New series of fused pyrazolopyridines: Synthesis, molecular modeling, antimicrobial, antiquorum-sensing and antitumor activities

N.S. El-Goharya,*, S.S. Hawasa,b, M.T. Gabra,c, M.I. Shaaband, M.B. El-Ashmawya

a Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
b Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
c Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
d Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt

\textbf{ARTICLE INFO}

Keywords:
- Fused pyrazolopyridines
- Antimicrobial
- Antiquorum-sensing
- Antitumor
- DNA-binding
- Topoisomerase IIβ
- Molecular modeling

\textbf{ABSTRACT}

New series of fused pyrazolopyridines were prepared and assessed for antimicrobial, antiquorum-sensing and antitumor activities. Antimicrobial evaluation toward selected Gram-positive bacteria, Gram-negative bacteria and fungi indicated that 5-phenylpyrazolopyridotriazinone \textit{4a} has good and broad-spectrum antimicrobial activity. In addition, 5-(4-chlorophenyl)pyrazolopyridotriazinone \textit{4b} and 5-(4-(dimethylamino)phenyl)pyrazolopyridotriazinone \textit{4c} exhibited good activity against the selected Gram-positive bacteria and \textit{A. fumigatus}, whereas 5-amino-4-phenylpyrazolopyridopyrimidine \textit{6a} demonstrated good activity against \textit{B. cereus} and \textit{P. aeruginosa}. Furthermore, 6-amino-5-imino-4-phenylpyrazolopyridopyrimidine \textit{7a} and 6-amino-4-(4-chlorophenyl)-5-iminopyrazolopyridopyrimidine \textit{7b} demonstrated promising activity against the tested Gram-negative bacteria and fungi, and moderate activity against Gram-positive bacteria. Antiquorum-sensing screening over \textit{C. violaceum} illustrated that \textit{4a}, \textit{6a} and \textit{7a-c} have strong activity. \textit{In vitro} antiproliferative assessment of the new derivatives against HepG2, HCT-116 and MCF-7 cancer cells revealed that \textit{7a} is the most active analog against all tested cell lines. Likewise, 3,7-dimethyl-4-phenylpyrazolopyridopyrimidinone \textit{2a} and 6-amino-4-(4-chlorophenyl)-5-iminopyrazolopyridopyrimidine \textit{7b} manifested strong activity against all examined cell lines. \textit{In vivo} antitumor testing of \textit{2a}, \textit{7a} and \textit{7b} against EAC cells in mice indicated that \textit{7a} has the highest activity. Cytotoxicity toward WI38 and WISH normal cells was also assessed and results assured that all of the investigated analogs have lower cytotoxicity than doxorubicin. DNA-binding affinity and topoisomerase IIβ inhibitory activity were evaluated, and results revealed that \textit{5b}, \textit{7a} and \textit{7b} bind strongly to DNA; in addition, \textit{2a}, \textit{4a}, \textit{7a} and \textit{7b} manifested higher topoisomerase IIβ inhibitory activity than that of doxorubicin. Analogs \textit{5b}, \textit{7a} and \textit{7b} were docked into topoisomerase IIβ, and results indicated that \textit{7a} and \textit{7b} have the highest binding affinity toward topoisomerase IIβ. \textit{In silico} simulation studies referred that most of the new analogs comply with the optimum needs for good oral absorption. Also, computational carcinogenicity evaluation was predicted.

\section{Introduction}

Excessive and random utilization of antibiotics in treatment of bacterial infections led to evolution of multiple drug resistant strains [1]. Antimicrobial resistance (AMR) threatens the efficacious therapy of an ever-growing range of microbial infections. AMR is a terrible menace to public health, and it needs urgent control to save human health [2]. On the other hand, bacteria replicating within quorum-sensing (QS) mediated biofilms are the prime cause of most infectious diseases. Suppression of bacterial QS is an auspicious way to battle resistant bacterial infections [3]. Natural and synthetic compounds were proved to be efficient in inhibiting QS [4–14]. Thus, the existing research aimed in one part to obtain new antimicrobials with QS inhibitory effect.

On the other hand, cancer is one of the prime health worries. Various risk factors contribute to the development of cancer, including radiation, chemicals, viruses and others. Cancer is characterized by metastasis, where cancer cells spread from the primary origin into different sites of the body through lymph system or bloodstream. Metastasis is responsible for 90% of cancer deaths [15]. The most prevalent types of cancer remedies include surgery, radiotherapy, chemotherapy and others. A typical anticancer agent should selectively target cancer cells without impairing normal ones. Over the years, cancer is still a master field of investigation, and medicinal chemistry...
researchers are keen in design and evolution of new potent and selective anticancer agents. DNA topoisomerases (TOP I, IIα and IIβ) encompass a prime aspect of basic cellular biology, and they are considered as good targets for various antibacterial [16] and anticancer agents [16,17]. TOP IIβ inhibitors act by prohibiting the TOP enzyme from relinking DNA strands after cleavage and transform topoisomerases into DNA detrimental agents [18]. Although drugs of diversified classes that act by various mechanisms are available, there are some troubles linked with the currently available drugs. Therefore, researchers are interested in designing, synthesizing and evaluating various new bioactive molecules targeting topoisomerases.

Pyrazolo[3,4-b]pyridine nucleus is an important scaffold for synthesis of lots of bioactive compounds [4–6,19,20]. Pyrazolopyridopyrimidine analogs were reported to have diverse pharmacological activities, including antibacterial [21–23], antifungal [24], antimicrobial [25,26] and antitumor [22,27,28] activities. For example, pyrazolopyridopyrimidines A–C [26] (Fig. 1) were proved to have broad-spectrum antimicrobial activity, while D [25] (Fig. 1) was found to have good antibacterial activity. In addition, compounds E [24] (Fig. 1) exhibited antifungal activity. On the other hand, pyrazolopyridopyrimidines F [27], G [27], H [28] and I [28] (Fig. 1) demonstrated promising antitumor activity; in addition, F [27] and G [27] were reported to have strong DNA-binding affinity. Further, pyrazolo[4′,3′:5,6]pyrido[3,2-c][1,2,4]triazolo[4,3-a]pyrimidinone analogs J [26] (Fig. 1) were reported as antimicrobial agents.

1.1. Rational design

Depending on the literature findings, pyrazolo[3,4-b]pyridine derivatives K [4], L [5] and M [6] (Fig. 2) were described as promising antimicrobial and antitumor agents. Further, the pyrimidine derivatives N [29] (Fig. 2) were reported to have antimicrobial and antitumor activities. Moreover, [1,2,4]triazole derivatives O, P [30,31] and Q [32] (Fig. 2) were described as antimicrobial and antitumor agents, respectively.

Molecular hybridization is a promising strategy for preparation of new active compounds, and it is widely used in medicinal chemistry. Hybridization of two active molecules with dissimilar pharmacophores led to enhanced activities [33,34]. Promoted by these literature findings, we found it motivating to design new series of pyrazolopyridopyrimidine hybrids 2a–c, 3c, 6a–c and 7a–c combining pyrazolopyridine and pyrimidine pharmacophores (Fig. 2). On the other hand, fused [1,2,3]triazines R [35] (Fig. 3) were reported to have antimicrobial activity, whereas S [36] and T [37] (Fig. 3) were evidenced to have antitumor activity. Therefore, we found it interesting to prepare a new series of pyrazolopyridotriazinone hybrids 4a–c combining pyrazolopyridine and [1,2,3]triazine pharmacophores (Fig. 3). The designed new series of compounds 2–9 were synthesized and examined for antimicrobial and antitumor activities. The active antimicrobial and/or antitumor analogs, 2a, 4a-c, 5b, 6a, 7a and 7b were valued for DNA-binding affinity and TOP IIβ inhibitory effect to find out their probable mode of action. Detailed analysis of structure-activity correlation of the new fused pyrazolopyridines will pave the road for synthesis and evolution of new more active derivatives.

