Molecular docking and experimental investigation of new indole derivative cyclooxygenase inhibitor to probe its binding mechanism with bovine serum albumin

Tanveer A. Wani⁎, Ahmed H. Bakheit⁎,⁎, Seema Zargar, Mashooq A. Bhat, Abdulrahman A. Al-Majed

A B S T R A C T

The indole derivative 2-(5-methoxy-2-methyl-1H-indol-3-yl)-(E)-(3-nitrophenyl)methylideneacetohydrazide (IND) was synthesized for its therapeutic potential to inhibit cyclooxygenase (COX)-II. Binding if IND to bovine serum albumin (BSA) was investigated because most drugs bind to serum albumin in vivo. Fluorescence, UV–vis spectrophotometry and molecular modeling methodologies were employed for studying the interaction mechanism. The intrinsic fluorescence of BSA was quenched by BSA and the quenching mechanism involved was static quenching. The binding constants between IND and BSA at the three studied temperatures (298, 301 and 306 K) were 1.09×10⁵, 4.36×10⁴ and 1.23×10⁴ L mol⁻¹ respectively. The most likely site for binding IND to BSA was Site I (subdomain IIA). The analysis of thermodynamic parameter revealed the involvement of hydrogen bonding and vander Waals forces in the IND-BSA interaction. Synchronous fluorescence spectroscopic (SFS) and UV–vis spectrophotometric studies suggested conformational change in BSA molecule post interaction to IND. Molecular docking and the experimental results corroborated one another. The study can prove as an insight for future IND drug development.

1. Introduction

During the palliative care the patients are provided with analgesics which consist of non-steroidal anti-inflammatory drugs (NSAIDs). The use of NSAIDs leads to several adverse events and the most common among them is gastrointestinal (GI) morbidity that include both upper and lower GI complications [1,2]. The pharmacological activity of NSAIDs depends on its capability to inhibit the COX enzymes that exist as isoform COX-I and COX-II [3]. Most tissues express COX-I isoform, which play a protective role by producing prostaglandins. The prostaglandins stimulate the synthesis and secretion of mucus and bicarbonate, surge mucosal blood flow and promote epithelial proliferation. The inflammatory stimuli cause induction of COX-II in the inflammatory cells and help in prostaglandin biosynthesis. The inhibition of COX-I in particular is responsible for the gastric ulcer formation than COX-II [3,4]. The limitation to the long term use of these selective COX-II inhibitors being ulcer exacerbations and other systemic side effects. These side effects have led to withdrawal of certain COX-II inhibitors and have also necessitated the need for synthesis of new and safer NSAIDs.

Chemical alteration of indomethacin improves its safety profile and increases its anti-inflammatory activity with a decrease in ulcerogenicity. The chemical modification of indomethacin provided an indole derivative having COX-2 inhibitor activity with anti-inflammatory and analgesic properties. The synthesized indole derivative 2-(5-methoxy-2-methyl-1H-indol-3-yl)-(E)-(3-nitrophenyl)methylidene acetohydrazide (IND) has COX-II inhibiting properties [Fig. 1, M.p.: 200–202 °C; IR (KBr) cm⁻¹: 3412 (NH), 3237 (CH⁻), 1654 (CO), 1640 (CO), 1617 (C‒N); 1H NMR (500 MHz, DMSO-d₆) δ ppm: 1.3 (3H, s, CH₃), 3.58 (2H, s, CH₂), 3.74 (3H, s, OCH₃), 6.99–8.57 (7H, m, Ar-H), 10.63 (1H, s, CONH, D₂O exchg.), 12.18 (1H, s, –CONH₂, D₂O exchg.); 13C NMR (125 MHz, DMSO-d₆) δ = 11.59, 27.92, 55.02, 55.34, 100.27, 103.95, 109.49, 120.72, 123.81, 124.24, 128.57, 129.61, 130.0, 131.73, 132.78, 136.05, 140.33, 145.57, 148.14, 152.87, 153.01, 162.27, 167.69; MS: m/z = 366.37 [M⁺]; Analysis: for C₁₉H₁₈N₄O₄, calcd. C, 62.29; H, 4.93; N, 15.24%. Anti-inflammatory, analgesic and ulcerogenic potential of IND has been studied and has been reported to have reduced ulcer index [5,6].

