A dual-emission fluorescent probe for discriminating cysteine from homocysteine and glutathione in living cells and zebrafish models

Zhengliang Lu, Yanan Lu, Xin Sun, Chunhua Fan⁎, Zongyi Long, Liying Gao
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China

A R T I C L E I N F O

Keywords:
Dual-emission fluorescent probe
Discrimination of biothiols
NBD, Living cell
Zebrafish models

A B S T R A C T

Cellular biothiols function crucially and differently in physiological and pathological processes. However, it is still challenging to detect and discriminate thiols within a single molecule, especially for cysteine (Cys) and homocysteine (Hcy). In this study, a simple two-emission turn-on fluorescent biothiol probe (ICN-NBD) was rationally designed and synthesized through a facile ether bond linking 7-nitro-1,2,3-benzoxadiazole (NBD) and phenanthroimidazole containing a cyano tail. The probe in the presence of Cys elicited two fluorescence responses at 470 nm and 550 nm under excitation at 365 nm and 480 nm, respectively, because of the concomitant generation of both the fluorophore and NBD-Hcy/GSH. In contrast, addition of Hcy and glutathione (GSH) could result in only a blue fluorescence enhancement at 470 nm, which was reasonably attributed to rearrangement from NBD-S-Hcy/GSH to NBD-N-Hcy/GSH as a result of geometrical constraints or solvent effects. Therefore, the fluorescent probe with the NBD scaffold could detect biothiols and simultaneously discriminate Cys from Hcy/GSH in both blue and green channels. The probe has been successfully applied for visualizing biothiols in living cells and zebrafish.

1. Introduction

The study of reactive sulfur species (RSS) in biological systems, especially cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) has been attracting much attention due to their crucial roles in physiological and pathological processes [1–3]. Among them, Cys participates in cell growth and in the synthesis and increased rigidity of proteins as well as chelation of metal ions in enzymes [4–6]. In the presence of cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfur transferase (3-MST), Cys could be catalytically transformed into the endogenous gaseous transmitter H₂S which has been implicated in the induction of hippocampal long-term potentiation, brain development, and blood pressure regulation [7]. With assistance of γ-glutamylcysteine synthetase (GSH I) and glutamine synthetase (GSH II), Cys is involved in the formation of the antioxidant GSH maintains cellular redox homeostasis and protects thiol-containing proteins and enzymes from reactive oxygen species, such as free radicals and peroxides, as well as heavy metals through reversible oxidation of glutathione disulfide (GSSG) [8]. Hcy can be catalytically converted into Cys by CBS and CSE with the aid of Vitamin B₆ [9]. Imbalance of biothiols is involved in edema, retarded growth rate, liver damage, leukocyte loss, psoriasis, Alzheimer’s disease and down’s syndrome [10–14]. Therefore, it is meaningful and important to be able to conveniently and sensitively detect and simultaneously discriminate biothiols in clinic diagnostics and pathophysiology exploration.

