (OH) at 3688. 3675, 3662, 3645 cm −1. C=C aromatic (1555–1668) cm −1. MS m/z %: 297 (35%), 282 (12.5%), 220 (8%), 218 (65.6%), 186 (100%), 203.9 (1.5%), 124 (30.3%), 94.9 (92%) and 80.9 (70%).

Scheme 1. The synthetic pathway for the proposed compounds.
1.98 (s, 4H, CH2), δ 4.6 (s, 1H, P(=O)−(OH)2), δ 7.6 (d, 2H), δ 6.5 (s, 1H), δ 2.5 (s, 3H), IR: P−C stretch (650–700), P−O stretching (1140–1210) cm−1, P−O stretching (730–800) cm−1, P−C stretch (650–700), 4 (OH) at 3690, 3674, 3661, 3657 cm−1, C=O aromatic (1553–1667) cm−1, MS m/z %: 372 (40%), 374 (41%), 291 (66.1%), 277 (6.4%), 197 (30.6%), 168 (100%), 94 (96%) and 80 (70.3%).

2.3.1.5. 4-(Trifluoromethyl) phenyl azanediyl (bis) methylene phosphonic acid VII. Yellow solid; yield 84%; M.P. 188–190°C, 1H NMR δ ppm: 1.93 (s, 4H, CH2), δ 4.8 (s, 1H, P(=O)−(OH)2), δ 7.6 (d, 2H, J = 8.3 Hz), δ 7.8 (d, 2H, J = 8.3 Hz), IR: P−C stretch (650–700), P−O stretching (1140–1210) cm−1, P−O stretching (730–800) cm−1, P−C stretch (650–700), 4 (OH) at 3680, 3677, 3660 cm−1, C=O aromatic (1550–1665) cm−1, MS m/z %: 349 (13%), 330 (12%), 280 (8.3%), 254 (16%), 236 (100%), 203 (11.7%), 186 (45.5%), 174 (16%), 146 (34.4%), 127 (17.2%), 110 (26.3%) and 80 (73%).

2.4. In vitro evaluation of HFPPS enzyme inhibition

Cell line derived from human lung carcinoma A549 was purchased from the American Type Culture Collection. The cell line was cultured in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum and incubated at 37 °C in a humidified atmosphere containing 5% CO2 in air.

The concentrations of 10, 25, 50 and 100 µg/ml for the compounds were added to tissue culture dishes, and then cells were incubated for 24 h. The cells were allowed to grow for 48 h and then processed for analyses. Control group was used and triplicate cultures were set up for each concentration and for control. Each step was repeated three times. Sample protein content was determined using Bradford method [20].

HFPPS activity was evaluated in A549 cells treated with the tested compounds at 10 µg/ml, 25 µg/ml, 50 µg/ml and 100 µg/ml for 48 h. In ELISA, the wells were pre-coated with HFPPS monoclonal antibody. After incubation, a biotin-conjugated anti HFPPS antibody was added for allowing it to bind to HFPPS. After incubation unbound biotin-conjugated was decanted. Anti-HFPPS antibody was washed away. Streptavidin-HRP was added to the biotin- conjugated Anti-HFPPS antibody. Substrate solution was added and color developed in proportion to the amount of HFPPS. The absorbance was measured at 450 nm [21].

2.5. Statistical analysis

The mean ± SEM was calculated, (ANOVA) analysis followed by Turkey-Kramer test for multiple comparisons were done. Graph Pad Instant (version 3.05) was used for the statistical software.

2.6. Radiolabeling of compound BMBP

2.6.1. 99mTc-BMBP complex preparation

Radiolabeling of BMBP by 99mTc was achieved by using the direct labeling method by sodium dithionite (Na2S2O4) [22–24]. The process of labeling can be affected by; BMBP amount, Na2S2O4 amount, pH, reaction time and temperature. All these factors were investigated [25–27]. Each experiment was performed in triplicate and one-way ANOVA test was used to evaluate data differences (level of significance set at P < 0.05).