Protein binding studies have been used to investigate the mechanism of binding interactions, changes in structural conformations and stability of proteins upon interactions with ligands. [7,8]. Various proteins have been studied using spectroscopic approaches for their interaction with ligands [7–10]. Serum albumin acts as a carrier protein
transported in the body. The study of binding interaction of drug to proteins with fluorescence spectroscopy has emerged as a powerful tool owing to its sensitivity, accuracy and ease of use [21–23]. Endogenous fluorophore residues Trp and Tyr in BSA are responsible for its fluorescent nature. The fluorescence spectra were acquired at λex 280 nm and λem 300–500 nm. The BSA concentration was constant throughout the experiment at 1.5 μM. An equal volume of IND with concentrations ranging from (1.53 × 10^{-6} M–2.45 × 10^{-5} M) were added to the BSA solution [17,18]. The actual analyzed sample concentrations were 0.75 × 10^{-6} M for BSA solution and (7.64 × 10^{-7}, 1.53 × 10^{-6}, 3.06 × 10^{-6}, 6.11 × 10^{-6}, 9.17 × 10^{-6} and 1.22 × 10^{-5} M) for IND. The sample mixtures were prepared in phosphate buffer saline (PBS) pH 7.4. The synchronous fluorescence spectra (SFS) at intervals Δλ = 15 and 60 nm (Δλ = λem − λex) were acquired for BSA and BSA-IND complexes at room temperature. The acquired spectra at Δλ = 15 and Δλ = 60 nm provided characteristics of tyrosine (Tyr) that of tryptophan (Trp) residues, respectively. Three dimensional (3D) fluorescence spectroscopy is believed to be more specific methodology in understanding the fluorescence chromophore behavior. It also helps to establish any conformational changes in the protein due to protein – ligand interaction.

2.5. Site marker competitive fluorescence experiments

The binding site identification studies for BSA-IND were performed with phenylbutazone (site I) and ibuprofen (site II). Equal volumes of BSA (1.5 μM) and phenylbutazone (1.6 × 10^{-6} M) or ibuprofen (4.3 × 10^{-6} M) in PBS pH 7.4 were mixed and incubated together. Different IND concentrations were added to these incubated samples and the fluorescence spectra recorded.

2.6. Fluorescence resonance energy transfer (FRET)

The FRET is used in determination of any energy transfer that might have occurred. In this interaction BSA acts as donor and IND as acceptor. FRET occurs due to an overlap in the donor emission spectrum and acceptor absorption spectrum. The FRET is calculated by Forster theory [12].

2.7. Molecular docking

The mode of binding between IND and BSA was investigated by molecular docking (Molecular Operating Environment; MOE). The three dimensional BSA crystal structure, Code No. of 4OR0; was attained from Protein Data Bank (http://www.rcsb.org/pdb). The IND structure was drawn with MOE software. The energy was optimized by default force field MMFF94X method while the RMS gradient was kept at 0.05 kcal mol^{-1}. The rescoring function 1 and 2 were London dG and GBV/WSA dG, respectively. The selection for binding site on BSA was performed as per the results from the site probe experiments.

3. Results and discussion

3.1. Fluorescence quenching analysis

The study of binding interaction of drugs to proteins with fluorescence spectroscopy has emerged as a powerful tool owing to its sensitivity, accuracy and ease of use [21–23]. Endogenous fluorophore residues Trp and Tyr in BSA are responsible for its fluorescent nature. The fluorescence spectra were measured at three different temperatures of 298, 301 and 306 K and FI at 298 K was the highest. As the concentration of IND was increased in the BSA-IND complex as decrease in the FI of BSA was observed. The basic peak shape didn’t alter, however, a red shift was observed at λem, suggesting BSA-IND of a complex formation (Fig. 2). Further, occurrence of a shift in the λem indicates the existence of hydrophobic amino acids or polar groups within the fluorophore microenvironment [24,25]. The two different types of quenching mechanisms involved in the fluorescence quenching process are static and dynamic quenching. Dynamic quenching is exhibited when the intermolecular collision amongst the quencher and the...
fluorescent molecule occur at an excited state. The structure or activity of a protein are independent of the dynamic quenching. The intramolecular interaction at ground state amongst the fluorescent molecule and quencher leads to static quenching. In static quenching process, creation of a new composite occurs and the newly formed composite is unstable at high temperatures. The reason behind the decreased steadiness is attributed to the high molecular diffusion, since, the weakly bound composites can get dissociated at high temperatures. Thus, the responses of the processes with temperature help in establishing the quenching mechanism involved. Stern-Volmer equation was employed to identify the type of quenching mechanism in the interaction of BSA-IND [25,26]:

\[
\frac{F}{F_0} = 1 + K_{sv}[Q] = 1 + K_q n [Q]
\]