Compared with conventional detection methods including high-performance liquid chromatography, electrochemical assay, and mass spectrometry [15–17], fluorescence spectroscopy offers many advantages including simplification, high sensitivity and low cost, non-invasiveness, high spatial resolution and notably, visualization of the target of interest in a biological environment [18–25]. In this regard, various mechanisms including Michael addition, cleavage of sulfonamide and sulfonate ester, cyclization with aldehyde, and others, have been used to construct numerous fluorescent probes for biothiols [26–38]. Due to their similar structure and reaction sites, most fluorescent probes could respond to only one or two of the biothiols. Therefore, discrimination of biothiols is still a big challenge although several probes have been developed for biothiols using multiple reaction sites in one molecule [39–43]. It is worth noting that most probes are single-emission or intensity-based fluorescent probes which could usually suffer at least one of the drawbacks, such as low selectivity and sensitivity, a high limit of detection, large volumes of organic solvent, and/or short excitation/emission wavelengths. However, dual-emission fluorescent probes would be more accurate because of the good built-in self-calibration to effectively eliminate the interference from environmental conditions and biological systems [44–48]. Unfortunately, few
dual-emission fluorescent probes have been reported for discriminating biothiols [49–53]. For instance, Lin and co-workers developed a dual-emission fluorescent probe for discrimination of biothiols and H₂S in phosphate-buffered saline (PBS) containing 20% acetonitrile [49]. Wu and co-workers reported a hemicyanine fluorescent probe for distinguishing Cys/Hcy from GSH in 5% DMSO/PBS [50]. Very recently, Song and co-workers designed a multi-emission fluorescent probe for discriminatory detection of Cys/Hcy, GSH/H₂S, and thiophenol [51]. However, these fluorescent probes failed to distinguish between Cys and Hcy. It is clear that the selectivity of a probe toward the target of interest can be significantly affected by minor changes of a moiety within the probe [54–57]. Thus, we envisioned that introduction of a suitable electron-withdrawing group within a dual-emission fluorescent probe could induce a remarkable shift of emission wavelength after reaction with biothiols. Based on this hypothesis and our former research [58], we synthesized a simple dual-emission fluorescent probe by anchoring 7-nitro-1,2,3-benzoxadiazole (NBD) to a cyano-phenanthroimidazole fluorophore. The initial nucleophilic attack of biothiols toward the ether bond of the probe would release the phenanthroimidazole fluorophore with emission at 470 nm upon excitation at 365 nm. Due to the solvent impact and/or geometrical difference between Cys and Hcy/GSH, an intramolecular cyclization-rearrangement cascade reaction took place in the presence of only Cys, eliciting a remarkable green fluorescence at 550 nm (Ex 480 nm) (see Scheme 1). Therefore, the probe ICN-NBD could detect biothiols and further discriminate Cys from Hcy/GSH in both blue and green channels. Moreover, the probe was successfully applied for visualizing biothiols in living HeLa cells and zebrafish models.

2. Experimental

2.1. Materials and instruments

All reagents and chemicals were commercially obtained from suppliers. NMR spectra were carried out on a Bruker spectrometer. ESI-HRMS were recorded on a Bruker Daltonics APEX II 47E FT-ICR spectrometer. UV-vis and Fluorescence spectra were measured on a TU-1901 spectrometer and F-380 luminescence spectrometer, respectively. The cells were imaged by a confocal laser scanning microscope. Phenanthroimidazole fluorophore was obtained according to the literature [59].

2.2. Synthesis of ICN-NBD

Compound ICN-OH (0.41 g, 1 mmol) and NBD-Cl (0.40 g, 2 mmol) was dissolved in dry dichloromethane (10 mL) under a nitrogen atmosphere. Triethylamine (0.33 mL) was added and the mixture was stirred ambiently overnight. The residue was purified by flash chromatography using EtOAc/pet. ether (v/v 1:4) to afford the pure compound ICN-NBD as a blue solid (0.28 g, yield 49%). ¹H NMR (400 MHz, CDCl₃) δ 8.94 – 8.84 (m, 2H), 8.59 (d, J = 7.8 Hz, 1H), 8.46 (d, J = 2.4 Hz, 1H), 8.40 (d, J = 8.3 Hz, 1H), 8.26 (d, J = 7.7 Hz, 1H), 8.07 (dd, J = 8.7, 2.5 Hz, 1H), 8.01 (d, J = 5.0 Hz, 3H), 7.79 (t, J = 7.4 Hz, 1H), 7.73–7.70 (m, 1H), 7.66 (dt, J = 5.7, 3.6 Hz, 1H), 7.56 (t, J = 7.7 Hz, 1H), 7.47 (d, J = 8.7 Hz, 1H), 7.22 (t, J = 7.6 Hz, 1H), 7.10 (d, J = 8.3 Hz, 1H), 6.66 (d, J = 8.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.66, 150.57, 148.40, 146.25, 144.54, 143.78, 143.36, 142.54, 139.09, 138.67, 137.37, 133.13, 132.99, 132.76, 132.59, 131.55, 130.41, 130.08, 129.82, 128.38, 128.68, 127.82, 126.95, 126.75, 126.24, 124.68, 124.46, 123.29, 122.60, 121.89, 121.41, 120.42, 118.37, 109.56. MS (ESI, m/z) Calcd for [C₃₄H₁₈N₆O₄-H]+, 573.1311; found, 573.1350.

