Synthesis and antitumor activity of three novel ginsenoside M1 derivatives with 3′-ester modifications

Ke-Ke Li,a,1 Xiao-Mei Yanb,1 Zheng-Ning Lic, Qiu Yanda, Xiao-Jie Gongc,⁎

aCollege of Life Science, Dalian Minzu University, Dalian 116600, China
bCollege of Laboratory Medicine, Dalian Medical University, Dalian 116044, China
cCollege of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
dCollege of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China

ARTICLE INFO

Keywords:
Ginsenoside M1 derivatives
Synthesis
Cytotoxicity
Autophagy
Breast cancer cell

ABSTRACT

Ginsenoside M1 (M1) was considered to be the main antitumor component of ginsenoside metabolites in the body. In order to enhance its potency on antitumor effect, three novel M1 3′–ester derivatives (1c, 2c, 3c) were synthesized and evaluated. The yield of these derivatives was between 41% and 69%. Compared with M1, 2c and 3c can improve the efficacy of the inhibition on breast cancer MCF–7 and MDA–MB–231 cells, especially for MCF–7 (fold: 0.7–4.2, p < 0.0001). Further study suggested that 2c and 3c may cause cell autophagy and promote apoptosis in MCF–7 cells. The results indicated the 3′–ester modified M1 derivatives 2c and 3c possess higher abilities of inhibition growth towards triple–positive breast cancer and provided a new source for synthesis of potential anti-breast cancer drugs.

1. Introduction

Breast cancer is a heterogeneous disease with substantial genotypic and phenotypic diversity [1]. Worldwide, breast cancer is the second most common cancer and the fifth leading cause of cancer deaths among females [2]. In the United States, breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer deaths among females [2]. In China, breast cancer has become the highest risk disease for women living in big cities. Most patients with the disease localized to the breast in clinical, approximately 20–85% of patients, will later develop recurrent and/or metastatic disease; whereas 10% of patients already present with locally advanced and/or metastatic breast cancer [3]. Since breast cancer is a very heterogeneous disease with distinct morphologies, molecular traits, progresses, and treatment options, clinical decisions are mainly made on the basis of the tumor stage, lymph-node involvement, and molecular subtype, represented clinically by the expression of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor (HER2) [4]. According to the reported, intratumoral heterogeneity of HER2 expression and gene amplification has been in 16–36% of patients with HER2-positive breast cancer [5,6]. While, negative ER, PR and HER2 expression (triple negative breast cancer) accounts for 15–20% of all breast cancer cases [7,8]. Although breast cancer mortality has been decreasing since 2004 with the aid of early detection and more rational and scientific treatment, the five-year survival rate is still dissatisfactory [9]. Moreover, current clinical drugs such as tamoxifen citrate (tamoxifen), ethimetam (anoxine), trastuzumab (herceptin), doxorubicin and so on have various serious side effects. In the absence of approved targeted therapy, chemotherapy remains the mainstay of the limited treatment options for breast cancer at present, and there is an urgent need to find new and more effective agent for the treatment of breast cancer.

Panax ginseng (Ginseng) has been widely used as a natural medicine to treat a variety of ailments in China for thousands of years. As listed by the U.S. National Institutes of Health as a complementary and alternative medicine, the antitumor functions of ginseng are being increasingly recognized [10]. Ginseng played antitumor role in a variety of ways such as anti-inflammatory, anti-proliferation, apoptosis, free radical scavenging [11–14]. Ginsenoside, the active constituents of ginseng, was usually recognized as the main material basis to exert its anti-tumor effect [10]. Some ginsenosides such as Rg3 (Shenyi capsule) and Rh2 (Jinxing capsule) have been developed as antitumor ingredients for clinical use in China. However, since natural ginsenosides had many drawbacks in terms of drug development, synthesized or
modified natural ginsenosides become an effective method to make more efficacious, affordable and safe ginsenoside derivatives [15–17].

Ginsenoside M1 (M1) (Fig. 1) was a protopanaxadiol type ginsenoside, and was first obtained by bacterial hydrolysis of a mixture of ginsenosides Rb1, Rb2 and Re [18]. Then, the following studies identified M1 as a metabolite from ginsenosides by intestinal flora [19], and proposed that the metabolized M1 was esterified with fatty acids in the liver, which resulted in longer permanence in the body and exhibited better antitumor activity [20]. M1 esterified derivatives may play a more important role for its efficacious on tumor cells. Although previous studies have shown that M1 exerted antitumor effects in vitro and in vivo through different mechanisms, including cytotoxicity, inhibition of tumor cell invasion and metastasis, inhibition of tumor growth [21], there were few related to M1 derivatives [22–24].

