Human neutrophil elastase (HNE) inhibitory polyprenylated acylphloroglucinols from the flowers of Hypericum ascyron

Zuo Peng Li, Jeong Yoon Kim, Yeong Jun Ban, Ki Hun Park

Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea

ARTICLE INFO

Keywords:
Hypericum ascyron
Human neutrophil elastase
Polycyclic polyprenylated acylphloroglucinols
Enzyme kinetics

ABSTRACT

In the course of an investigation of human neutrophil elastase (HNE) associated with inflammation, the extract of the flower parts of Hypericum ascyron showed a significant influence to HNE. The responsible metabolites to HNE inhibition were found to be eight polyprenylated acylphloroglucinols, PPAPs (1–8) which showed IC50 ranges between 2.4 and 19.9μM. This is the first report to demonstrate that PPAP skeleton exhibits potent HNE inhibition. The compounds 1–3 were characterized and newly named as ascyronone E (IC50 = 4.3μM), ascyr- onone F (IC50 = 19.9μM), ascyronone G (IC50 = 4.5μM) based on 2D-NMR spectroscopic data. In the kinetic analysis of double reciprocal plots, all the compounds showed noncompetitive behaviors to HNE enzyme with the remaining of Km and the increase of Vmax. The binding affinity levels (KSV) by using fluorescence were sufficient to be able to prove that PPAPs (1–8) had compliant interaction with inhibitory potencies.

1. Introduction

Human neutrophil elastase (HNE, EC 3.4.21.37) belonging to serine protease, is a proteolytic enzyme associated with the response to inflammatory stimuli [1]. HNE is present in azurophilic of neutrophils and regulated under normal condition by endogenous inhibitors such as α1-protein and α-macroglobin [2,3]. The activity of HNE is evaluated upon exposure to oxidative stress, cytokines and chemoattractants such as interleukin (IL)-6, Csf and LPS [4]. The elevated HNE activity associated with inflammatory disorders such as chronic obstructive pulmonary disease (COPD), atherosclerosis, psoriasis, and dermatitis [5]. Thus a number of clinical observations demonstrated that HNE enzyme represents a good therapeutic target for the treatment of inflammatory disease.

Hypericum ascyron belongs to the Guttiferae family and is widely distributed in eastern Asia. It has been used as a traditional Chinese medicine for treatment for headache, rheumatism, and abscesses [6]. This plant is well-known for the source of unique and complex polycyclic polyprenylated acylphloroglucinols (PPAPs) [7]. PPAPs have been applied to various biological targets, such as antidepressants, anti-inflammatory, antiviral, antibacterial, anti-tumor, anti-neurodegenerative, and anti-HIV activities [8–11]. Thus the major biological functions concerned with inflammation which are deeply associated with HNE inhibition.

The present study aimed to investigate the metabolites in Hypericum ascyron targeting to HNE inhibition. All isolated compounds were examined for their HNE inhibitory activities, followed by an investigation of their inhibitory mechanism and binding affinities.

2. Materials and methods

2.1. General experimental procedures

1D and 2D NMR spectra were recorded on a Bruker (AM 500 MHz) spectrometer (Billerica, MA), using either CDCl3 or acetone-D6 as solvent and tetramethylsilane (TMS) as an internal standard. Infrared (IR) spectra were recorded on a Varian 640-IR (Varian, Inc. USA) infrared Fourier transform spectrophotometer (KBr). UV spectra were measured using a Beckman DU650 spectrophotometer. Electron ionization (EI) and EI high-resolution (HR) mass spectra were obtained on a JEOL JMS-700 instrument (JEOL, Tokyo, Japan). A UPLC system coupled with Q-TOF/MS (from Waters Corp. Milford, MA, USA) was used for ESIMS and HRESIMS analysis. Optical rotations were measured on a Perkin-Elmer 343 polarimeter (Perkin-Elmer, Bridgeport, USA). Column chromatography was performed using silica gel (230–400 mesh; Merck Co., Darmstadt, Germany), YMC-gel ODS-A (S-75 μm; YMC), and Sephadex LH-20 (GE Healthcare Bio-science AB, Uppsala, Sweden). MPLC was conducted on a Forte/R 100 (YMC Co., Ltd., Kyoto, Japan) and recycle HPLC conducted on a LC-9130 NEXT (JAICo., Ltd., Tokyo, Japan). Enzymatic assays were carried out on a SpectraMax M3 Multi-Mode microplate reader (Molecular Devices, USA). All chemicals were analytical grade.