Fig. 1. Examples of pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines with reported antimicrobial (A–C), antibacterial (D), antifungal (E) and antitumor (F–I) activities, and pyrazolo[4′,3′:5,6]pyrido[3,2-c][1,2,4]triazolo[4,3-a]pyrimidinones (J) with reported antibacterial activity.
2. Results and discussion

2.1. Chemistry

Synthesis of the new fused pyrazolopyridines 2–9 has been performed starting with 6-aminopyrazolopyridine-5-carbonitriles 1a-c [28] (Schemes 1 and 2).

Pointing to Scheme 1, refluxing 1a-c with glacial acetic acid in the presence of concentrated HCl gave 3,7-dimethylpyrazolopyridopyrimidinones 2a-c. The reaction proceeds via conversion of nitrile group into amide that was subsequently cyclized via Dimorth rearrangement to furnish the pyrazolopyridopyrimidines [38,39]. Heating 1c with chloroacetyl chloride in dimethylformamide (DMF) gave 7-chloromethylpyrazolopyridopyrimidinone 3c. The pyrazolopyridotriazinones 4a-c were synthesized by diazotization of 1a-c via treating with aqueous sodium nitrite and a mixture of HCl/glacial acetic acid (3:1). Referring to Scheme 2, condensation of 1a-c with triethyl orthoformate gave the ethyl formimidates 5a-c. Reaction of ethyl formimidates 5a-c with ammonia 35% in refluxing ethanol gave 5-amino pyrazolopyridopyrimidines 6a-c. Heating 5a-c with hydrazine hydrate in ethanol yielded 6-amino-5-iminopyrazolopyridopyrimidines 7a-c. Interaction of 5a-c with 2-hydroxybenzohydrazide or 2-(2-phenyl-1H-benzimidazol-1-yl)acetohydrazide in refluxing DMF gave the pyrazolopyridotriazolopyrimidines 8a,c and 9a-c, respectively. The structures of the new analogs were assured by spectral and elemental analyses.

2.2. Biology

2.2.1. Antimicrobial and antiquorum-sensing screening

The new derivatives 2–9 were examined for antibacterial activity toward selected resistant Gram-positive bacteria (Staphylococcus aureus ATCC 29213 and Bacillus cereus UW 85) and Gram-negative bacteria (Escherichia coli ATCC 12435 and Pseudomonas aeruginosa) [11,12,40]. Antifungal screening toward Candida albicans (clinical isolate) and Aspergillus fumigatus 293 was also carried out [11,12,41,42]. Inhibition zone diameters (mm) (Table 1) and minimal inhibitory concentrations (MICs, µg/mL and µM) (Table 2) of the tested analogs over the chosen microorganisms were determined. Ciprofloxacin, ampicillin and fluconazole were employed as reference drugs. Results illustrated that 4a has good and broad-spectrum antimicrobial activity (MIC = 39.06–312.5 µg/mL). Compounds 2b and 2c manifested...
Fig. 3. Reported fused [1,2,3]triazines with antimicrobial (R) and antitumor (S,T) activities, and the proposed pyrazolo[4′,3′:5,6]pyrido[2,3-d][1,2,3]triazin-4-ones 4a-c with expected antimicrobial and antitumor activities.

moderate activity on B. cereus (MIC = 312.5 µg/mL), whereas compound 3c showed good activity on B. cereus (MIC = 156.25 µg/mL), and moderate activity on P. aeruginosa (MIC = 312.5 µg/mL). Moreover, 4b showed good activity on S. aureus, A. fumigatus (MIC = 78.125 µg/mL) and B. cereus (MIC = 156.25 µg/mL), whereas 4c manifested good activity against B. cereus and A. fumigatus (MIC = 78.125 µg/mL), and moderate activity toward S. aureus (MIC = 312.5 µg/mL). Compound 6a evinced good activity on B. cereus (MIC = 78.125 µg/mL) and P. aeruginosa (MIC = 156.25 µg/mL). On the other hand, 7a exhibited good activity on Gram-negative bacteria and the two selected fungi (MIC = 156.25 µg/mL), and moderate activity on Gram-positive bacteria (MIC = 625 µg/mL). As well, 7b demonstrated good activity on the tested Gram-negative bacteria and fungi (MIC = 39.06–78.125 µg/mL), and moderate activity on the tested Gram-positive bacteria (MIC = 625 µg/mL). Further, 8a illustrated moderate activity on Gram-positive bacteria (MIC = 312.5 µg/mL). The rest of the tested compounds were evidenced to be weakly active or inactive against the selected microbes.

QS inhibitory activity of the synthesized analogs over Chromobacterium violaceum ATCC 12472 was valued [11,12,43] utilizing indole as a comparative compound.

QS system of C. violaceum releases signals that monitor the emanation of the violet pigment (violacein) that could be utilized to establish QS communication between bacteria [44,45]. Consequently, inhibition of QS activity in C. violaceum will stop the liberation of violacein. Anti-QS activity was estimated by subtracting radius of bacterial growth inhibition \((r_1) \) from the whole radius of growth and pigment inhibition \((r_2) \), QS inhibition = \((r_2-r_1) \) in mm. Derivatives 4a, 6a and 7a-c demonstrated strong anti-QS activity (radius of pigment inhibition = 17–24 mm), and the five analogs were proved to be more active than indole (radius of pigment inhibition = 15 mm) and the previously prepared anti-QS compounds [4–12]. On the other hand, 2a was moderately active (radius of pigment inhibition = 14 mm) (Table 1).

2.2.1.1. Structure-activity correlation

2.2.1.1.1. Referring to compounds 2a-c, 3c and 4a-c. Compound 2a showed moderate anti-QS activity with no antimicrobial activity toward all tested microbial strains, whereas pyrazolopyridopyrimidines 2b and 2c demonstrated moderate activity on B. cereus, and abolished anti-QS activity, and this could be explained by increased lipophilicity of 2b and 2c (logP = 2.54 and 1.96, respectively) compared to 2a (logP = 1.86). Further, exchanging 7-methyl substituent in 2c with 7-chloromethyl counterpart led to better activity against B. cereus and P. aeruginosa (compound 3c), and this might be attributed to increased lipophilicity of 3c (logP = 2.56) compared to 2c (logP = 1.96). Presence of (unsubstituted phenyl) moiety at 5-position of pyrazolopyridotriazine nucleus led to promising antifungal activity over both of the tested fungi, good antibacterial activity over the four tested bacteria, and strong anti-QS activity (analog 4a). Replacing 5-(unsubstituted phenyl) in 4a with 5-(4-chlorophenyl) led to increased activity toward S. aureus, decreased activity toward A. fumigatus, and abolished activity toward the tested Gram-negative bacteria and C. albicans, as well as abolished anti-QS activity (compound 4b), whereas its exchange with 5-(4-dimethylamino)phenyl resulted in increased activity toward B. cereus, lowered activity toward S. aureus and A. fumigatus, and abolished activity toward E. coli, P. aeruginosa and C. albicans, as well as abolished anti-QS activity (compound 4c). The strong anti-QS activity of 4a compared to 4b and 4c might be attributed to decreased lipophilicity of 4a (logP = 1.63) compared to 4b and 4c (logP = 2.31 and 1.73, respectively).