2.3. HeLa cells and zebrafish imaging

HeLa cells were seeded on glass-bottomed dishes in culture media for 24 h. The cultured cells were washed twice by PBS before subsequent experiments and divided into four groups. In a control group,
HeLa cells were incubated with 100 μM N-ethylmaleimide (NEM) for 30 min and then ICN-NBD (20 μM) at 37 °C for another 30 min. In the second group, the HeLa cells were treated with the probe (20 μM) for 30 min after incubation with NEM (100 μM) for 30 min and then Cys (20 μM) for another 30 min. In the third group, HeLa cells pretreated with 100 μM NEM for 30 min and then with Hcy (50 μM) for another 30 min were incubated with the probe (20 μM) for 30 min. In the fourth group, HeLa cells were cultured with NEM (100 μM) for 30 min, and subsequently incubated with GSH (50 μM) for 30 min, and finally with the probe (20 μM) for 30 min. After washing, HeLa cell images were taken using a confocal laser scanning microscope. Zebrafish were imaged after incubation with NEM (500 μM), the probe (20 μM), or biothiols (50 μM) for 30 min, respectively.

3. Results and discussion

3.1. Rational design and synthesis of ICN-NBD

Although several probes relying on multiple reaction sites have been developed for discriminating biothiols, it is still challenging to simultaneously discriminate between them [60]. In contrast, dual-emission fluorescent probes due to the build-in self-calibration pave a more promising way for detecting biothiols and even distinguishing Cys and Hcy [50–51]. These previous studies containing the NBD moiety demonstrated a similar cyclization rearrangement cascade reaction with Cys and Hcy. We imagined that the cyano group of the probe could affect the emission wavelength of the fluorophore. Considering that NBD acts as both a good indicator and biothiol-sensing group, the probe ICN-NBD with a cyano group tail was synthesized through a one-step reaction between NBD-Cl and ICN-OH in the presence of Et3N. ICN-NBD was fully characterized by 1H NMR, 13C NMR and HRMS (Fig. S1–S3).

3.2. Sensing properties of ICN-NBD toward biothiols

With compound ICN-NBD in hand, the fluorescence responses of the probe were initially investigated in the presence and absence of biothiols in DMF-H2O (v/v, 4:6, 20 mM PBS buffer; pH 7.4). Free ICN-NBD (10 μM) displayed no fluorescence upon excitation at both 365 nm and 480 nm. However, addition of biothiols to media containing ICN-NBD induced strong fluorescence changes. As shown in Fig. 1a, in the presence of Cys, the probe demonstrated two independent fluorescence enhancements at 470 and 550 nm when excited at 365 and 480 nm, respectively. The fluorescence in blue and green channels increased and reached a maximum plateau at 470 and 550 nm, respectively, in the presence of 10 equiv. of Cys. In contrast, only blue fluorescence at 470 nm was observed upon excitation at 365 nm in the presence of Hcy and GSH (Fig. 1b and c). The strong blue fluorescence confirmed that the nucleophilic substitution reaction was successfully initiated, which emitted fluorescence at 470 nm due to released ICN-OH. The probe showed very weak fluorescence at 550 nm with Hcy and GSH upon excitation at 480 nm. The maximum emission intensities at 470 nm were obtained with addition of 10 equiv. of Hcy and 18 equiv. of GSH. Compared with Cys, the weak green fluorescence of ICN-NBD with Hcy and GSH was probably attributed to the unfavorable transformation from NBD-S-Hcy and NBD-S-GSH to NBD-N-Hcy and NBD-N-GSH, respectively. This is likely due to the influence of steric or solvent interactions as has been observed in previous work for similar probes [61]. Moreover, good linear relationships were obtained between the fluorescence intensities at 470 nm of the probe and the concentration of Cys, Hcy, and GSH in the range of 0–100 μM, 0–100 μM, and 0–180 μM, respectively (Fig. S4). The corresponding limits of detection were estimated to be 22.6 nM for Cys, 31.2 nM for Hcy, and 17.7 nM for GSH, respectively. These results indicate that the probe could quantitatively detect biothiols and further discriminate Cys from Hcy and GSH.

3.3. Selectivity of ICN-NBD toward biothiols

In order to prove excellent selectivity toward biothiols, the fluorescence responses of ICN-NBD (10 μM) were investigated with biologically relevant species in DMF-buffer solution (4:6, v/v, 20 mM PBS, pH 7.4). As shown in Fig. 2a, the probe showed strong fluorescence at 470 nm in the presence of biothiols (Cys, Hcy, and GSH). Related interfering species, such as thiophenol (PhSH), Na2S, other amino acids (200 μM) (Asp, l-Try, Gly, Val, Ile, Glu, Arg, Leu, Ala, His, Lys, Met, Phe, Tyr, Ser, Pro, Try and Thr) and common species (H2O2, F–, I–, Cl–, SO4

