3D-QSAR pharmacophore modelling, virtual screening and docking studies for lead discovery of a novel scaffold for VEGFR 2 inhibitors: Design, synthesis and biological evaluation

Mahitab K. Sobhy, Samar Mowafya, Deena S. Lasheen, Nahla A. Farag, Khaled A.M. Abouzid

A series of novel 6,7-dihydro-5H-cyclopenta[d]pyrimidine derivatives was successfully designed, synthesized and evaluated as a new chemical scaffold with vascular endothelial growth factor receptor (VEGFR 2) inhibitory activity. Compounds 6c and 6b showed enzyme inhibition of 97% and 87% at 10 µM, respectively, and exhibited potent dose-related VEGFR 2 inhibition with IC_{50} values of 0.85 µM and 2.26 µM, respectively. The design of the 6,7-dihydro-5H-cyclopenta[d]pyrimidine scaffold was implemented via consecutive molecular modelling protocols prior to the synthesis and biological evaluation of the derivatives. First, sorafenib was docked in the binding site of VEGFR 2 to study its binding orientation and affinity, followed by the generation of a valid 3D QSAR pharmacophore model for use in the virtual screening of different 3D databases. Structures with promising pharmacophore-based virtual screening results were refined using molecular docking studies in the binding site of VEGFR 2. A novel scaffold was designed by incorporating the results of the pharmacophore model generation and molecular docking studies. The new scaffold showed hydrophobic interactions with the kinase front pocket that may be attributed to increasing residence time in VEGFR 2, which is a key success factor for ligand optimization in drug discovery. Different derivatives of the novel scaffold were validated using docking studies and pharmacophore mapping, where they exhibited promising results as VEGFR 2 inhibitors to be synthesized and biologically evaluated. 6,7-dihydro-5H-cyclopenta[d]pyrimidine is a new scaffold that can be further optimized for the synthesis of promising VEGFR 2 inhibitors.

1. Introduction

Vascular endothelial growth factor receptor (VEGFR) is a member of the receptor tyrosine kinase (RTK) family. It is essential for the growth of blood vessels, either, new (vasculogenesis) or pre-existing blood vessels (angiogenesis) [1]. VEGFR is activated by the binding of vascular endothelial growth factors (VEGFs) to its extracellular domain, causing dimerization of the receptor [2]. This conformational change makes the ATP binding site of the receptor available for ATP binding, causing phosphorylation of the tyrosine residue of the receptor and subsequent activation [2,3]. There are three subtypes of VEGFRs: VEGFR 1, 2 and 3. VEGFR 1 (Flt 1) is critical for the regulation of macrophage and monocyte migration, VEGFR 2 (KDR) is responsible for vascular endothelial cell’s normal and pathological developments, and VEGFR 3 (Flt 4) is responsible for the development of lymphatic endothelial cells and the spreading of cancerous cells to lymph nodes [4]. Since VEGFR 2 is the subtype responsible for angiogenesis and vasculogenesis [3], the inhibition of VEGFR 2 will affect the blood supply to tumour cells, inhibiting their growth, proliferation and metastasis [5,6]. Inhibition of the VEGF signalling pathway is a crucial therapeutic target for tumour inhibition. Targeting the neovascularization process of cancer cells will promote their starvation and death in a short time due to their rapid growth rate.

VEGFR small molecule inhibitors are categorized into two types according to the conformation of the receptor. Type I inhibitors compete with ATP molecules at the ATP binding site to bind to the receptor in its active form, adopting the Asp-Phe-Gly (DFG)-in conformation and consequently preventing the phosphorylation and activation of the receptor. In contrast, Type II inhibitors are non-ATP competitors that bind and stabilize the inactive form of the receptor, the DFG-out conformer, which is achieved through flipping of the DFG motif of the receptor to reveal an extra hydrophobic pocket [6,7]. Several molecules have been approved by the FDA for the treatment of different types of cancer [9]; for example, sorafenib is an oral multikinase dual-acting inhibitor that affects tumour cells directly through inhibiting the rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signalling pathway or targeting the tumour vasculature by inhibiting platelet-derived growth factor...
receptor-B (PDGFR-B) and VEGFR [9]. Sorafenib is a type II kinase inhibitor with a reported IC\textsubscript{50} value of 0.057 µM for PDGFR-B and 0.09 µM for VEGFR 2 [10]. Several drug design studies were carried out with the aim of improving the potency and pharmacokinetic properties of existing VEGFR inhibitors by structural modification or finding new candidates for VEGFR inhibition. In this study, a novel 6,7-dihydro-5H-cyclopenta[d]pyrimidine scaffold was designed using consecutive computational protocols. The potency and effectiveness of the proposed derivatives as VEGFR 2 inhibitors were validated using molecular docking and pharmacophore mapping protocols. Then, the proposed derivatives were synthesized. Their VEGFR 2 inhibitory activity was evaluated, and their dose-related IC\textsubscript{50} values were measured and compared to that of sorafenib as a reference compound.