Among the diverse activities of ginsenoside, some specific ginsenoside compounds have estrogenic activity, such as ginsenoside Rg1 [25,26], Rb1 [27], Rh1 [28], Rh2 [29], Rb3 [30] and Re [31]. MDA-MB-231 and MCF-7 human cancer cell lines are estrogen receptor and estrogen receptor-positive cells, respectively. These cell lines are well-established in vitro models for evaluating estrogen-responsive or estrogen-independent antitumor drugs [32]. In this study, as an ongoing research of synthesized novel M1 derivatives with increased antitumor activities [33], three 3′–ester of M1 derivatives were synthesized for antitumor activities evaluation on MCF-7 and MDA-MB-231 cell lines.

2. Experimental section

2.1. Chemistry

In order to obtain the 3′–monoester derivatives of M1, we adopted a strategy of protection–esterification–deprotection (Scheme 1, Table 1). Among the six hydroxyls in M1 (Fig. 1), 6′–hydroxyl group was most active [34], and esterification reaction was conducted after the optimum protective agent to 6′–hydroxyl. Then selective esterification was the reaction of the 6′–hydroxyl protected M1 with different acyl chloride in the presence of 4–dimethylaminopyridine (DMAP). The deprotection was achieved using tetrabutylammonium fluoride (TBAF) and monitored by HPLC. All the products were purified from the reaction mixture by silica gel column chromatography, the structures were confirmed by 1H NMR, 13C NMR and mass spectra. Melting points were determined in open capillary tubes and are uncorrected. The MS data were obtained on an Agilent 1100–MDS SCIEX QSTAR instrument. 1H NMR and 13C NMR spectra were measured on a Bruker DRX–500 spectrometer using tetramethylsilane as the internal standard. The major chemicals were purchased from Sigma–Aldrich.

2.1.1. Procedure for the protection of hydroxyls in M1

Under nitrogen protection, M1 (1 equiv, 100 mg, 0.16 mmol) was reacted with tert–butyl dimethylchlorosilane (TBDMSI) (5 equiv, 120 mg) in a solution of 5 mL triethylamine for 24 h at room temperature, and the reaction was terminated by adding a saturated ammonium chloride solution. After extracting the mixture product from
2.2. Antitumor bioassay

2.2.1. Cytotoxicity

MCF-7 and MDA-MB-231 cells were cultured in DMEM without phenol-red (HyClone) and 10% charcoal-stripped fetal bovine serum (FBS, Gibco, USA) at 37 °C with 5% CO2 in a humidified incubator. The cell viability (%) (Sample blank)/(Control blank) 100% × 231 (4×10⁻⁷ and MDA-MB-2.2. Effect on the mitochondrial membrane potential

Rhodamine 123 was used to detect the mitochondrial membrane potential. Breast cancer cells MCF-7 and MDA-MB-231 (4 × 10⁵ cells/well) were passed onto the 3 cm culture dishes and incubated for 6 h, then the culture medium was removed and added the fresh culture medium with a concentration of 50μM compound M1, 1c, 2c, 3c incubated for 24 h. After washing the culture dishes three times with PBS, dansylcadaverine (MDC) stain was added into dish and incubated for 15 min. Fluorescence imaging experiments were carried out on fluorescence microscope.

2.2.3. Effect on the autophagy

Autophagy was detected by Dansylcadaverine (MDC). Breast cancer cells MCF-7 and MDA-MB-231 (4 × 10⁵ cells/well) were passed onto the 3 cm culture dishes and incubated for 6 h, then the culture medium was removed and added the fresh culture medium with a concentration of 50μM compound M1, 1c, 2c, 3c incubated for 24 h. After washing the culture dishes three times with PBS, dansylcadaverine (MDC) stain was added into dish and incubated for 15 min. Fluorescence imaging experiments were carried out on fluorescence microscope.