2–, AcO–, K+, Na+, Al3+, Mg2+, Zn2+, Cr3+, Hg2+, Ba2+, Cu2+, Fe2+, Mn2+, Cd2+, Fe3+ and Ca2+), did not induce significant fluorescence emission. It is to be noted that only Cys led to a strong emission intensity at 550 nm although Hcy and GSH resulted in weak green fluorescence. As shown in Fig. 2b, the probe showed weak fluorescence at 470 nm in the presence of Hcy and GSH in the range of 0–100 μM, 0–100 μM, and 0–180 μM, respectively.
fluorescence (Fig. 2b). These results indicate that the probe could not only detect biothiols over the other related interfering species but also discriminate Cys from Hcy/GSH.

The effect of pH on the fluorescence response at 470 nm of the probe in the absence or presence of 20 equiv. of biothiols was explored in 40% DMF aqueous solution in order to extend potential applications in biological systems (Fig. S5). It was found that free probe ICN-NBD did not elicit any significant fluorescence at 470 nm in the pH range from 2.0 to 12.0, which demonstrated the stability of the probe. As expected, addition of 20 equiv. of biothiols resulted in strong blue fluorescence at 470 nm in the pH range from 5.0 to 10.0. However, the fluorescence of the probe at 470 nm was silent with biothiols in more acidic (pH < 5.0) or basic environment (pH greater than 10.0) which probably inhibited the aromatic substitution reaction between the probe and biothiols. This wide working pH range of 5.0–10.0 indicates that the probe can work well under physiological conditions.

3.4. The proposed sensing mechanism of ICN-NBD towards biothiols

At present, numerous single-emission fluorescent probes for biothiols have been developed whose further potential application was limited due to a lack of built-in self-calibration, although a few probes have been designed for discriminating biothiols based on multi reaction sites [62–64]. Fortunately, several groups have shown that dual-emission fluorescent probes are a promising tool due to high accuracy from their built-in self-calibration, when they followed a popular strategy of combining a good indicator and recognition group NBD with other fluorophores [50,52]. An aromatic nucleophilic substitution reaction can readily break the ether bond of the probes and release the fluorophore ICN-OH and NBD-containing intermediates thereby emitting blue fluorescence at 470 nm (ex 365 nm) by switching on intramolecular charge transfer (ICT). It should be noted that these fluorescent probes could discriminate Cys/Hcy from GSH because both NBD-containing intermediates (NBD-S-Cys and NBD-S-Hcy) can undergo a cyclization and substitution cascade reaction that is not observed for NBD-S-GSH. The probe ICN-NBD was synthesized by anchoring NBD to the cyano-fluorophore (ICN-OH). To gain insight into the sensing mechanism, the HRMS spectra of ICN-NBD in the presence of Cys, Hcy, and GSH, were performed. As shown in Fig. S7, the spectra of ICN-NBD with GSH presented a peak at m/z = 469.07780 corresponding to the species NBD-S-GSH ([NBD-S-GSH]−: Calcd 469.07777), an expected compound regardless of steric factor. Besides the peak at 410.12967 from the fluorophore ([ICN-OH]−: Calcd 410.12989), HRMS spectra of ICN-NBD in the presence of Cys also demonstrated a new peak at 283.01419 reasonably attributed to NBD-N-Cys ([NBD-N-Cys−]: Calcd 283.03372) which is good agreement with literatures (Fig. S8) [51,65]. Surprisingly, addition of Hcy to the probe can produce the fluorophore and the nonfluorescent species NBD-S-Hcy which was scarcely transformed into fluorescent NBD-N-Hcy as observed in Fig. 1b. This phenomenon was reasonably attributed to the influence from geometrical constraints and/or solvent interaction [61]. As shown in Fig. S9, addition of all three biothiols to the probe led to an absorption peak at 365 nm, which was assigned to ICN-OH. Notably, reaction between ICN-NBD and GSH resulted in a broad absorption shoulder at around 420 nm corresponding to the nonfluorescent NBD-S-GSH. Addition of Hcy to the probe produced a new broad absorption band at 446 nm from nonfluorescent NBD-S-Hcy. This designation was further confirmed by a Cys-induced absorption peak at 470 nm corresponding to fluorescent NBD-N-Cys. Thus, these results strongly support the proposed recognition mechanism of the probe toward biothiols.