2.2.1.1.2. Referring to compounds 5a-c, 6a-c and 7a-c. The pyrazolopyridines 5a-c showed neither antimicrobial nor anti-QS activity. The antibacterial activity toward B. cereus and P. aeruginosa, and the anti-QS activity of compounds 6a-c are reliant on the type of
substituent at 4-position of pyrazolopyridopyrimidine skeleton, whereas introduction of 4-(unsubstituted phenyl) moiety led to good activity toward both bacterial strains, and strong anti-QS activity (compound 6a). Replacement of 4-(unsubstituted phenyl) with 4-(4-chlorophenyl) led to decreased effect against both bacterial strains, and abolished anti-QS activity (compound 6b versus 6a). On the other hand, exchanging 4-(unsubstituted phenyl) with 4-(4-(dimethylamino)phenyl) resulted in abolished activity toward all tested strains, and abolished anti-QS activity (compound 6c versus 6a). The decreased anti-QS activity of 6a might be due to its decreased lipophilicity (logP = 1.93) compared to 6b and 6c (logP = 2.61 and 2.03, respectively). The 6-amino-5-imino-4-phenylpyrazolopyridopyrimidine analog 7a exhibited obvious activity over Gram-negative bacteria and the two selected fungi, and moderate activity over Gram-positive bacteria. Replacing 4-(unsubstituted phenyl) in 7a with 4-(4-chlorophenyl) led to enhanced effectiveness on the chosen Gram-negative bacteria and fungi (compound 7b), whereas its exchange with 4-(4-(dimethylamino)phenyl) led to retained effectiveness on P. aeruginosa, and diminished activity over other examined microbes (compound 7c). On the other hand, the 6-amino-5-imino-4-((un)substituted phenyl)pyrazolopyridopyrimidine analogs 7a-c exhibited strong anti-QS activity that might be attributed to their decreased lipophilicity (logP = 0.12, 0.8 and 0.23, respectively), and presence of additional hydrogen bond donor sites.

2.2.1.1.3. With respect to compounds 8a,c and 9a-c. The 11-phenyl-2-(2-hydroxyphenyl)pyrazolopyridotriazolopyrimidine analog 8a has moderate activity over Gram-positive bacteria. Replacing 11-(unsubstituted phenyl) in 8a with 11-(4-(dimethylamino)phenyl) led to revoked activity over all tested microbes (compound 8c). In addition, replacing 2-(2-hydroxyphenyl) substituent with 2-((2-(phenyl-1H-benzimidazol-1-yl)methyl) counterpart regardless of the type of 11-substituent led to revoked activity over all screened microbes (compounds 9a-c). On the other hand, the 11-((un)substituted phenyl)-2-substituted-pyrazolopyridotriazolopyrimidine analogs 8a,c and 9a-c showed no anti-QS activity.

2.2.2. Antitumor testing

2.2.2.1. In vitro antiproliferative screening. Antiproliferative activity of the new derivatives against HepG2 liver, HCT-116 colon and MCF-7 breast cancer cells was estimated in accord to MTT assay, and utilizing doxorubicin as a reference agent [46–48]. The concentration of compound that prohibits viability of cells by 50% (IC50, µM) was
calculated. Analog 7a showed the highest activity on all tested cell lines (IC$_{50}$ = 3.18–5.79 µM), and this analog was proved to be more potent than the previously prepared pyrazolopyridopyrimidines F [27] and G [27] toward the three selected cell lines (IC$_{50}$ = 7.80–14.60 µM). As well, 2a, 5b and 7b demonstrated strong activity over all examined cell lines (IC$_{50}$ = 8.87–15.97 µM) though less than that of doxorubicin (IC$_{50}$ = 4.17–5.23 µM). On the other hand, compounds 3c, 5c, 6c and 7c exhibited moderate activity toward all tested cell lines (IC$_{50}$ = 22.61–49.86 µM), whereas 5a, 6b and 8a displayed moderate activity toward HCT-116 and MCF-7 cancer cells (IC$_{50}$ = 38.08–49.27 µM). Further, 2b and 9c exhibited moderate activity over MCF-7 cells with IC$_{50}$ values of 45.69 and 48.91, respectively. The remaining analogs manifested weak or no activity toward the screened cell lines (Table 3).

2.2.2.1. Structure-activity correlation

2.2.2.1.1. Regarding analogs 2a-c, 3c and 4a-c

The 4-phenylpyrazolopyrimidinone 2a exhibited strong anti-proliferative activity against all examined cell lines. Exchanging 4-(unsubstituted phenyl) in 2a with 4-(4-chlorophenyl) or 4-(4-(dimethylamino)phenyl) led to decreased activity against all examined cell lines (analogs 2b and 2c). On contrary, replacing 7-methyl substituent in 2c with 7-chloromethyl boosted the activity against the three cancer cells (analog 3c versus 2c), and this might be attributed to increased lipophilicity of 3c (logP = 2.56) compared to 2c (logP = 1.96). Introduction of 5-(unsubstituted phenyl) moiety into the pyrazolopyridotriazine nucleus produced 4a with weak effectiveness on the three chosen cell lines. Exchanging 5-(unsubstituted phenyl) with 5-(4-chlorophenyl) or 5-(4-(dimethylamino)phenyl) led to reduced effect over all examined cell lines (analogs 4b and 4c versus 4a).
2.2.2.1.1.2. Referring to compounds 5a-c, 6a-c and 7a-c

The activity of pyrazolopyridines 5a-c is reliant on the type of 4-substituent, whereas existence of 4-(4-chlorophenyl) substituent led to higher activity than the 4-(unsubstituted phenyl) and 4-(4-(dimethylamino)phenyl) counterparts (compound 5b versus 5a and 5c), and this might be due to boosted lipophilicity of 5b (logP = 2.08) comparable to 5a and 5c (logP = 1.40 and 1.50, respectively), the activity order is 5b > 5c > 5a. The sensitivity of the three cancer cell lines to derivatives 6a-c is reliant on the type of substituent at 4-position of pyrazolopyridopyrimidine skeleton, whereas existence of 4-(4-(dimethylamino)phenyl) moiety led to stronger efficacy toward all tested cancer cells than the 4-(unsubstituted phenyl) and 4-(4-chlorophenyl) counterparts (compound 6c versus 6a and 6b), the activity order is 6c > 6b > 6a. The type of 4-substituent on the pyrazolopyridopyrimidine skeleton affects the antiproliferative activity of compounds 7a-c, whereas existence of 4-(unsubstituted phenyl) moiety resulted in higher activity toward the three cell lines than the 4-(4-chlorophenyl) and 4-(4-(dimethylamino)phenyl) counterparts (compound 7a versus 7b and 7c), the activity order is 7a > 7b > 7c. Moreover, existence of electron-withdrawing substituent at 4-position of phenyl ring ensures higher activity than the electron-donating counterpart (7b versus 7c).

Table 1
Antimicrobial and antiquorum-sensing testing results.