3. Results and discussion

3.1. Synthesis of M1 3′-ester

3.1.1. Characterization of M1-OTBS (1a)

Yield: 98%. mp: 142–143 °C. ¹H NMR (500 MHz, CDCl₃) δ: 5.12 (t, J = 5.5 Hz, 1H, H-24), 4.51 (d, J = 6.2 Hz, 1H, H-1′), 3.88 (dd, J = 8.5, 3.4 Hz, 1H, Hb-6′), 3.63 (m, 1H, H-4′), 3.58 (m, 1H, H-3′), 3.47 (t, J = 7.4 Hz, 1H, H-3), 3.31 (m, 1H, H-2″), 2.31 (dd, J = 11.2, 4.8 Hz, 1H, H-3), 1.68 (s, 3H, H-26), 1.56 (s, 3H, H-27), 1.37 (s, 3H, H-21), 1.24 (s, 6H, H-19, H-28), 0.97 (s, 3H, H-30), 0.89 (s, 9H, H-2″-H-4″), 0.87 (s, 3H, H-18), 0.77 (s, 3H, H-29), 0.72 (d, J = 11.3 Hz, 1H, H-5′), 0.07 (s, 6H, H-5″, H-6″); ¹³C NMR (125 MHz, CDCl₃) δ: 131.3 (C-25), 124.7 (C-24), 96.9 (C-1′), 83.9 (C-20), 78.8 (C-3), 75.1 (C-3′), 73.4 (C-5′), 71.2 (C-17), 70.4 (C-12), 70.4 (C-4′), 64.1 (C-6″), 55.8 (C-5), 51.6 (C-17), 51.1 (C-14), 49.8 (C-9), 48.0 (C-13), 39.9 (C-8), 39.8 (C-1), 39.0 (C-4′, 39.0 (C-3′), 38.6 (C-5′), 37.3 (C-2′), 36.5 (C-4′), 29.5 (C-6′), 26.3 (C-16), 25.8 (C-2″, 3″, 4″), 23.6 (C-26), 22.3 (C-23), 21.5 (C-21), 18.3 (C-6), 18.2 (C-12), 17.7 (C-27), 17.0 (C-30), 16.1 (C-29), 15.8 (C-18), 15.4 (C-19), −5.7 (C-5″, C-6″). ESI-MS: m/z 759.5 [M + Na]+ (Calcd. for C₅₂H₉₄NaO₉Si, 759.5).