3.5. Imaging biothiols in living cells and zebrafish

The excellent selectivity and sensitivity of the probe toward biothiols in vitro under simulated physiological conditions encouraged us to further explore its potential application in biological systems. The cytotoxicity effect of probe ICN-NBD was initially checked by a standard MTT assay in living HeLa cells. After incubation with ICN-NBD at different concentration ranging from 0 to 20 μM for 24 h, HeLa cells did not show any major loss of viability (Fig. S10). Indeed, the cell viability is still more than 90% after incubation with up to 20 μM of probe. These results show the low cytotoxicity and good permeability of ICN-NBD in living HeLa cells.

Next, we carried out a series of cell experiments to check whether the probe could visualize biothiols in HeLa cells by utilizing a confocal laser scanning microscope (Leica Microsystems). In a control group, HeLa cells were incubated with NEM, a well-known thiol-specific scavenger, for 30 min, and subsequently with the probe (20 μM) for another 30 min. As shown in Fig. 3a–d, there was not any obvious fluorescence in both blue and green channels observed. This indicated that NEM successfully deplete the endogenous biothiols. Subsequently, HeLa
cells were incubated with the probe for 30 min after treatment with NEM (100 μM) and then Cys (50 μM). The cells showed strong fluorescence in both blue and green channels (Fig. 3e–h). In subsequent groups (Fig. 3i–p), the cells demonstrated strong fluorescence at 470 nm when HeLa cells were treated with the probe (20 μM) after incubation with NEM and then Hcy (50 μM) or GSH (50 μM). This group of cells presented very weak green fluorescence. These results indicate that ICN-NBD can selectively bioimage biothiols based on the blue fluorescence in living cells and could also differentiate Cys from Hcy/GSH depending on the green fluorescence.

Inspired by the prominent above-mentioned fluorescence imaging in living HeLa cells, the feasibility of ICN-NBD for bioimaging biothiols was further checked in living zebrafish models. In a control group, 2-day-old zebrafish were incubated with NEM (500 μM) for 30 min and then with the probe (20 μM) for another 30 min. As shown in Fig. 4a1–a4, zebrafish did not emit any significant fluorescence in both blue and green channels. In the experimental group, zebrafish were first incubated with NEM (500 μM) for 30 min and then treated with Cys (50 μM) for another 30 min. As shown in Fig. 4b1–b4, both strong blue and green fluorescence was detected in zebrafish incubated with Cys. Zebrafish incubated with the probe after pretreatment with NEM and Hcy or GSH demonstrated strong blue fluorescence (Fig. 4c1–c4 and d1–d4). Only weak green fluorescence was detected. These results suggested that ICN-NBD could be successfully applied for visualizing biothiols in zebrafish.

4. Conclusion

In summary, this study has developed a simple dual-emission fluorescent probe for biothiols, based on combining two fluorophores nitrobenzofurazan (NBD) and phenanthroimidazole with a facile ether bond. In the presence of Cys, the probe emitted remarkable fluorescence in both blue (470 nm) and green (550 nm) channels. However, the addition of Hcy and GSH could only induce strong blue fluorescence, which was reasonably assigned to the influence from geometrical constraints and/or weak solvent interaction. These interesting findings demonstrate the probe could be a promising and effective tool to detect biothiols and further discriminate Cys from Hcy/GSH through a dual-emission mode. Moreover, the probe has been successfully applied for visualizing endogenous and exogenous biothiols in living HeLa cells and zebrafish models with low cytotoxicity and good membrane permeability.

Acknowledgements

We thank for the supporting from Shandong Provincial Natural Science Foundation of China (grant No. ZR2019MB040), the Science and Technology Project of University of Jinan (Grant No. XKY1823 and XBS1320). We also thank Dr. Cory A. Black at BDG Synthesis (PO Box 38627, Wellington Mail Centre, Wellington 5045, New Zealand) for his suggestions and comments which allowed us to largely improve the manuscript.
Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioorg.2019.103215.

References

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioorg.2019.103215.

Fig. 4. Fluorescence images of zebrafish. a1–a4) Zebrafish only for comparison. (B1–b4) Zebrafish incubated with NEM (500 μM) and then ICN-NBD (20 μM). (c1–c4) Zebrafish with Cys (50 μM). d1–d4) Zebrafish with Hcy (50 μM). (e1–e4) Zebrafish incubated with GSH (50 μM). Scale bar = 500 μm.