The FI in absence and in presence of quencher are designated by \(F_0\) and \(F\), respectively. \(\tau_0\) is the lifetime of fluorescent molecule without of quencher and is valued \(10^{-8}\) s [27]. \(K_{sv}\) is the Stern-Volmer quenching rate constant \(K_{sv} = K_q \tau_0\) whereas, \(K_q\) and \([Q]\) represents the quenching rate constant and quencher concentration, respectively. A maximum value of \(2 \times 10^{10}\) M\(^{-1}\) S\(^{-1}\) can be achieved for quenching constant in case of biopolymers [26]. However, the \(K_{sv}\) values obtained during this study at the studied temperatures were greater than the maximum value specifying contribution of static quenching in IND-BSA interaction (Table 1). Further, a decrease in the \(K_{sv}\) values with increase in temperature also indicates static quenching mechanism. The \(K_{sv}\) is determined from the slope of linear regression plot of \(log(F/F_0-[Q])\). The binding constant \(K_{sv}\) and binding site number “n” are determined respectively, from the intercept and slope of double logarithm regression plot between log \(\left(\frac{F_0-F}{F}\right)/F\) and log \([Q]\). The binding constants (\(K_{sv}\)) attained at the three studied temperatures (298, 301 and 306 K) were between \(1.09 \times 10^5 - 1.23 \times 10^4\) Lmol\(^{-1}\) with binding site number equivalent to 1 (Table 2) (Fig. 3B). The high binding constant values obtained with BSA and IND interaction indicate a very strong binding interaction between them. Therefore, it is expected that IND will strongly bind to plasma proteins in-vivo. Also it was observed that at higher temperatures the binding constants decreased suggesting instability of the complex at high temperature [29].

3.2. Binding constants, sites and forces between IND and BSA

A higher binding constant (> \(10^4\) Lmol\(^{-1}\)) is observed in cases of high binding affinity, whereas, binding constant (< \(10^5\) Lmol\(^{-1}\)) indicated low affinity [28]. The binding constant (\(K_b\)) was from determined as:

\[
\log \left(\frac{F_0 - F}{F}\right) = \log K_b + n \log [Q]
\]

The binding constant “\(K_b\)” and binding site number “\(n\)” are

3.3. Identification binding sites for IND

Site competition experiments were done to recognize the sites of BSA that bind IND. To accomplish these experiments, site markers phenylbutazone (PBT) site I and ibuprofen (IBF) site II were used (Fig. 3C). The FI of BSA decreased after addition of IND to the mixture of BSA-PBT or BSA-IBF. The binding constants were calculated for both BSA-PBT or BSA-IBF with IND and compared to that attained in absence of the site markers. For the PBT and IBF mixtures the binding constants were found to be \(0.99 \times 10^2\) and \(2.89 \times 10^3\), respectively, and suggests a competition interaction amongst IND and PBT with BSA. The binding constant of BSA in presence of PBT and IBF decreased from binding constant \(1.09 \times 10^5\) found for BSA-IND complex. However, the decrease in the PBT complex was far greater than IBF suggesting binding of IND binds mainly to site I but involvement of site II in binding IND cannot be ruled out.

3.4. Binding forces involved IND and BSA interaction

The proteins and ligands binding interaction might involve different types molecular forces. These binding forces may include the hydrogen bonds, van der Waals forces, electrostatic forces and hydrophobic interactions [30,31]. The binding modes are confirmed enthalpy \(\Delta H^\circ\) and entropy \(\Delta S^\circ\) change which act as indicators for forces responsible for the interaction. The negative values of \(\Delta H^\circ\) and \(\Delta S^\circ\) both, indicates hydrogen bonds and/or van der Waals forces. The electrostatic forces are inferred in case the \(\Delta H^\circ\) takes a negative value and \(\Delta S^\circ\) a positive value. The hydrophobic interaction is suggested in case both \(\Delta H^\circ\) and \(\Delta S^\circ\) take a positive value [31,32]. The following equation was used for the thermodynamic parameter calculation:

\[
\ln K_b = \frac{-\Delta H^\circ}{RT} + \frac{\Delta S^\circ}{R}
\]

\[
\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ = -RT\ln K_b
\]

where \(K_b\) is binding constant; \(R\) universal gas constant. van’t Hoff plot for the BSA and IND interaction is given in Fig. 3D. The free energy change (\(\Delta G^\circ\)) attained negative values (Table 2) representing a spontaneous binding between BSA and IND. Further, both the \(\Delta H^\circ\) and \(\Delta S^\circ\) attained negative values indicating that hydrogen bonding and van der Waals forces to be the main forces involved in the BSA-IND interaction. From the thermodynamic results it is suggested that BSA and IND interaction is enthalpy driven as the entropy attained negative value in this interaction.