2. Rationale

2.1. Molecular modelling studies

Computer-aided drug design (CADD) adopts different computational techniques to optimize commercially available drugs into new ligands with potential biological activities against certain biological targets. CADD is based on quantum mechanics and molecular modelling techniques and is used to reduce the expenses and time consumed by rational drug design.

In the current study, a novel 6,7-dihydro-5H-cyclopenta[d]pyrimidine scaffold was designed using different molecular modelling protocols: the molecular docking of sorafenib as a potent VEGFR 2 inhibitor to understand binding affinity and orientation inside the binding site of VEGFR 2, 3D QSAR (Three Dimensional Quantitative Structure-Activity Relationship) pharmacophore model generation and virtual screening of 3D databases using Accelrys Discovery Studio software version 4.5 (DS 4.5, Accelrys Ltd., UK). The 3D QSAR pharmacophore model generation protocol builds a pharmacophore model using a set of ligands with known activity to identify the essential functional features contributing to their high potency and biological activity. The generated pharmacophore model was used for the virtual screening of three 3D databases: the DruglikeDiverse, MiniMaybridge, and scPDB databases. The selected hits of the virtual screening were analysed and subjected to molecular docking into the crystal structure of VEGFR 2 with protein data bank code 3WZE in complex with sorafenib as a reference inhibitor. The good correlation between docking scores and pharmacophore fit values provided a reliable basis for designing new VEGFR 2 inhibitors.

2.1.1. Molecular docking of sorafenib

A molecular docking protocol was implemented using the CDOCKER protocol under the receptor ligand interaction protocol of Accelrys Discovery Studio 4.5. CDOCKER is a grid-based molecular docking method that uses the CHARMm force field-based molecular dynamics (MD) search algorithm to dock ligands into the binding site of the receptor. Different conformations of the ligand are generated with different scoring functions, such as -CDOCKER_ENERGY (CHARMm energy of the interaction energy and ligand strain) and -CDOCKER_INTERACTION_ENERGY (interaction energy only).

The determination of the binding interactions and orientation of VEGFR 2 kinase inhibitors was studied using the X-ray crystal structure of VEGFR 2 with sorafenib (PDB code 3WZE). The molecular docking protocol (CDOCKER) of Accelrys Discovery Studio 4.5 was used, and the target protein was prepared and the active binding site identified based on the positional coordinates of the co-crystallized inhibitor. The results of the CDOCKER protocol were validated by re-docking of the co-crystallized structure of the reference sorafenib inside the active site of VEGFR 2 (PDB code 3WZE). The root mean square deviation (RMSD) between the re-docked conformer and the co-crystallized conformer of sorafenib is 0.257, (Fig 1), which confirms the validity of the docking protocol.

Molecular docking simulation provides insight into the binding interaction and affinity between the compound and the receptor. Promising biological activity is indicated by lower CDOCKER energy and similar binding interactions to that of the reference co-crystallized inhibitor. A docking study of sorafenib resulted in a binding energy score of −48.92 with a total of ten hydrogen bonds. The essential amino acid Cys919 located in the hinge region binds to the nitrogen of the pyridine ring, the NH and the methyl group of the amide moiety. In addition, Glu917 in the hinge region binds to the CH proton at the 6-position of the pyridine ring; the urea moiety binds to the receptor through various hydrogen bonding interactions where both urea NH groups interact with Glu885 in the C-helix; and the carbonyl group interacts with Asp1046 in the DFG motif and with Cys1045. The fluoride atoms of the external trifluoromethyl moiety interact with His1026 and Cys1045. Furthermore, the pyridine moieties form hydrophobic interactions with a hydrophobic pocket formed by amino acid residues Cys919, Leu1035, Ala866, Val848 and Leu840, and the phenyl ring binds to another hydrophobic pocket through interactions with Lys868, Cys1045, Val916, Phe1047 and Val848. In addition, the terminal phenyl ring forms hydrophobic bond with Leu889, the meta trifluoromethyl substitution forms hydrophobic interactions with Val898, Ile1044, His1026 and Leu1019, and the para chloro substituent exhibits hydrophobic interactions with Leu1019 and Ile888 (Table 4).

The resulting interactions resemble the reported binding mode of sorafenib in the X-ray crystal structure of VEGFR 2 with PDB code 3WZE [8], (Fig 2).

2.1.2. 3D QSAR pharmacophore model generation and validation

2.1.2.1. Assortment of anticancer library. A set of 25 VEGFR 2 inhibitors of known activity with IC\textsubscript{50} values ranging from 0.027 to 9.4 µM were collected from the literature [11], (Fig. 3). Library ligands were prepared using the prepare ligands protocol of Accelrys Discovery Studio 4.5. Ligand preparation is essential for energy minimization, the correction of incorrect valences and the protonation of ligands.