3.1.2. Characterization of esterification products of M1 silicon ether derivatives

3.1.2.1. (20S)-O-3′-acetyl-6′-tert-butyldimethylsilyl-β-o-glucopyranosyl)-dammarane-3β,12β-diol (1b), Yield: 80% mp: 132–133 °C. ¹H NMR (500 MHz, CDCl₃) δ: 5.12 (t, J = 5.6 Hz, 1H, H-24), 4.96 (t, J = 7.5 Hz, 1H, H-3′), 4.56 (d, J = 6.2 Hz, 1H, H-1′), 3.86 (dd, J = 8.5, 3.4 Hz, 1H, H-6′), 3.79 (dd, J = 8.5, 3.4 Hz, 1H, H-6′), 3.61 (m, 1H, H-4′), 3.46 (t, J = 7.4 Hz, 1H, H-5′), 3.34 (m, 1H, H-2″), 3.21 (dd, J = 11.2, 4.8 Hz, 1H, H-3), 2.40 (t, J = 6.0 Hz, 2H, H-2″), 1.69 (s, 3H, H-26), 1.60 (s, 3H, H-27), 1.38 (s, 3H, H-21), 1.23 (s, 6H, H-19, H-28), 0.97 (s, 3H, H-30), 0.88 (s, 9H, H-2″-H-4″), 0.87 (t, J = 7.0 Hz, 3H, H-10″), 0.86 (s, 3H, H-18), 0.77 (s, 3H, H-29), 0.72 (d, J = 11.3 Hz, 1H, H-5′), 0.08 (s, 6H, H-5″, H-6″); ¹³C NMR (125 MHz, CDCl₃) δ: 175.1 (C-1′), 131.5 (C-25), 124.6 (C-24), 97.3 (C-1′), 84.4 (C-20), 78.9 (C-3′), 78.0 (C-5′), 74.9 (C-5′), 71.2 (C-17), 71.3 (C-4′), 70.4 (C-12), 64.4 (C-6″), 55.9 (C-5), 51.7 (C-17), 51.3 (C-14), 49.8 (C-9), 48.1 (C-13), 39.8 (C-8), 39.0 (C-1), 39.0 (C-4), 37.1 (C-10), 35.6 (C-22), 34.8 (C-7), 30.6 (C-11), 30.3 (C-15), 28.0 (C-28), 27.3 (C-2′), 26.5 (C-16), 25.8 (C-2″, 3″, 4″), 23.7 (C-26), 22.3 (C-23), 21.5 (C-21), 18.3 (C-6), 18.2 (C-12), 17.7 (C-27), 17.0 (C-30), 16.1 (C-29), 15.8 (C-18), 15.4 (C-19), −5.7 (C-5″, C-6″). ESI-MS: m/z 913.6 [M + Na]+ (Calcd. for C₅₀H₇₄NaO₉Si, 913.7).
3.1.2.3. (20S)-O-(3′-cyclohexaneformyl-6′-tert-butyldimethylsilyl-β-D-glucopyranosyl)-dammarane-3β,12β-diol (3b). Yield: 76%. mp: 150–161°C. 1H NMR (500 MHz, CDCl3) δ: 5.12 (t, J = 7.6 Hz, 1H, H-24), 4.92 (t, J = 7.4 Hz, 1H, H-3′), 4.54 (d, J = 6.2 Hz, 1H, H-1′), 3.61 (dd, J = 8.5, 3.7 Hz, 1H, H-6′a), 3.80 (dd, J = 8.5, 4.6 Hz, 1H, H-6′b), 3.58 (m, 1H, H-3′), 3.54 (m, 1H, H-5′), 3.46 (t, J = 6.9 Hz, 1H, H-4′), 3.21 (dd, J = 9.1, 3.7 Hz, 1H, H-3′), 2.22 (m, 1H, H-2″), 1.69 (s, 3H, H-29), 1.60 (s, 3H, H-27), 1.36 (s, 3H, H-21), 1.26 (s, 6H, H-19, H-28), 0.97 (s, 6H, H-30, H-18), 0.88 (s, 9H, H-2″-H-4″), 0.77 (s, 3H, H-29), 0.72 (d, J = 11.3 Hz, 1H, H-5), 0.02 (s, 6H, H-5″-H-6″); 13C NMR (125 MHz, CDCl3) δ: 177.4 (C-1′), 131.5 (C-25), 124.6 (C-24), 97.3 (C-1′), 84.3 (C-20), 78.9 (C-3′), 78.0 (C-5′), 75.2 (C-5″), 72.4 (C-2′), 71.9 (C-4′), 70.4 (C-12), 64.2 (C-2″), 55.8 (C-5) [m, 51.7 (C-17), 51.2 (C-14), 49.8 (C-9), 48.0 (C-13), 43.3 (C-2′), 39.8 (C-9), 38.9 (C-13), 38.9 (C-10), 37.1 (C-22), 33.5 (C-7), 34.8 (C-11), 30.6 (C-26), 29.1 (C-3′, C-7″), 29.0 (C-5″), 28.1 (C-2′), 27.4 (C-26), 25.9 (C-2″, 3″), 25.8 (C-23), 25.4 (C-4″, C-6″), 22.3 (C-21′), 18.3 (C′-1′), 18.2 (C′-7), 17.7 (C′-20), 17.0 (C′-30), 16.1 (C-19), 15.8 (C-18), 15.4 (C-19), −5.5 (C-5″, C-6″). ESI-MS: m/z 896.5 [M + Na]+ (Calcld. for C49H80Na2O11Si, 896.6).
1H, H-3′), 4.21 (dd, J = 9.4, 4.8Hz, 1H, Ha-6′), 3.82 (m, 1H, Hb-6′), 3.61 (m, 1H, H-4′), 3.44 (m, 1H, H-2′), 3.33 (t, J = 6.4Hz, 1H, H-5′), 3.20 (dd, J = 11.2, 4.8Hz, 1H, H-3), 2.56 (dt, J = 5.6Hz, 1H, H-2″), 1.68 (s, 3H, H-26), 1.59 (s, 3H, H-27), 1.36 (s, 3H, H-21), 1.17 (d, J = 1.5Hz, 3H, H-3″), 1.15 (d, J = 5.6Hz, 3H, H-4″), 0.97 (s, 6H, H-30, H-18), 0.89 (s, 3H, H-28), 0.87 (s, 3H, H-19), 0.78 (s, 3H, H-29), 0.73 (d, J = 11.3 Hz, 1H, H-5); 13C NMR (125MHz, CDCl3) δ: 177.2 (C-1″), 131.5 (C-25), 124.7 (C-24), 96.6 (C-1′), 84.3 (C-20), 78.9 (C-3′), 73.6 (C-5′), 73.5 (C-2′), 70.7 (C-4′), 70.2 (C-12), 63.6 (C-6′), 55.9 (C-5), 51.8 (C-17), 51.4 (C-14), 49.9 (C-9), 48.0 (C-13), 39.8 (C-8), 39.0 (C-1), 38.9 (C-4), 38.0 (C-10), 37.1 (C-22), 35.6 (C-7), 34.8 (C-2″), 34.0 (C-11), 34.0 (C-15), 30.7 (C-28), 28.1 (C-2), 27.4 (C-16), 26.7 (C-26), 25.7 (C-23), 22.2 (C-21), 19.0 (C-3″, 4″), 18.3 (C-6), 17.7 (C-27), 17.1 (C-30), 16.2 (C-29), 15.8 (C-18), 15.4 (C-19). ESI-MS: m/z 715.4 [M + Na]+ (Calcd. for C40H68NaO9, 715.5).