<table>
<thead>
<tr>
<th>Comp. No.</th>
<th>Inhibition zone diameter (mm)*</th>
<th>QS inhibition (mm)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. aureus</td>
<td>B. cereus</td>
</tr>
<tr>
<td>2a</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2b</td>
<td>–</td>
<td>19</td>
</tr>
<tr>
<td>2c</td>
<td>–</td>
<td>19</td>
</tr>
<tr>
<td>3c</td>
<td>–</td>
<td>23</td>
</tr>
<tr>
<td>4a</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>4b</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>4c</td>
<td>17</td>
<td>26</td>
</tr>
<tr>
<td>5a</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5b</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5c</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6a</td>
<td>–</td>
<td>22</td>
</tr>
<tr>
<td>6b</td>
<td>–</td>
<td>13</td>
</tr>
<tr>
<td>7a</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>7b</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>7c</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>8a</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>8b</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>8c</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Indole</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

* Inhibition zone diameter (mm) and QS inhibition (mm): no activity (−, < 2); weak (2–9); moderate (10–15); strong (15–25); very strong (> 25).
na: not assigned.

Bold values shed light on the preferable results.

Table 2
MICs of the efficacious compounds.

<table>
<thead>
<tr>
<th>Comp. No.</th>
<th>MIC µg/mL (µM)*</th>
<th>S. aureus</th>
<th>B. cereus</th>
<th>E. coli</th>
<th>P. aeruginosa</th>
<th>C. albicans</th>
<th>A. fumigatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2b</td>
<td>–</td>
<td>312.5 (953.41)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2c</td>
<td>–</td>
<td>312.5 (928.95)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3c</td>
<td>–</td>
<td>156.25 (421.34)</td>
<td>–</td>
<td>–</td>
<td>312.5 (842.68)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4a</td>
<td>156.25 (557.46)</td>
<td>156.25 (537.46)</td>
<td>312.5 (1114.92)</td>
<td>156.25 (557.46)</td>
<td>78.125 (278.73)</td>
<td>39.06 (139.36)</td>
<td>–</td>
</tr>
<tr>
<td>4b</td>
<td>78.125 (248.23)</td>
<td>156.25 (496.46)</td>
<td>–</td>
<td>–</td>
<td>156.25 (248.23)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4c</td>
<td>312.5 (966.41)</td>
<td>78.125 (241.60)</td>
<td>–</td>
<td>–</td>
<td>78.125 (241.60)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6a</td>
<td>–</td>
<td>78.125 (280.70)</td>
<td>–</td>
<td>156.25 (561.40)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7a</td>
<td>625 (2130.72)</td>
<td>625 (2130.72)</td>
<td>156.25 (532.68)</td>
<td>156.25 (532.68)</td>
<td>156.25 (532.68)</td>
<td>156.25 (532.68)</td>
<td>–</td>
</tr>
<tr>
<td>7b</td>
<td>625 (1906.72)</td>
<td>625 (1906.72)</td>
<td>78.125 (238.34)</td>
<td>78.125 (238.34)</td>
<td>78.125 (238.34)</td>
<td>39.06 (139.17)</td>
<td>–</td>
</tr>
<tr>
<td>7c</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>156.25 (464.47)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>8a</td>
<td>312.5 (790.28)</td>
<td>312.5 (790.28)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>19.53</td>
<td>19.53 (58.94)</td>
<td>19.53 (58.94)</td>
<td>19.53 (58.94)</td>
<td>< 9.76 (29.46)</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>78.125 (213.81)</td>
<td>312.5 (855.23)</td>
<td>9.76 (26.71)</td>
<td>156.25 (427.61)</td>
<td>na</td>
<td>na</td>
<td>–</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>1250 (4081.35)</td>
<td>2500 (8162.70)</td>
<td>–</td>
</tr>
</tbody>
</table>

* MIC > 2500 µg/mL.

na: not assigned.

Bold values shed light on the preferable results.
2.2.2.1.1.3. With respect to compounds 8a,c and 9a-c

The 11-phenyl-2-(2-hydroxyphenyl)pyrazolopyridotriazolopyrimidine analog 8a has moderate activity on all examined cell lines. Replacing 11-(unsubstituted phenyl) in 8a with 11-(4-dimethylamino)phenyl(phenyl) counterpart led to decreased effect toward all examined cells (analog 9c). Furthermore, exchanging 2-(2-hydroxyphenyl) substituent in 8c with 2-((2-phenylbenzimidazol-1-yl)methyl) resulted in increased activity on all examined cancer cells (derivative 9c). On contrary, exchanging 4-(4-dimethylamino)phenyl(phenyl) substituent in 9c with 4-(unsubstituted phenyl) or 4-(4-chlorophenyl) led to decreased effect toward all examined cells (analog 9a and 9b, respectively).

2.2.2.2. In vivo antitumor screening.

In vivo antitumor activity of 2a, 7a and 7b toward Ehrlich ascites carcinoma (EAC) in mice was estimated [49–51]. Mean survival time (MST) and % increase in lifespan (% ILS) were calculated (Table 4) and (Fig. 4), whereas analogs 2a, 7a and 7b exhibited salient ILS of mice bearing EAC. Tumor parameters (viable tumor cell count and tumor volume) were assessed (Table 5) and (Fig. 5), where 7a displayed conspicuous decrease in tumor cell count and tumor volume. Hematological parameters were assessed, and results (Table 6) and (Fig. 6) evinced that 7a and 7b have higher hemoglobin (Hb) and red blood cells (RBCs) levels and lower white blood cells (WBCs) count than doxorubicin (reference agent).

Table 4

<table>
<thead>
<tr>
<th>Comp. No.</th>
<th>MST (day)*</th>
<th>% ILSa</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>51</td>
<td>218.75</td>
</tr>
<tr>
<td>7a</td>
<td>66</td>
<td>312.50</td>
</tr>
<tr>
<td>7b</td>
<td>55</td>
<td>243.75</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>57</td>
<td>256.25</td>
</tr>
</tbody>
</table>

*a Results are the mean of three readings.

Bold values shed light on the preferable results.

2.2.2.3. In vitro cytotoxicity screening against normal cells.

Cytotoxicity of 2a, 7a and 7b over WI38 lung fibroblast and WISH amnion epithelial normal cells was estimated in comparison to doxorubicin (standard drug) [46–48], and IC50 values (µM) were assigned (Table 7). The tested analogs manifested lower cytotoxicity (IC50 = 11.81–63.41 µM) than doxorubicin (IC50 = 6.68–8.14 µM), and they were proved to be safe toward the examined normal cells at their cytotoxic concentrations over the tested cancer cells.

2.2.3. Mechanistic studies

2.2.3.1. DNA-binding assay.

DNA is the biological target for various antimicrobial and antitumor drugs [52]. Therefore, the efficacious compounds in the current study were evaluated for DNA-binding affinity following methyl green/DNA displacement assay [53].

Methyl green/DNA displacement assay [53] is used for evaluating the displacement of methyl green from DNA by compounds that bind to DNA. Concentrations of analogs 2a, 4a-c, 5b, 6a, 7a, 7b and doxorubicin (DNA intercalator) that lowers absorbance of methyl green/DNA complex by 50% (IC50, µM) were determined (Table 8). Studying the results, it was found that 5b, 7a and 7b bind strongly to DNA with IC50 values of 27.16, 35.12 and 36.20 µM, respectively, and the three derivatives are expected to act through binding to DNA. Besides, the three derivatives were proved to have better affinity than the previously synthesized pyrazolopyridopyrimidines F [27] and G [27] with IC50 values of 45.21 and 42.31 µM, respectively. Moreover, 2a and 4a exhibited moderate affinity with IC50 values of 42.39 and 43.35 µM, respectively, whereas 4b, 4c and 6a demonstrated weak affinity with IC50 values of 82.38, 59.03 and 63.47 µM, respectively.