To 750 µL of BMBP solution in DMSO containing (0.2–2 mg) of BMBP, 500 µL of freshly prepared Na2S2O4 was added. Then, 200 µL of 99mTcO4− (51.5 MBq) eluted from 99Mo/99mTc generator were added dropwise to reaction vial. The pH was adjusted by 0.05 M sodium hydroxide and/or 0.05 M HCl solutions. The reaction was monitored at different temperatures during different time intervals (5–60 min).

2.6.2. Analysis of the radiochemical yield

The radiochemical yield of radiolabeling process and stability of 99mTc-BMBP complex in-vitro were evaluated by ascending paper chromatography (P.C.) and TLC to determine the percent of 99mTc-BMBP, free 99mTcO4− and colloidal 99mTcO2 [28,29]. Acetone (as a mobile phase) was used to determine the free 99mTcO4− percentage (Rf = 1) and 0.5 N NaOH was used to determine the colloidal 99mTcO2 percentage (Rf = 0) [24,30–32].

The radiochemical purity was further confirmed by a HPLC. The HPLC analysis of 99mTc-BMBP complex was done by injection of 10 µL 99mTc-BMBP complex, after 0.22 µm Millipore filtration, into the RP-18 column and UV spectrophotometric detector was operated at a 282 nm.

2.6.3. In-vitro stability of 99mTc-BMBP complex

The reaction was left at ambient room temperature for 24 h then different samples at different time periods were collected and tested for their radiochemical yields [32].

2.7. Pharmacokinetic study of 99mTc-BMBP complex

2.7.1. Induction of tumor in mice

Ehrlich ascites carcinoma was used to induce solid tumor in mice [25,33,34]. The tumor was derived from a donor female Swiss albino mouse (7 days old) and diluted with sterile physiological saline solution. Carefully, 0.2 ml of the previous solution were injected in the right thigh muscle of male Albino mice. After 7 to 10 d, a palpable solid tumor with a volume ranged 0.9 ± 0.1 cm3 was observed and used for the biological studies [34–37].

2.7.2. Biodistribution of the 99mTc-BMBP complex in tumor model

This study was approved by the animal ethics committee of Egyptian Atomic Energy Authority. Mice, with weight 20–25 g, were segregated in groups of five and fed up with food and water. Aliquots of 150 µL containing 5.2 MBq of 99mTc-BMBP complex were injected intravenously in male Swiss albino mice with palpable solid tumor in right thigh muscle. Mice were anaesthetized and dissected at 0.5, 1, 2, 3 and 4 h post-injection. Each mouse was weighed and fresh blood, bone and muscle samples were separated, weighed and their radioactivities were counted. Blood, bone and muscles were calculated in percentage of 7, 10 and 40% of the total body weight, respectively [35,38]. Other organs and tissues were also collected, weighed and their radioactivities were counted using NaI (TI) crystal gamma counter. Percent-injected dose per organ (% ID/organ ± S.D.) at each time point for a population of five mice were reported. One-way ANOVA test was used to evaluate data differences (P < 0.05).

2.8. Gamma scintigraphy of 99mTc-BMBP complex

The scintigraphic imaging of mice was performed using a dual-head variable angle γ-camera. 99mTc-BMBP biodistribution in mice (with solid tumor in right thigh muscle) was recorded in the gamma camera with a pinhole collimator of 5-mm, window setting of 140 KeV and width of 20%. Approximately 0.15 ml of 99mTc-BMBP solution containing 141 mCi was IV injected in solid tumor bearing mice. Before injection, the administered radioactive dose to each mouse was measured by an ionization chamber detector. Each mouse was anesthetized by intraperitoneal injection of thiopental (5 mg/kg) before imaging. Images were taken at 10 min scintigraphy scan at different time intervals (1, 2 and 4 h post injection). The images were saved in a 512 × 512 matrix size with 300 s acquisition time [39–41].