3.2. Antitumorbioassay

3.2.1. Cytotoxicity

MCF–7 and MDA–MB–231 were two different types of breast cancer cells. MCF–7 were breast cancer cells with positive ER, PR and HER2, while MDA–MB–231 were breast cancer cells with negative ER, PR and HER2. We synthesized three new derivatives 1c, 2c, 3c based on M1. Through the CCK–8 results (Fig. 2), it was shown that compared with M1, 1c reduced the cytotoxicity and nearly didn’t inhibit the growth of MCF–7 and MDA–MB–231 cells with concentration more than 50μM. While, both 2c and 3c had a good inhibitory effect on the two types of breast cancer cells with relatively lower concentration and the inhibition rate was more than 80% for MCF–7. However, for MDA–MB–231, higher concentration was needed to exhibit a better inhibitory effect. So, 2c and 3c had stronger inhibitory effects on the growth of triple negative breast cancer cells MDA–MB–231 at the higher concentrations tested, while just lower concentrations on triple positive breast cells MCF–7 was enough. Compared the results with the reported [24], 6′-ester M1 derivates also showed stronger cytotoxic activities at the concentration of 300μg/mL on MCF–7 cells. So, monoesterification of M1 was an effective method to gain better anti-tumor effect on breast cancer cell.

3.2.2. Effect on the mitochondrial membrane potential and autophagy

Indicated by the result of Rhodamine 123 stain (Fig. 3), 2c and 3c can significantly change the mitochondrial membrane potential, and the changes in mitochondrial membrane potential can further cause the changes in membrane permeability, resulting in cell autophagy, etc. As shown in Fig. 4 of the results of dansylcadaverine (MDC) which indicate the degree of autophagy, 2c and 3c had a good ability to promote the MCF–7 to produce autophagy. 2c and 3c had inhibitory effect on the growth of breast cancer cells, while the effect of 1c was not obvious. It showed that M1 had undergone significant changes in its biological activity through different modifications at the same site of the structure.

Through the above observation of the mechanism of M1 and its
derivatives on breast cancer cells, we found that 2c and 3c significantly changed the membrane potential of breast cancer MCF-7, and caused autophagy in breast cancer cells MCF-7, but they showed poor effect on triple-negative breast cancer cells MDA-MB-231, and its mechanism may be another way.

4. Conclusions

In summary, three novel M1 3′–ester derivatives were synthesized and their antitumor activity was evaluated on MCF-7 and MDA-MB-231 breast cancer cells. Through the strategy of protection–esterification–deprotection, the yield of M1 3′–ester derivatives was all above 41%. Different esterification groups at position C–3′ produced different antitumor effects. Compounds 2c and 3c showed effective inhibition of the growth of MCF–7, which was 0.7–4.2 times that of M1. Furthermore, compounds 2c and 3c caused the change of mitochondrial membrane potential, resulted in autophagy in MCF–7, and promoted the cells death. The specific mechanism needs further experimental, the treatment effects of 2c and 3c on animal models of breast cancer, and their safe dosage and side effects under effective treatment are also very important. The results could provide a new chemistry modification method for the drug development of M1 in triple–positive breast cancer.

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgments

This project was supported by the National Natural Science Foundation of China (No. 81603272 and 81172949); Natural Science Foundation of Liaoning Province, China (No. 2015020657); the College Innovation Team Project of Liaoning Province, China (No. LT2016017); the High-level Talent Innovation Support Program of Dalian, China (No. 2017RQ152); Basic Research Projects for Undergraduate College of Liaoning Province, China (No. LQ2017048); Science and Technology Innovation Foundation of Dalian City, China (No. 2018I12SN062); Dalian Minzu University Research Foundation, China (No. 0070-110163).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioorg.2019.103061.

References