2.2.3.2. Topoisomerase IIβ inhibition assay.

In order to interpret the distinguished antimicrobial and antiproliferative activities of the new compounds, TOP IIβ was selected to assess the enzyme inhibitory activity of the active compounds in the current research. This enzyme is well recognized as a target for antibacterial [16] and anticancer agents [16,17].

TOP IIβ inhibitory activity of the most active compounds, 2a, 4a-c, 5b, 6a, 7a, 7b and doxorubicin (positive control) was evaluated [54], and results are shown in Table 9. Analogs 2a, 4a, 7a and 7b showed strong TOP IIβ inhibitory activity (IC50 = 0.355, 0.433, 0.314 and 0.289 µM, respectively), higher than that of doxorubicin (IC50 = 0.727 µM), whereas 4b, 4c and 6a displayed lower activity (IC50 = 1.44–5.01 µM). These results are correlated with the in vitro antimicrobial and antiproliferative screening results, suggesting that TOP IIβ could be the target for this class of compounds.

3. Computational studies

3.1. Molecular modeling

Structure-based drug design (SBDD) is a crucial step in the optimization process of potential drug candidates in drug discovery and pharmaceutical research [55,56]. SBDD tools enable accurate and efficient prediction of the preferential binding orientation of a lead compound to a three-dimensional protein structure or molecular target [55]. Molecular modeling is a valuable SBDD tool that is capable of identification of scaffolds and pharmacophoric units in the lead compounds that are directly involved in interactions with the molecular target [57–59]. Thus, a molecular modeling study based on the crystal structure of TOP IIβ in complex with DNA and etoposide (PDB code: 3QX3, https://www.rcsb.org/3d-view/3QX3/1) was performed in order to get an insight into the binding mode of the active compounds 5b, 7a and 7b to TOP IIβ. Binding mode of etoposide to the active site of TOP IIβ revealed two key interactions; π–π stacking with Arg503 residue and hydrogen bonding with Asp479 residue. Results of the docking studies evidenced that all of the investigated compounds displayed hydrogen bonding interaction with Asp479 residue in the active
site of TOP IIβ. However, only compounds 7a and 7b featured additional hydrogen bonding formation with Arg503 residue which is consistent with their improved TOP IIβ inhibitory activity in comparison to the other investigated compounds (Table 9). These results revealed that presence of two hydrogen bond donors in close proximity to one hydrogen bond acceptor in the small molecule is crucial for optimum hydrogen bonding interactions with Asp479 and Arg503, the key residues in the target binding site. These findings should facilitate future development of potent TOP IIβ inhibitors based on the lead compounds identified in this study.

Moreover, compounds 7a and 7b displayed favorable binding to TOP IIβ with estimated binding energy of −22.7 and −23.4 kcal/mol, respectively, in comparison to doxorubicin and etoposide that possessed binding energy of −20.6 and −21.9 kcal/mol, respectively (Table 10). Compounds 7a and 7b featured comparable orientation in the active site of TOP IIβ, however, 7b displayed additional hydrophobic interaction with Tyr821 and Arg820 residues which accounts for its favorable binding to the target receptor as well as more potent inhibition of TOP IIβ activity. The 3D interactions of 7a and 7b with the active site of TOP IIβ were created by Molegro 2.5 software [60] and depicted in Figs. 7A and 8A, respectively. The detailed analyses of

Table 5
Influence of 2a, 7a and 7b on tumor parameters in mice carrying EAC.

<table>
<thead>
<tr>
<th>Group</th>
<th>Viable tumor cell count (10^6/mL)</th>
<th>Tumor volume (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>EAC only</td>
<td>72.76</td>
<td>9.60</td>
</tr>
<tr>
<td>2a</td>
<td>30.34</td>
<td>1.92</td>
</tr>
<tr>
<td>7a</td>
<td>18.50</td>
<td>1.05</td>
</tr>
<tr>
<td>7b</td>
<td>22.65</td>
<td>1.23</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>15.25</td>
<td>2.00</td>
</tr>
</tbody>
</table>

*a Results are the mean of three readings.
na: not assigned.
Bold values shed light on the preferable results.

Table 6
Influence of 2a, 7a and 7b on hematological parameters of mice carrying EAC.

<table>
<thead>
<tr>
<th>Group</th>
<th>Hb (g/dl)*</th>
<th>RBCs (10^6/mm^3)*</th>
<th>WBCs (10^3/mm^3)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>13.16</td>
<td>6.14</td>
<td>5.49</td>
</tr>
<tr>
<td>EAC only</td>
<td>7.86</td>
<td>3.57</td>
<td>20.25</td>
</tr>
<tr>
<td>2a</td>
<td>11.99</td>
<td>5.18</td>
<td>9.15</td>
</tr>
<tr>
<td>7a</td>
<td>12.94</td>
<td>6.15</td>
<td>8.31</td>
</tr>
<tr>
<td>7b</td>
<td>12.52</td>
<td>5.86</td>
<td>8.47</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>12.25</td>
<td>5.56</td>
<td>8.79</td>
</tr>
</tbody>
</table>

*a Results are the mean of three readings.
Bold values shed light on the preferable results.

Fig. 4. Influence of 2a, 7a and 7b on MST and % ILS of mice carrying EAC.

Fig. 5. Influence of 2a, 7a and 7b on tumor parameters in mice carrying EAC.
binding interactions of $7a$ and $7b$ to TOP IIβ were created by Lead IT 2.3.2 software [61] and displayed in their 2D binding mode featuring key hydrogen bonding interactions with Asp479 and Arg503 residues (Figs. 7B and 8B, respectively) similarly to etoposide and doxorubicin (Fig. 9A and B, respectively). Taking into advisement the analysis of docking results and in vitro enzyme assay, it is proved that $7a$ and $7b$ are the most active analogs in this study as TOP IIβ inhibitors. These results agreed with in vitro antiproliferative screening which demonstrated that $7a$ and $7b$ are the most efficacious members in this study against HepG2 and HCT-116 cell lines (Table 3). 3D and 2D pharmacophores for the structures of $7a$ and $7b$ were built by LigandScout 4.1 software [62] (Fig. 10A and B) and (Fig. 11A and B), respectively. The overlay of the pharmacophore of $7a$ and $7b$ to the pharmacophore of binding of etoposide to TOP IIβ are depicted in Figs. 10C and 11C, respectively. The inspected pharmacophoric features of $7b$ include hydrogen bond donors and acceptors as directed vectors, positive and negative ionizable regions as well as lipophilic areas that are illustrated by spheres. The pharmacophores of $7a$ and $7b$ would enable the design of new more potent TOP IIβ inhibitors as prospective antimicrobial and antitumor agents.