3.5. Energy transfer from BSA to IND

UV-absorption spectroscopy of IND showed a weak absorption in the fluorescence emission spectral range (300-500 nm) of BSA. A spectral overlap in the BSA emission spectrum and IND absorption spectrum was presented in Fig. 4. An overlap in the fluorescence emission spectrum of BSA and the absorption spectrum of spectrum of IND suggests a possibility for FRET. The critical energy transfers distance (\(R_0\)) and the efficiency (\(E\)) of energy transfer are attained from the integral overlap region of donor
and acceptor (IND) using Förster equation [26].

\[E = 1 - \frac{F_0}{F} = \frac{R_0^6}{R_0^6 + r^6} \]

where \(F_0\) and \(F\) are the FI of BSA in absence and presence of IND. '\(r\)' is the donor/acceptor binding distance. The critical binding distance is obtained from:

\[R_0^6 = 8.79 \times 10^{-23} K^2 \Phi_D n^{-4} J \]

where spatial orientation factor of the dipole is specified as \(K^2\); \(n\) is refractive index of medium; \(\Phi_D\) quantum yield of the donor in acceptors absence; and \(J\) represents integral overlap between emission and absorption spectrum and is given as:

\[J(\lambda) = \frac{\sum F(\lambda) e(\lambda)^2 \Delta \lambda}{\sum (\lambda) \Delta \lambda} \]

Table 2

Calculated binding constant values and thermodynamic parameters of binding between IND and BSA.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>R</th>
<th>(K_b \pm SD \times 10^5) (L mol(^{-1}))</th>
<th>n</th>
<th>(\Delta G^\circ) (kJ mol(^{-1}))</th>
<th>(\Delta H^\circ) (kJ mol(^{-1}))</th>
<th>(\Delta S^\circ) (J mol(^{-1}) K(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>0.9946</td>
<td>10.9 (\pm) 0.37</td>
<td>1.06</td>
<td>-27.93</td>
<td>-172</td>
<td>-485</td>
</tr>
<tr>
<td>301</td>
<td>0.9956</td>
<td>4.36 (\pm) 0.19</td>
<td>0.9826</td>
<td>-26.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>0.9901</td>
<td>1.23 (\pm) 0.07</td>
<td>0.8742</td>
<td>-24.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3. [A]: The stern–Volmer curves for the quenching of BSA by IND at 298/301/306 K; [B]: The plot of log \([F_0 - F]/F\) versus log[Q] for quenching process of IND with BSA at 298/301/306 K; [C]: Van’t Hoff plots for the binding interaction of IND with BSA; [D]: The plot of log \([F_0 - F]/F\) versus log[Q] for quenching process of IND with BSA in presence of site markers phe-nylbutazone and ibuprofen at 298 K.

Fig. 4. Spectral overlap of donor BSA (fluorescence spectrum) with acceptor IND (absorption spectrum).

(BSA) and acceptor (IND) using Förster equation [26].

\[E = 1 - \frac{F_0}{F} = \frac{R_0^6}{R_0^6 + r^6} \]

where \(F_0\) and \(F\) are the FI of BSA in absence and presence of IND. '\(r\)' is the donor/acceptor binding distance. The critical binding distance is obtained from:

\[R_0^6 = 8.79 \times 10^{-23} K^2 \Phi_D n^{-4} J \]

where spatial orientation factor of the dipole is specified as \(K^2\); \(n\) is refractive index of medium; \(\Phi_D\) quantum yield of the donor in acceptors absence; and \(J\) represents integral overlap between emission and absorption spectrum and is given as:

\[J(\lambda) = \frac{\sum F(\lambda) e(\lambda)^2 \Delta \lambda}{\sum (\lambda) \Delta \lambda} \]

Fig. 5. Synchronous fluorescence spectroscopic data of BSA in presence of IND at 298 K [A] \(\Delta \lambda = 15\) nm and [B] \(\Delta \lambda = 60\) nm.
where $F(\lambda)$ is FI of donor, $\varepsilon(\lambda)$ is the molar absorptivity of acceptor.