* Corresponding author.
E-mail address: khpark@gnu.ac.kr (K.H. Park).

Received 27 April 2019; Received in revised form 12 June 2019; Accepted 17 June 2019
Available online 20 June 2019
0045-2068/ © 2019 Elsevier Inc. All rights reserved.
2.2. Plant material

Flowers were collected at Gyeongsang National University, Jinju, Gyeongsangnam-do, Korea, in June 2017 and identified by Prof. Jae Hong Park. A voucher specimen (KHPark 082517) of this raw material is deposited at the Herbarium of Kyungpook National University.

2.3. Extraction and isolation

Dried flowers of H. ascyron (5.5 kg) were extracted with methanol (15 L × 3) at room temperature to obtain the extract (360 g). The extracted residue was suspended in H2O (1 L) and further partitioned with hexane (3 L × 3) to give the hexane extract (65 g). The hexane extract was subjected to silica gel column (15 × 30 cm, 230–400 mesh, 600 g) with elution using a gradient of increasing ethylacetate (2–50%) in hexane to give eight fractions (A–H). Herein, the fractions D and E were selected for further purification because of their HNE inhibitory potential. Fraction D (4.5 g) was subjected to silica gel column (5 × 30 cm, 300 g) using a gradient of increasing ethylacetate (2–50%) in hexane to give four fractions (D1–D4). Fraction D2 (809 mg) was fractionated via MPLC using C18 column (25 × 300 mm, 50 µm, 130 g) using a gradient of increasing ethylacetate (2–50%) in hexane to give four fractions (D2a–D2d). D2b (86.5 mg) was purified by the same recycling HPLC condition. D2c (39.6 mg) provided compounds (9.2 mg) and D2d (32.5 mg) gave compounds (11.2 mg) by the same recycling HPLC condition.

Table 1; HRESIMS: m/z 518.3034, [M]+ (calcd. for C33H42O5, 518.3034); 1H and 13C NMR of new compounds (1–3) in CDCl3.

<table>
<thead>
<tr>
<th>Position</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>δH</td>
<td>6H</td>
<td>6H</td>
<td>6H</td>
</tr>
<tr>
<td>δC</td>
<td>6C</td>
<td>6C</td>
<td>6C</td>
</tr>
</tbody>
</table>

All fluorescence spectra were measured on a SpectraMax M3 multi-mode microplate reader (Molecular Devices, CA, USA) equipped with a thermostat bath using 96-well immuno-plates (SPL, Life Sciences, Korea). For a typical measurement of fluorescence, 180 µL of 0.02 mM Tris-HCl buffer with 10 µL of 0.01 unit/mL neutrophil elastase was accurately added to the 96 wells; different concentrations of inhibitor (10 µL) were then added. The automatic shaking feature of the microplate reader was utilized to shake the reaction solutions. Spectra for the fluorescent emissions were recorded at 18°C and 37°C, with the width of the excitation and emission slits adjusted to 2.0 nm. The excitation wavelength was 260 nm, and the emission spectra were recorded from 2.4. Measurement of neutrophil elastase activity

HNE (EC 3.4.21.37) activity was assayed using standard procedures with slight modifications by measuring the formation of p-nitroaniline after N-methoxysuccinyl-Ala-Ala-Pro-Val-p-nitro anilide hydrolysis at 405 nm [12]. Test samples were dissolved in dimethyl sulfoxide (DMSO) at a stock concentration of 10 mM and used for the assay after diluting. The reaction mixture contained 130 µL 0.02 mM Tris-HCl buffer (pH 8.0), 10 µL test sample solution, 40 µL substrate (1.5 mM, MeOSuc-AAPV-pNA), and 20 µL human neutrophil elastase (0.2 units/mL) and was placed in 96-well microplates. The reaction mixtures were mixed and incubated for 15 min at room temperature and then screened at 405 nm for 30 min every 30 sec. Inhibitory activities were further characterized by determining the concentration required to inhibit 50% of the enzyme activity (IC50), which was calculated using the following equation: Activity (%) = 100 [1/(1 + ([I]/IC50))], where [I] is the concentration of inhibitor.