3.2. In silico simulation studies

In silico studies are performed via computer simulation, and they have the potential to accelerate the rate of drug discovery. They are very crucial in the expectation of physicochemical properties, pharmacokinetics and toxicity of compounds [63]. Thus, the new compounds were analyzed for the expectancy of Lipinski’s rule [64] and Veber’s criteria [65] applying Molinspiration software [66]. Likewise, carcinogenicity [67], solubility and drug score values [68] of the new members were prophesied.
3.2.1. Molinspiration calculations

Lipinski’s rule is beneficial in the prediction of oral absorption of drugs [64], and it is based on the physicochemical properties of the investigated compounds. Also, topological polar surface area (TPSA) and number of rotatable bonds (Nrotb) influence drug absorption [65]. Molinspiration software [66] was applied for analyses of TPSA, Nrotb and the parameters of Lipinski’s rule of the new derivatives. Results (Supplementary Table S1) indicated that all of the analyzed compounds (except 9a-c) are under the acceptable norms of Lipinski’s rule, TPSA and Nrotb.

3.2.2. Prediction of carcinogenicity

PreADMET software [67] was applied to predict the potential carcinogenic effect in mice and rats. Data presented in Supplementary Table S2 manifested that the new members (except 7a-c and 9c) are foreseen to have no carcinogenic effect in mice. Further, they are predicted to have no carcinogenic effect in rats (except 2c, 4c, 7a, 7c and 8c).

3.2.3. Solubility and drug score calculations

The aqueous solubility of a compound crucially affects its absorption and distribution properties. Typically, low solubility goes along with bad absorption; therefore, the main goal is to avoid poorly soluble compounds. It is well known that more than 80% of drugs in the market have predestined solubility values above -4. As shown in Supplementary Table S2, compounds 2a, 2c, 4a, 4c, 5a, 5c, 6a-c, 7a and 7c have solubility values above -4, and they are anticipated to exhibit good absorption and distribution properties.

The drug score combines cLogP, solubility, molecular weight, drug-likeness and toxicity risks in one handy value that could be applied to judge the compound’s overall potential to qualify for a drug [69]. A drug score value of 0.5 or more makes the compound a promising lead for future development of safe and efficient drugs [69]. The drug score values of the new analogs were calculated and compared to that of ciprofloxacin, ampicillin, fluconazole and doxorubicin using Molsoft software [68]. All of the analyzed analogs have good drug score values (Supplementary Table S2).

4. Conclusion

Antimicrobial assay results confirmed that 4a has moderate to good and broad-spectrum antimicrobial activity over all tested microbes, and
Fig. 8. (A) 3D Interaction of 7b with the active site of TOP IIβ. The following refers to color of atoms: cyan for carbon, white for hydrogen, blue for nitrogen and green for chlorine. (B) 2D Interaction of 7b with the active site of TOP IIβ. Hydrogen bonds are represented by dashed lines. Hydrophobic interactions are represented by green solid lines.

Fig. 9. (A) 2D Interaction of etoposide with the active site of TOP IIβ. (B) 2D Interaction of doxorubicin with the active site of TOP IIβ. Hydrogen bonds are represented by dashed lines. Hydrophobic interactions are represented by green solid lines.
strong QS inhibitory effect. Compounds 4b and 4c displayed considerable activity on the chosen Gram-positive bacteria and A. fumigatus, whereas 6a exhibited acceptable activity on B. cereus and P. aeruginosa, and strong QS inhibitory effect. Also, 7a and 7b showed good activity over the tested Gram-negative bacteria and fungi, and moderate activity over the tested Gram-positive bacteria, as well as strong QS inhibitory effect. Shifting to in vitro antiproliferative assay results, 7a exhibited potent antiproliferative efficacy toward all tested cell lines; moreover, 2a and 7b showed promising efficacy on the three cell lines. Additionally, 7a and 7b displayed eminent in vivo antitumor activity against EAC cells. Furthermore, the two compounds showed lower cytotoxicity than doxorubicin on WI38 and WISH normal cells; therefore, they might be used as effective and selective antitumor agents. Results of DNA-binding testing illustrated that 2a, 5b and 7a have strong affinity; thus, they are prophesied to act through binding to DNA. Results of TOP IIβ inhibitory activity affirmed that 2a, 4a, 7a and 7b have strong TOP IIβ inhibitory activity, higher than that of doxorubicin. Thus, the active compounds in the current research are forecasted to display their biological activity through binding to DNA and/or targeting TOP IIβ. Furthermore, docking results boosted the efficacious binding interactions of 7a and 7b with TOP IIβ. In silico results clarified that most of the inspected compounds are in harmony with Veber’s and Lipinski’s rule parameters, and they are foreseen to show good oral absorption. The obtained data assured that rational design of the new fused pyrazolopyridines with predicted antimicrobial and antitumor activities was satisfactory; consequently, the active derivatives in this study will be exposed to additional structural alterations hoping to attain new more potent derivatives.

5. Experimental

Stuart melting point apparatus (SMP30) was employed to determine melting points °C. Unicam SP 1000 IR spectrometer (ν in cm⁻¹) was utilized to record IR spectra (KBr disc). ¹H and ¹³C NMR spectra were obtained on Brucker 500 MHz spectrometer in DMSO-d₆. JEOL JMS-600H spectrometer (70 eV) was used for recording mass spectra. Microanalyses (% C, H, N) were achieved, and they were in concord with the suggested structures. TLC plates (silica gel 60 F254) were employed for regulating the advance of reactions, and UV was used to visualize the spots. Elution was performed by chloroform/methanol (9:1). Ortho aminonitriles 1a-c were synthesized following the former method [28]. 2-Hydroxybenzohydrazide and 2-(2-phenyl-1H-benimidazol-1-yl)acetohydrazide were prepared adopting the literature methods [70] and [71], respectively.
5.1. Chemistry

5.1.1. Synthesis of compounds 2a-c

A solution of 1a-c (0.002 mol) and concentrated HCl (2 mL) in glacial acetic acid (10 mL) was refluxed for 16–20 h. The mixture was poured onto ice and neutralized with 1 N NaOH solution. The precipitated solid was filtered and crystallized from ethanol.

5.1.1.1. 3,7-Dimethyl-4-phenyl-1,4,6,9-tetrahydro-5H-pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidin-5-one (2a).
Yield 76%, m.p. 200–202 °C. IR: 3404, 3284 (3NH), 1690 (C=O). 1H NMR δ: 1.89 (s, 3H, CH3), 2.06 (s, 3H, CH3), 4.14 (s, 1H, C 4-H), 7.09–7.31 (m, 5H, Ar-H), 8.93 (s, 1H, NH), 10.85 (s, 2H, 2NH). 13C NMR δ: 10.2, 25.7, 36.2, 102.2, 102.9, 125.8, 127.3, 127.4, 127.9, 128.1, 136.4, 145.0, 159.3, 173.3. MS m/z (%): 295 (35, M++2), 294 (28, M++1), 275 (100.00). Anal. Calcd (Found) for C16H15N5O (293.33): C, 65.52 (65.74); H, 5.15 (5.36); N, 23.88 (24.14) %.