3. Results and discussion

The amino alkyl phosphonic acid moiety was reported in some nitrogenous bisphosphonates (Fig. 1). The amino phosphonic acids are biologically active compounds and highly reactive toward coordination with metal ions [19].

To date, the α-amino alkyl phosphonic acid derivatives have not
been isolated from living organisms nor from natural source. Some derivatives were synthesized chemically; however, the phosphonate groups were in a germinal configuration. The azanediyl (bis) methylene phosphonic acid scaffold and its inhibitory activity against HFPPS enzyme were not reported as well. In our previous work we reported that; one carbon linker between the amino and the phosphonic group can result in a potential compounds with high affinity to HFPPS. To date, the substituted phenyl amino methylene phosphonic acid derivatives have not been reported for their inhibitory activity against HFPPS enzyme. Some designed compounds with azanediyl (bis) methylene phosphonic acid scaffold were docked against HFPPS to select the top ranked compounds with the best scores in both in silico affinity and free energy of binding. The structure of the top-scored Compound VI (BMBP) was then evaluated by a molecular dynamic study to test its binding stability. In addition, the docking of this compound in complex with 99mTc was done before conduction of the biodistribution experiment. The top selected compounds were evaluated biologically.

3.1. Molecular docking study

The molecular docking study of the proposed structure VI with 4-(2-Bromo-5-CH3) phenyl substitution had shown the best ΔG with both MOE (-18.07 kcal/mol) and Leadit (-26.75 kcal/mol). As a result, its affinity was the top ranked (51.11) among the tested compounds (Table 1).

The analysis of the docking revealed that proposed compound VI showed two salt bridges with both Lys257, and Arg112. In addition to a number of strong hydrogen bonding with Asp243, Asp103, Asp107 and coordination with Zn ++ ions found in the active site of HFPPS (Fig. 2E).

Compounds II, III, V, VI, and VIII showed the highest docking scores among all proposed compounds. Both compounds III and V showed interactions with Asp103, Asp107, and Arg112 (Fig. 2D and B), respectively. Compound VII showed one salt bridge with Arg112 and some hydrogen bonds with Asp174, Asp243, and Asp103.

Compound III with 4-fluoro substitution and compound VII with 4-trifluoromethyl substitution shared the same binding mode in which coordination with two ZN ++ ions found in the active site of HFPPS.

The top ranked Compound VI (BMBP) with 2-bromo-5-methyl substitution was selected for molecular dynamic study to evaluate its stability of binding because it showed the highest affinity value 51.11 and the best docking score as well.

The proposed VI-TC complex was docked as well (Fig. 2F) and showed a network of coordination with three ZN ++ and a number of hydrogen bonds with Asp174, Asp261. Two salt bridges with Lys257 and Arg112 were also retained.

3.2. Molecular dynamics

In order to validate the binding mode and docking results, molecular dynamics (MD) simulations were carried out for the top ranked Compound VI (BMBP). Throughout the simulation period, no significant fluctuations were observed in the backbone of the protein. To ensure the binding stability of Compound VI (BMBP) in the active site, ligand positional RMSD was analyzed (Fig. 3). The RMSD started at 0.9 Å with some fluctuations until reached the equilibrium at 1.4 Å after 10 ns period of time.