2.5. Fluorescence quenching measurements

All fluorescence spectra were measured on a SpectraMax M3 multi-mode microplate reader (Molecular Devices, CA, USA) equipped with a thermostat bath using 96-well immuno-plates (SPL, Life Sciences, Korea). For a typical measurement of fluorescence, 180 µL of 0.02 mM Tris-HCl buffer with 10 µL of 0.01 unit/mL neutrophil elastase was accurately added to the 96 wells; different concentrations of inhibitor (10 µL) were then added. The automatic shaking feature of the microplate reader was utilized to shake the reaction solutions. Spectra for the fluorescent emissions were recorded at 18°C and 37°C, with the width of the excitation and emission slits adjusted to 2.0 nm. The excitation wavelength was 260 nm, and the emission spectra were recorded from
280 to 400 nm [13]. We analyzed the Stern-Volmer quenching constant (K_{SV}) using Eq. (1). All experiments were conducted in triplicate, and the mean values were calculated.

$$F_0 - F = 1 + K_{SV}[Q]$$ \hspace{1cm} (1)

2.6. Statistical analysis

All experiments were conducted in triplicate. Results were analyzed using variance analysis with Sigma Plot (version 10.0, Systat Software, Inc., San Jose, CA). Differences were considered significant at $p < 0.05$.

3. Results and discussion

3.1. Characterization of the isolated compounds

The higher potency and dose-dependent human neutrophil elastase (HNE) inhibitory activity of the methanol extract of H. ascyron flowers ($IC_{50}=115 \mu g/ml$) encouraged us to identify the responsible compounds. Eight compounds (1–8, shown in Fig. 1) were identified as polyprenylated acylphloroglucinols by means of detailed spectroscopic data (supplementary data) and comparing the results with previously reported data. The isolated compounds were ascyronone E (1), ascyronone F (2), ascyronone G (3), hypelodin B (4) [14], hypercohin K (5) [15], furohyperforin (6) [16], hypercohin G (7) [17], and hyphenrone X (8) [18]. The compounds (1–3) emerged as new polypropenylated acylphloroglucinol derivatives.

Ascyronone E (1) was obtained as a colorless oil ([α]$_D$ O – 86.8 (c 0.1, MeOH) possessing a molecular formula $C_{38}H_{50}O_4$ and 14 degrees of unsaturation, as established by HRESIMS, (m/z 569.3676 [M–H]$^-$), calcd 569.3670). The IR spectrum displayed absorption bands due to hydroxyl (3433 cm$^{-1}$) and carbonyls groups (1752 cm$^{-1}$).

Comprehensive analysis of NMR data (Table 1), two carbonyl groups (δ_C 210.8 for C2, δ_C 198.4 for C9), two α-position carbons (δ_C 62.0 for C3, δ_C 68.4 for C1), enolic carbon C8 (δ_C 109.5), and oxygenated carbon C7 (δ_C 83.3) revealed that compound 1 is tricyclo [4.3.1.03,7] decane derivative similar to that of nemorosanol as isolated from $Clusia$ nemorosa [19]. Four prenyl groups were proved by successive proton cross peaks as follow: H19/H20/H22, H24/H25/H27, H29/H30/H32, and H34/H35/H37, respectively. The positions of four prenyl groups at C1, C3, C5 and C10 were confirmed by HMBC correlations from H19 to C1 (δ_C 68.4), C2 (δ_C 210.8), and C10 (δ_C 52.5), and from H24 to C2, C3, and C4, and from H29 to C4 (δ_C 40.1), C5 (δ_C 51.6), and C6 (δ_C 51.1), and form H34 to C1 (δ_C 68.4), C6 (δ_C 51.1), and C10 (δ_C 52.5), respectively (Fig. 2). The position of enolic carbon C12 was confirmed by HMBC correlations from enolic OH (δ_H 15.4) to C8 (δ_C 109.5), C12 (δ_C 174.4) and C13 (δ_C 135.0). The relative stereochemistry of 1 was confirmed by NOESY experiment (Fig. 3). The successive NOE cross peaks between H29, H11 and H34 revealed that prenyl at C3, methyl at C6 and prenyl at C10 are in the same direction. The prenyl at C3 is on the same side with the benzoyl group at C8 because of NOE cross peak

![Fig. 1. Chemical structures of isolated compounds 1-8 from Hypericum ascyron.](image-url)
between H24 and H15. It is a natural result that methyl at C6 and prenyl at C3 must exist in the same direction, when we consider the uniqueness of tricycle [4.3.1.0^3,7] decane structure. This molecule showed the unique cotton effects in the electronic circular dichroism (ECD) spectrum (Supplementary material, Fig. S11). Thus the structure of 1 was determined as acyronone E with tricycle [4.3.1.0^3,7] decane core.