5.1.1.2. 4-(4-Chlorophenyl)-3,7-dimethyl-1,4,6,9-tetrahydro-5H-pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidin-5-one (2b).
Yield 70%, m.p. 177–179 °C (decomp.). IR: 3420 (3NH), 1682 (C=O). 1H NMR δ: 1.89 (s, 3H, CH3), 2.18 (s, 3H, CH3), 4.56 (s, 1H, C 4-H), 7.21–7.89 (m, 4H, Ar-H), 9.99 (s, 1H, NH), 11.32 (s, 1H, NH), 11.49 (s, 1H, NH). 13C NMR δ: 10.2, 25.7, 36.2, 102.2, 102.9, 125.8, 127.3, 127.4, 128.1, 136.4, 145.0, 159.3, 173.3. MS m/z (%): 328 (6.75, M+1), 327 (3.98, M+2), 294 (28, M++1), 109 (100.00). Anal. Calcd (Found) for C16H14ClN5O (327.77): C, 58.63 (58.86); H, 4.31 (4.11); N, 21.37 (21.71) %.

5.1.1.3. 4-(4-Dimethylamino)phenyl)-3,7-dimethyl-1,4,6,9-tetrahydro-5H-pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidin-5-one (2c).
Yield 67%, m.p. 150–152 °C. IR: 3423, 3384 (3NH), 1687 (C=O). 1H NMR δ: 1.89 (s, 3H, CH3), 2.03 (s, 3H, CH3), 4.31 (s, 1H, C 4-H), 6.41 (d, 2H, J = 8.0 Hz, Ar-H), 6.97 (d, 2H, J = 8.5 Hz, Ar-H), 7.01 (s, 1H, NH), 7.83 (s, 1H, NH), 7.96 (s, 1H, NH). 13C NMR δ: 10.2, 25.7, 36.2, 102.2, 102.9, 125.8, 127.3, 127.4, 128.1, 136.4, 145.0, 159.3, 173.3. MS m/z (%): 253 (100.00). Anal. Calcd (Found) for C18H20N6O (253.39): C, 64.27 (63.89); H, 4.31 (4.11); N, 24.98 (24.61) %.

A mixture of 1c (0.589 g, 0.002 mol) and chloroacetyl chloride (0.226 g, 0.002 mol) in DMF (5 mL) was refluxed for 10 h. The mixture was poured onto ice, and precipitate attained was filtered and crystallized from dioxane.
Yield 70%, m.p. 170–171 °C. IR: 3421, 3372, 3220 (3NH), 1667 (C=O). 1H NMR δ: 1.89 (s, 3H, CH3), 2.87 (s, 6H, N(CH3)2), 3.89 (s, 2H, CH2), 4.35 (s, 1H, C 4-H), 6.65 (d, 2H, J = 7.5 Hz, Ar-H), 7.21 (d, 2H, J = 7.5 Hz, Ar-H), 7.75 (s, 1H, NH), 8.28 (s, 1H, NH), 9.26 (s, 1H, NH). 13C NMR δ: 10.2, 25.7, 36.2, 102.2, 102.9, 125.8, 127.3, 127.4, 128.1, 136.4, 145.0, 159.3, 173.3. MS m/z (%): 372 (21.65, M+1), 371 (14.37, M+), 57 (100.00). Anal. Calcd (Found) for C18H20N6O (371.40): C, 64.27 (63.89); H, 4.31 (4.11); N, 24.98 (24.61) %.
C_{18}H_{19}ClN_{6}O (370.84); C, 58.30 (58.63); H, 5.16 (4.91); N, 22.66 (22.37) %.

5.1.3. Synthesis of analogs 4a-c

Compounds 4a-c were synthesized applying a similarly reported method [36].

5.1.3.1. 6-Methyl-5-phenyl-3,5,8,9-tetrahydro-4H-pyrrozolo[4′,3′,5′:4,3,4]pyrido[2,3-d][1,2,3]triazin-4-one (4a). Yield 71%, m.p. 135–136 °C. Compound (4a) was obtained as a yellow solid. IR: 3430 (NH), 1686 (C=O).

5.1.3.2. 5-(4-Chlorophenyl)-6-methyl-3,5,8,9-tetrahydro-4H-pyrrozolo[4′,3′,5′:4,3,4]pyrido[2,3-d][1,2,3]triazin-4-one (4b). Yield 75%, m.p. 198–199 °C.

5.1.3.3. 5-(4-Dimethylamino)phenyl-6-methyl-3,5,8,9-tetrahydro-4H-pyrrozolo[4′,3′,5′:4,3,4]pyrido[2,3-d][1,2,3]triazin-4-one (4c). Yield 60%, m.p. 120–121 °C.

5.1.4. Synthesis of ethyl formimidates 5a-c

A mixture of la–e (0.01 mol) and triethyl orthoformate (10 mL) was refluxed for 10–12 h. Excess reagent was evaporated, and the residue remained was triturated with ice, filtered, and crystallized from ethanol.

5.1.4.1. Ethyl N-(5-cyano-3-methyl-4-phenyl-4,7-dihydro-1H-pyrrozolo[3,4-b]pyridin-6-yl)formidamide (5a). Yield 75%, m.p. 130–132 °C. IR: 3312 (2NH), 2205 (C=NH).

5.1.4.2. Ethyl N-(4-(4-chlorophenyl)-5-cyano-3-methyl-4,7-dihydro-1H-pyrrozolo[3,4-b]pyridin-6-yl)formidamide (5b). Yield 70%, m.p. 153–154 °C. IR: 3331, 3215 (2NH), 2214 (C=NH).

5.1.4.3. Ethyl N-(5-cyano-4-(4-dimethylamino)phenyl)-3-methyl-4,7-dihydro-1H-pyrrozolo[3,4-b]pyridin-6-yl)formidamide (5c). Yield 71%, m.p. 126–128 °C. IR: 3328, 3209 (2NH), 2206 (C=NH).

5.1.5. Synthesis of analogs 6a-c

A mixture of ethyl formimidate 5a-c (0.002 mol) and ammonia 35% (5 mL) in ethanol (10 mL) was refluxed for 12–14 h. The solvent was evaporated and precipitate was triturated with ice, filtered, and crystallized from dioxane.

5.1.5.1. 5-Amino-3-methyl-4-phenyl-4,9-dihydro-1H-pyrrozolo[4′,3′,5′:4,3,4]pyrido[2,3-d]pyrimidine (6a). Yield 71%, m.p. 140–141 °C. IR: 3372, 3311, 3169 (2NH, NH).

5.1.5.2. 5-Amino-4-(4-chlorophenyl)-3-methyl-4,9-dihydro-1H-pyrrozolo[4′,3′,5′:4,3,4]pyrido[2,3-d]pyrimidine (6b). Yield 76%, m.p. 200–202 °C. IR: 3420 (2NH, NH).

5.1.5.3. 5-Amino-4-(4-(dimethylamino)phenyl)-3-methyl-4,9-dihydro-1H-pyrrozolo[4′,3′,5′:4,3,4]pyrido[2,3-d]pyrimidine (6c). Yield 69%, m.p. 160–162 °C. IR: 3431 (2NH, NH).

5.1.6. Synthesis of analogs 7a-c

A mixture of 5a-c (0.002 mol) and hydrazine hydrate 98% (1.0 g, 0.02 mol) in ethanol (10 mL) was refluxed for 8–10 h. The solution was cooled and the solid separated was filtered and crystallized from ethanol.

5.1.6.1. 6-Amino-5-imino-3-methyl-4-phenyl-1,4,5,9-tetrahydro-6H-pyrrozolo[4′,3′,5′:4,3,4]pyrido[2,3-d]pyrimidine (7a). Yield 80%, m.p. 115–116 °C. IR: 3434, 3367, 3213 (3NH, NH).