3.3. Synthesis of the proposed compounds

The synthesis of methylene phosphonic acids derivatives was achieved by Mannich-type reaction. The substituted aromatic primary amines were allowed to react with phosphorous acid and formaldehyde in presence of hydrochloric acid. The hydrogen atom attached to the phosphorous atom in phosphorous acid is considered acidic hydrogen.
that will be replaced to facilitate the reaction. The chemical structures of the obtained compounds were characterized by 1H NMR, IR and MS spectroscopic data. The IR spectra confirmed the $\text{P}-\text{C}$ stretch (650–700), $\text{P}=\text{O}$ stretching at (1140–1210) cm$^{-1}$, $\text{P}–\text{O}$ stretching (730–800) cm$^{-1}$, and $\text{P}–\text{C}$ stretch (650–700) peaks. The presence of methylene group $–\text{CH}_2$ attached to the phosphonate group was also confirmed. All synthesized compounds showed common peaks at MS spectra for the cleaved protonated phosphonate group at MS m/z: 80.9 (70–71%) and ($\text{CH}_2=\text{P}(\text{O})–(\text{OH})_2$) at MS m/z: 94.9 (90–96%).

3.4. Biological results HFPPS

In order to provide an evidence that the newly designed and synthesized bisphosphonate analogues have an inhibitory activity against HFPPS enzyme, an *in vitro* ELISA assay was performed. According to the
Compound VI (BMBP) achieved the best inhibitory activity with IC50 of 39.9 μg/ml. Compound V showed IC50 of 42.6 μg/ml. While compound VII showed IC50 of 63.1 μg/ml. Compounds II and III showed close results of 78.6 and 79.3 μg/ml respectively (Fig. 4). Compound VI (BMBP) and compound V confirmed their ability to inhibit HFPPS which confirmed the computational results. They may need further
study and optimization in the future.

3.5. Radiolabeling of compound BMBP

From the above sections, it was very clear that compound VI (BMBP) is the most superior synthesized compound in its in-vitro efficacy, so the next step was evaluation of its in-vivo tumor targeting. To attain this, radiolabeling approach was conducted to be able to trace that compound inside the animal organs.

3.5.1. 99mTc-BMBP complex preparation

Radiolabeling of compound VI (BMBP) using technetium-99m as a radiotracer was done to prepare 99mTc-BMBP complex. The highest radiochemical yield of 99mTc-BMBP was 92.6 ± 2%. Such maximum yield was obtained using 1 mg of compound BMBP and 40 mg sodium dithionite. Radiolabeling reaction was done for 15 min reaction time at pH 6 at ambient temperature (27 ± 3°C), Fig. 5(A–D). The radiochemical purity was further confirmed by HPLC analysis, where the retention time of free 99mTcO4− and 99mTc-BMBP was 5 and 3.1 min, respectively as shown in the chromatogram (Fig. 6). The in-vitro stability of 99mTc-BMBP was up to 10 h.

3.6. Pharmacokinetic study of 99mTc-BMBP complex

99mTc-BMBP biodistribution pattern is shown in Table 2. The complex uptake in solid tumor bearing muscle was higher than normal muscle at all time intervals. In addition, the values of target to non-target ratios (T/NT) were higher than 2 at most time intervals and reached a maximum value of 4.4 at 4 hr post injection. Liver and intestine high radioactivity levels indicate that hepatobiliary pathway is the main excretion route of 99mTc-BMBP. Low radioactivity levels of stomach indicate the good in-vivo stability of 99mTc-BMBP [41–43].

3.7. Gamma scintigraphy of 99mTc-BMBP complex

Scintigraphic images of 99mTc-BMBP showed higher accumulation of radioactivity in right thigh compared to left thigh muscle at the first hour (Fig. 7). Such higher accumulation increased with time and reached its maximum at 4 h due to radioactivity washout from the non-target organs. Consequently, scintigraphic imaging results matched with biodistribution results reflecting the high affinity of the compound BMBP to the tumor site [44,45].