Ascyronone F (2) was a colorless oil ([α]_D^20 + 36.5 (c 0.1, MeOH)), possessing a molecular formula C_{38}H_{50}O_{5} by [M]^+ ion at 586.3650 (calcd 586.3658) in the HREIMS. The IR spectrum displayed absorption bands due to hydroxyl (3422 cm^-1) and carbonyl groups (1715 cm^-1). Three carbonyl carbons (δ_C 206.8 for C2, δ_C 190.4 for C4, δ_C 193.2 for C10), enolic carbon (C5, δ_C 171.5) and two α-position carbons (δ_C 70.6 for C1, δ_C 65.0 for C3) indicated a tetra-ketone motif for 2, which agreed with hyperascyrin E [20]. The methylpentenyl group at C7 was revealed by successive proton cross peaks from H17 to H22, and its location was confirmed by HMBC correlations from H17 to C7 (δ_C 190.4), and C23 (δ_C 14.8). Two prenyl groups at C3 and C8 were confirmed by successive proton cross peaks of H24/H25/H27 and H29/H30/H32, respectively. Their positions were proved by HMBC correlations from H24 to C8 (δ_C 41.4), C7 (δ_C 49.9), and from H29 to C3 (δ_C 65.0) C4 (δ_C 190.4), respectively (Fig. 2). The dihydrofuran motif was deduced from proton coupling between H14 and H15, and HMBC correlations from oxygenated H15 (δ_H 4.72) to C14 (δ_C 26.8) and C16 (δ_C 71.6). Thus, the structure of 3 was determined as acyronone G with β-triketone motif.

3.2. HNE inhibition of the isolated compounds

The HNE activity was measured in the presence and absence of the tested compounds using a chromogenic assay [21]. The tested compounds (1–8) exhibited a significant dose dependent inhibition against HNE with IC_{50} values in the range of 2.4–19.9 μM (Table 2). The most potent inhibitor was found to be furohyperforin (6) with 2.4 μM of IC_{50}. However, HNE inhibitory activity was slightly affected by subtle
changes in the respective structures of compounds. Isobutanoyl at C1 displayed 8-folds effective than benzoyl derivatives such as 6 (IC$_{50}$ = 2.4μM) vs 2 (IC$_{50}$ = 19.9μM). The hydroxyl group of dihydronifuran motif affected to increase 2-folds inhibitory potency in comparison of 6 and 7 (IC$_{50}$ = 4.9μM).

Kinetic analysis of the inhibitors, all of the compounds (1–8) displayed the same between enzyme activity and enzyme concentration to be reversible inhibitors. All compounds showed dose-dependent inhibition to HNE enzyme as like compound 1 (Fig. 4A). Fig. 4B is the plot of the initial velocity versus enzyme concentration in the presence of a different concentration of representative inhibitor 1 (IC$_{50}$ = 4.3μM).

Increasing the concentration of inhibitor resulted in lowering of the slope lines, which pass through the origin. It indicated that compound 1 was a reversible inhibitor. The HNE enzyme inhibitory behaviors of compounds (1–8) were modeled using double-reciprocal plots. In Lineweaver-Burk plot analysis, the increasing concentration of 1 led V_{max} decrease without changing K_m value. As the graph can be seen clearly, $-1/K_m$ (the x-intercept) was not affected by concentrations, while $-1/V_{\text{max}}$ (the y-intercept) became more positive. Thus compound 1 had noncompetitive inhibition characteristics for HNE (Fig. 4C). The K_i value of inhibitor 1 was estimated as 4.1μM by Dixon plots (Fig. 4D).