5.1.6.2. 6-Amino-5-imino-3-methyl-4-phenyl-1,4,5,9-tetrahydro-6H-pyrrozolo[4′,3′,5′:4,3,4]pyrido[2,3-d]pyrimidine (7b). Yield 80%, m.p. 115–116 °C. IR: 3434, 3367, 3213 (3NH, NH).

5.1.6.3. 6-Amino-5-imino-3-methyl-4-phenyl-1,4,5,9-tetrahydro-6H-pyrrozolo[4′,3′,5′:4,3,4]pyrido[2,3-d]pyrimidine (7c). Yield 80%, m.p. 115–116 °C. IR: 3434, 3367, 3213 (3NH, NH).
5.1.6.2. 6-Amino-4-(4-chlorophenyl)-5-imino-3-methyl-1,4,5,9-tetrahydro-6H-pyrazolo[4′,3′:5,6]pyrido[3,2-d]pyrimidine (7b). Yield 85%, m.p. 190–192 °C. IR: 3411, 3195 (3NH, NH2). 1H NMR δ: 1.82 (s, 3H, CH3), 4.32 (s, 1H, C6H), 6.89 (s, 1H, NH), 7.35 (d, 2H, J = 7.5 Hz, Ar-H), 7.66 (d, 2H, J = 7.5 Hz, Ar-H), 7.82 (s, 1H, Pyrimidine-H), 8.05 (s, 1H, NH), 8.50 (s, 1H, NH), 8.96 (s, 2H, NH2). 13C NMR δ: 10.5, 31.8, 99.2, 112.2, 126.6, 131.5, 135.4, 136.4, 140.1, 142.2, 164.6, 166.8, 173.4. MS m/z (%): 328 (0.08, M+), 69 (100.00).

5.1.6.3. 6-Amino-5-imino-4-(4-dimethylamino)phenyl)-3-methyl-1,4,5,9-tetrahydro-6H-pyrido[3,2-d]pyrimidine (7c). Yield 88%, m.p. 145–146 °C. IR: 3420, 3342, 3210 (3NH, NH2). 1H NMR δ: 2.18 (s, 3H, CH3), 2.96 (s, 6H, N(CH3)2), 4.92 (s, 1H, C6H), 6.13 (s, 2H, NH2), 6.75 (d, 2H, J = 9.0 Hz, Ar-H), 7.26 (d, 2H, J = 8.5 Hz, Ar-H), 7.79 (s, 1H, Pyrimidine-H), 9.36 (s, 1H, NH), 9.78 (s, 1H, NH), 11.34 (s, 1H, NH). 13C NMR δ: 12.4, 29.3, 41.9, 106.3, 111.7, 112.1, 129.5, 129.7, 139.5, 143.5, 150.1, 151.9, 156.2, 159.8. MS m/z (%): 338 (0.18, M+ + 2), 337 (0.19, M+ + 1), 336 (0.19, M+), 53 (100.00).

5.1.7. Synthesis of analogs 8a-c and 9a-c

A mixture of 5a-c (0.002 mol) and 2-hydroxybenzohydrazide (0.304 g, 0.002 mol) or 2-(2-phenyl-1H-benzimidazol-1-yl)acetoxybenzohydrazide (0.533 g, 0.002 mol) in DMF (10 mL) was refluxed for 12–14 h. The solvent was evaporated and the remained solid was crystallized from dioxane to afford 8a-c and 9a-c, respectively.

5.1.7.1. 2-(2-Hydroxyphenyl)-10-methyl-11-phenyl-8,11-dihydro-7H-pyrazolo[4′,3′:5,6]pyrido[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine (8a). Yield 70%, m.p. 125–126 °C. IR: 3483, 3425, 3368 (OH, 2NH). 1H NMR δ: 1.91 (s, 3H, CH3), 4.99 (s, 1H, C11-H), 6.96–7.99 (m, 9H, Ar-H, Ar-H), 8.39 (s, 1H, Pyrimidine-H), 9.70 (s, 1H, OH), 11.02 (s, 1H, NH), 12.33 (s, 1H, NH). 13C NMR δ: 9.7, 36.5, 102.7, 117.7, 117.8, 118.7, 119.8, 128.3, 128.7, 128.6, 130.4, 134.6, 140.2, 144.0, 148.5, 152.3, 154.2, 158.5, 169.5. MS m/z (%): 396 (99.16, M+ + 1), 395 (79.1, M+), 319 (100.00).

5.1.7.2. 2-(2-Hydroxyphenyl)-1,2,4-triazolo[1,5-c]pyrimidine (8c). Yield 65%, m.p. 200–202 °C. IR: 3425 (OH, 2NH). 1H NMR δ: 2.13 (s, 3H, CH3), 3.04 (s, 6H, N(CH3)2), 4.34 (s, 1H, C11-H), 6.61–6.85 (m, 2H, Ar-H), 7.19–7.66 (m, 7H, Ar-H, Ar-H, Pyrimidine-H), 8.25 (s, 1H, OH), 9.45 (s, 1H, NH), 9.65 (s, 1H, NH). 13C NMR δ: 9.6, 39.6, 40.5, 103.1, 111.2, 111.3, 111.4, 111.5, 128.6, 130.8, 132.1, 132.9, 136.9, 137.0, 152.6, 154.3, 161.6, 168.9, 171.5. MS m/z (%): 440 (0.22, M+ + 2), 439 (0.36, M+ + 1), 438 (0.22, M+), 57 (100.00).

5.2. Biology

The procedures of biological evaluation are presented thoroughly in the supplementary file.

5.2.1. Antimicrobial and antiqurorum-sensing testing

5.2.1.1. Antibacterial assay. Disc plate method and serial dilution method were applied for assessing the antibacterial activity [11,12,40]. The detailed procedures are presented in the supplementary file.

5.2.1.2. Antifungal assay. Disc plate method and serial dilution method were applied for assessing the antifungal activity [11,12,41]. The detailed procedures are presented in the supplementary file.

5.2.1.3. Antiquorum-sensing assay. Disc plate method was applied for assessing the anti-QS activity [11,12,43]. The detailed procedure is presented in the supplementary file.

5.2.2. Antitumor testing

5.2.2.1. In vitro antiproliferative assay. MTT assay method was applied for assessing the in vitro antiproliferative activity [46–48]. The detailed procedure is presented in the supplementary file.

5.2.2.2. In vivo antitumor assay. The previously reported procedures of in vivo antitumor testing was adopted [49–51], and presented in details.

5.2.2.3. In vitro cytotoxicity assay. MTT assay method was applied for assessing the in vitro cytotoxicity [46–48]. The detailed procedure is presented in the supplementary file.

5.2.3. Mechanistic study

5.2.3.1. DNA-binding assay. Methyl green/DNA displacement assay was adopted for studying the DNA-binding affinity of the active compounds [53]. The detailed procedure is presented in the supplementary file.

5.2.3.2. Topoisomerase IIB assay. Topoisomerase IIB inhibition assay [54] was adopted for evaluating the TOP IIB inhibitory activity of the active compounds. The detailed procedure is presented in the supplementary file.

LeadIT version 2.3.2; BioSolveIT GmbH, Sankt Augustin, Germany, 2017, www.biosolveit.de/LeadIT.

https://www.molinspiration.com/cgi-bin/properties.

https://preadmet.bmdrc.kr/toxicity/.

https://molsoft.com/mprop/.