4. Conclusion

Five substituted phenyl (azanediyl) bis (methylene phosphonic acid) derivatives; II, III, V, VI, VII were selected for synthesis as a result of computational screening of a number of amino phosphonic acid derivatives targeting HFPPS. These compounds showed high docking score of −23.65, −24.40–25.74–26.75, and −25.50 kcal/mol respectively. The computed affinity of compound VI (BMBP) was the top ranked 51.11 among all compounds. Molecular dynamic simulations of VI during 30 ns reached the equilibrium at 1.4 Å after 10 ns period. The tested compounds achieved inhibitory activity against HFPPS with IC50 of 39.9 μg/ml, 42.6 μg/ml, 63.1 μg/ml, 78.6 μg/ml and 79.3 μg/ml for VI, V, VII, II, and III respectively. 99mTc-BMBP complex was prepared by radiolabeling of compound VI using technetium-99 m as a radiotracer. The highest radiochemical yield of 99mTc-BMBP was 92.6 ± 2%. The in-vitro stability of 99mTc-BMBP was up to 10 h. The scintigraphic imaging results and biodistribution results confirmed the high affinity of the compound BMBP to the tumor site. Consequently, the tested substituted phenyl (azanediyl) bis (methylene phosphonic acid) scaffold was a successful inhibitor of HFPPS with stable radiolabeling properties that enabled it to be a selective scintigraphic imaging probe with anticancer activity.

Table 2

In-vivo biodistribution profile of 99mTc-BMBP complex in solid tumor bearing male Swiss albino mice (right thigh muscle) at different time intervals post-injection. (% ID/organ ± S.D, n = 5).

<table>
<thead>
<tr>
<th>Organs</th>
<th>0.5 h</th>
<th>1 h</th>
<th>2 h</th>
<th>3 h</th>
<th>4 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>52.2</td>
<td>32.55</td>
<td>27.4</td>
<td>20.65</td>
<td>15.34</td>
</tr>
<tr>
<td>Kidneys</td>
<td>4.25</td>
<td>4.53</td>
<td>5.11</td>
<td>5.701</td>
<td>7.02</td>
</tr>
<tr>
<td>Liver</td>
<td>15.08</td>
<td>25.96</td>
<td>29.11</td>
<td>31.23</td>
<td>33.1</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.82</td>
<td>1.35</td>
<td>1.75</td>
<td>2.08</td>
<td>1.33</td>
</tr>
<tr>
<td>Intestine</td>
<td>7.95</td>
<td>11.92</td>
<td>14.7</td>
<td>16.52</td>
<td>25.01</td>
</tr>
<tr>
<td>Stomach</td>
<td>1.91</td>
<td>3.84</td>
<td>4.92</td>
<td>5.88</td>
<td>4.25</td>
</tr>
<tr>
<td>Lungs</td>
<td>1.25</td>
<td>2.33</td>
<td>2.54</td>
<td>2.26</td>
<td>1.53</td>
</tr>
<tr>
<td>Heart</td>
<td>1.27</td>
<td>0.65</td>
<td>0.57</td>
<td>0.53</td>
<td>0.35</td>
</tr>
<tr>
<td>Bone</td>
<td>3.17</td>
<td>9.02</td>
<td>3.5</td>
<td>3.92</td>
<td>2.45</td>
</tr>
<tr>
<td>Normal left Muscle</td>
<td>10.52</td>
<td>12.17</td>
<td>9.42</td>
<td>9.71</td>
<td>9.05</td>
</tr>
<tr>
<td>Tumor right Muscle</td>
<td>21.8</td>
<td>26.54</td>
<td>27.25</td>
<td>29.7</td>
<td>39.82</td>
</tr>
<tr>
<td>T/NT</td>
<td>2.0722</td>
<td>2.1808</td>
<td>2.893</td>
<td>3.059</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Fig. 6. Overlaid chromatograms of BMBP and 99mTc-BMBP.
Ethical approval
Authors reported that all applicable international, national and institutional guidelines for the care and use of animals were followed.

Declaration of Competing Interest
Authors declared that they have no conflict of interest.

References

Fig. 7. Scintigraphic images of 99mTc-BMBP in mice at 1 hr (A), 2 hr (B) and 4 hr (C) post injection.
radiopharmaceuticals, J. Radioanal. Nucl. Chem. 310 (2) (2016) 477–493,