The K^2, n and Φ_D were $2/3$, 1.336 and 0.118, respectively for this study and the calculated values for E, R_0 and $J(\lambda)$ were found to be 0.0381, 1.90 and 2.13×10^{-15}. Thus, the calculated binding distance ‘r’ between BSA and IND was 3.08 nm. The obtained binding distance was within the limit of up to 2–8 nm for effective non-radiative energy transfer between BSA and IND. Thus, it was inferred that energy transfer ensued amongst BSA and IND and the fluorescence quenching mechanism for BSA-IND interaction was static in nature.

3.6. Synchronous fluorescence spectroscopy

The micro-environmental changes around the amino acid residues are detected by SFS. Shift the maximum λ_{em} indicates changes the micro-environment of amino acids and the polarity of chromosphere molecules. Tyrosine and tryptophan are primarily responsible for the BSA fluorescence. The characteristic information of tyrosine and tryptophan residues is provided at $\Delta \lambda = 15$ nm and $\Delta \lambda = 60$ nm respectively [33–35]. A reduction in FI occurred at $\Delta \lambda = 15$ nm which was further reduced as the IND concentration increased with a shift of 1 nm (redshift) in λ_{em} (Fig. 5) indicating decreased hydrophobicity and increased stretching capacity of the peptide chain. The reduction in FI at $\Delta \lambda = 60$ nm was greater than that was detected at $\Delta \lambda = 15$ nm without any shift in λ_{em} [34,35].

3.7. UV-vis absorption studies

These studies provide facts for any structural changes and complex formation occurring in the ligand and protein interaction. As is evident from Fig. 6, the absorption of samples increased as the concentrations of IND increased (BSA fixed concentration). Based on these observations it is suggested that a complex formation between BSA and IND led to increase in the absorption of BSA [36–37].

3.8. Three dimensional fluorescence spectroscopy

The conformational changes in the proteins can be detected by three dimensional fluorescence spectroscopy [36]. The three dimensional
spectra and contour plots are presented in Fig. 7. Peak I which is the strongest peak at $\lambda_{ex} = 280$ nm, $\lambda_{em} = 340$ nm primarily divulges the amino acid residue Trp behavior. In addition to peak I another strong peak (peak II) occurs at $\lambda_{ex} = 230$ nm, $\lambda_{em} = 340$ nm and provides information about the polypeptide backbone structure events. The intensity of fluorescence reduced upon addition of IND also peak I part of contour spectra transformed to be sparse. This reduction on the FI clearly indicates conformational and micro-environmental changes in BSA upon addition of IND due to complex formation between BSA and IND.

3.9. Molecular docking

Molecular docking along with experimental results help in understanding the IND and BSA interaction (Fig. 8A) [22]. The molecular docking confirmed the experimental findings of the binding site for IND being at site I of BSA. The theoretical free binding energy of the BSA with IND from the molecular docking analysis was found to be -28.28 kJ mol$^{-1}$ and is closer the binding energy of -27.93 kJ mol$^{-1}$ obtained experimentally.

Fig. 8B also indicates that the IND molecule is embedded in the hydrophobic region of subdomain IIA of BSA. IND is encircled by the hydrophobic amino acid residues of Ala-212, Ala-209, Leu-454, Leu-346, Leu-480, Leu-197, Val-342, Val-481, Phe-205 polar residues like Trp-213, Ser-453, Ser-343, Ser-201, Ser-479 and charge residues such as Arg-217, Arg-198, Arg-194, Asp-450, Lys-450. Hydrogen bonding interactions are amongst IND and BSA were observed at Trp-453, Ser-201, Lys-350, Arg-194 and Ser-343. The thermodynamic studies also indicated that hydrogen bonding and van der Waals forces contributed to the BSA-IND interaction.

4. Conclusion

IND has been patented with the USPTO as COX-II inhibitor and its in-vitro protein (BSA) interaction was comprehended in this study. The binding site and docking studies revealed site I (subdomain IIA) was predominantly involved in binding IND to BSA molecule. The static quenching in BSA-IND interaction indicated a new composite formation among them. Further, a conformational change in BSA was proposed on the basis of SFS and UV spectroscopic analysis. Hydrogen bonds and van der Waals forces were suggested in the interaction and was enthalpy driven. The study will be helpful in preclinical drug development studies of IND.

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research, King Saud University, for funding the research group No. RG-1435-073.

Declaration of Competing Interest

The authors declare that they have no competing interests.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioorg.2019.103010.

References

Fig. 8. [A] The docking conformation of IND-BSA complex with lowest energy. [B] The amino acid residues surrounding IND.