For enzyme inhibition, the inhibitor binds first to the enzyme and then blocks its function. Thus it might be necessary to examine a binding affinity together with inhibitory potency to prove an inhibitory function clearly. The intrinsic fluorescence of protein from tryptophan (Trp), tyrosine (Tyr), and phenylalanine (Phe) changes as a function of ligand concentrations. Trp residue is the most sensitive residue[22]. Human neutrophil elastase has three most fluorogenic Trp residues including Trp-12, Trp-127, and Trp-212. The enzyme binding affinities of inhibitors were investigated by the quenching fluorescence spectra [13]. As shown in Fig. 5, the fluorescence intensities were decreased by inhibitor concentrations and inhibitory potencies. Fig. 5A and B showed that compound 1 (IC$_{50}$ = 4.3μM) decreased the fluorescence intensity significantly by concentrations between 7.8 – 31.2μM, whereas the less effective compound 2 (IC$_{50}$ = 19.9μM) was not affected to FQ at the same concentration. The FQ effects of the remaining compounds were displayed in supplementary materials (Table S1). The binding affinity level (KSV) was analyzed using the Stern-Volmer Eq. (1). The binding affinities (KSV) are in agreement with their inhibitory potencies (Table 2 and Fig. 5C).

Table 2

Inhibitory effects of compounds (1–8) on HNE activities.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>IC$_{50}$ (μM)a</th>
<th>Type of inhibition (K_i, μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.3 ± 0.4</td>
<td>Non-competitive (4.1 ± 0.2)</td>
</tr>
<tr>
<td>2</td>
<td>19.9 ± 0.1</td>
<td>Non-competitive (18.2 ± 0.3)</td>
</tr>
<tr>
<td>3</td>
<td>4.5 ± 0.2</td>
<td>Non-competitive (3.9 ± 0.1)</td>
</tr>
<tr>
<td>4</td>
<td>15.5 ± 1.2</td>
<td>Non-competitive (14.6 ± 0.5)</td>
</tr>
<tr>
<td>5</td>
<td>9.4 ± 0.6</td>
<td>Non-competitive (8.5 ± 0.4)</td>
</tr>
<tr>
<td>6</td>
<td>2.4 ± 0.3</td>
<td>Non-competitive (1.8 ± 0.4)</td>
</tr>
<tr>
<td>7</td>
<td>4.9 ± 0.2</td>
<td>Non-competitive (4.3 ± 0.1)</td>
</tr>
<tr>
<td>8</td>
<td>5.8 ± 0.5</td>
<td>Non-competitive (4.9 ± 0.6)</td>
</tr>
<tr>
<td>Caffeic acidd</td>
<td>67.7 ± 0.9</td>
<td>NTc</td>
</tr>
</tbody>
</table>

a All compounds were examined as set of experiments repeated three times; IC$_{50}$ values of compounds represent the concentration that caused 50% enzyme activity loss.

b Values of inhibition constant.

c NT: not tested.

d Positive control.

Fig. 4. (A) Dose-dependent inhibitory effects of isolated compound 1 on HNE. (B) Determination of the reversible inhibitory mechanism of compound 1. (C) Lineweaver-Burk plot for HNE inhibition by compound 1. (D) Dixon plot for HNE inhibition by compound 1.
4. Conclusions

In conclusion, we have undertaken a thorough investigation of HNE inhibition by the flowers of *H. ascyron*. The principal components were identified as eight PPAPs derivatives, including three new compounds ascyronene E, ascyronene F, and ascyronene G. They showed non-competitive behavior toward HNE. The binding affinity levels (KSV) were sufficient to be able to prove that PPAPs had compliant interaction with inhibitory potency. Finding the results of HNE inhibition would contribute to further inflammation study of PPAPs or *H. ascyron*.

Declaration of Competing Interest

The authors report no conflicts of interest.

Acknowledgements

This work was done with research funds from the National Research Foundation of Korea (NRF, 2018R1A2B6001753) and the Next-Generation BioGreen 21 program, Rural Development Administration (SSAC, No. PJ01318601), Republic of Korea. The BK21 Plus program supported scholarships for all students.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioorg.2019.103075.

References

[18] Y. Liao, S.Y. Yang, X.N. Li, X.W. Yang, G. Xu, Polyprenylated acylphloroglucinols

with inhibitory potency. Finding the results of HNE inhibition would contribute to further inflammation study of PPAPs or *H. ascyron*.