2.1.2.2. 3D QSAR pharmacophore model generation. 3D QSAR pharmacophore is an advanced common feature pharmacophore ligand-based protocol of Discovery Studio 4.5 that is used to explore essential pharmacophore features from a set of ligands with known activity against the biological target of interest. Pharmacophore model generation is implemented using the HypoGen algorithm [8,9], which considers only features that are common to active compounds, while common features among inactive compounds are excluded [13]. For the generation of potential pharmacophore models, a feature-mapping protocol was initiated to identify important chemical features imbedded within the training set compounds (T1-15). Subsequently, a pharmacophore model was generated using twenty-five compounds...
that were divided into a training set (T1-15) and a test set (S15-25), (Fig. 3). The features were driven by a feature-mapping protocol: hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), hydrophobic (HYP) and ring aromatic (RA) features were selected, the IC50 of the compound was set as the activity property of the model, the uncertainty property was changed from the default value of 3.0 to 1.5, and validation was set as true with maximum omitted features of zero. Accordingly, ten predictive pharmacophore model hypotheses were generated and validated.

2.1.2.3. Validation of pharmacophore models. The HypoGen algorithm generates different hypotheses, and the best-generated hypothesis is chosen according to different parameters. The cost difference is calculated from the null cost and the total cost of each hypothesis, where the total cost is the summation of three components: weight, error and configuration cost. The weight component increases in a Gaussian form as the feature weight deviates from an ideal value (2.0); the error component increases as the root mean squared (RMS) difference between the estimated and experimental activities for the training set compounds increases; and the configuration component is a constant cost that depends on the hypothesis space being optimized. The fixed cost and null cost are another two theoretical costs that are measured by the algorithm, where the fixed cost is the minimum possible cost of a model that fits all the data perfectly, and the null cost is the maximum cost of a model devoid of any features. For the model to be statistically significant, the difference between the null and fixed cost must be greater than that between the total and fixed cost, and to generate a statistically reliable model above 90%; the difference between the null and total cost should be greater than or equal to 70 bits [14]. Accordingly, the best generated hypothesis is the model with the highest cost difference.

The generated pharmacophore model is validated by the measurement of its statistical significance and its ability to estimate the biological activity of new compounds. Model validation depends on the cost difference, accuracy of the predicted activity of the training set compounds compared to their experimental activity, and mapping of sorafenib on the generated model as a reference standard. Ten 3D QSAR pharmacophore models were generated with at least three chemical features each (Table 1). Hypothesis 1 is the most statistically significant hypothesis among the ten generated pharmacophore model hypotheses, and it has five features: one hydrogen bond acceptor (HBA), three hydrophobic (HYP), and one ring aromatic (RA) (Fig. 4). Accordingly, hypothesis 1 has the highest cost difference of 140.98, indicating a predictive power above 90%, with the lowest (RMS) of 1.03 reflecting a high correlation between predicted and experimental activity and a high correlation coefficient of 0.975 corresponding to the ability of the model to predict the activity of the training set compounds (Table 2).

2.1.2.4. Pharmacophore mapping of sorafenib. The generated pharmacophore model was further validated by mapping an active reference compound, sorafenib, into the generated model using the ligand mapping protocol of Accelrys Discovery Studio 4.5 and scored a fit value of 6.19 (Fig. 5).

2.1.3. Virtual screening

Virtual screening is the adoption of computational techniques to identify potentially active compounds from existing databases or virtual libraries. The screening was carried out using the search and edit 3D database protocol of Accelrys Discovery Studio 4.5. Three 3D databases, DruglikeDiverse, MiniMaybridge, and scPDB, containing a total of 12,930 compounds were mapped into the generated pharmacophore model. The mapping of the three databases resulted in 2370 compounds with the features of the validated pharmacophore model (hypothesis 1). The best-matched compounds were filtered and selected according to their fit values into 136 compounds with fit values higher than that of sorafenib.

2.1.4. Docking studies of virtually screened compounds

The docking results of the 136 compounds of the pharmacophore-based virtual screening were ranked according to their binding affinity and binding mode. The top three hits were KM10259, CDI665171 and 2r4b_GW7. KM10259 has a fit value of 7.19 and the highest docking score of −42.28. The urea NH groups form two hydrogen bonds with Glu885, and the urea carbonyl group forms two hydrogen bonds with Cys1045 and Asp1046. In addition, hydrophobic interactions occur between the furan ring and a hydrophobic pocket formed by residues Val848, Leu1035, Ala866 and Cys919, between the terminal phenyl ring and Leu889, and the phenyl chloro substituent interacts with Leu1019, Ile1044 and Val898 (Table 3).

The docking score of CDI665171 is −33.81, its fit value is 7.80, and it binds to the receptor through hydrogen bonds similar to those of KM10259. Its hydrophobic interactions involve the binding of the terminal methyl group to residues Leu1035, Cys919, Phe918 and Leu840, the binding of the thiazole ring to residues Leu1035, Cys1045,
Val916, Val848 and Ala866 and the interaction of the phenyl ring attached to the thiazole ring with Lys868, Cys1045, Val899 and Val916. In addition, hydrophobic interactions between the terminal phenyl ring and the Leu889 amino acid were observed (Table 3).

2r4b_GW7, with a fit value of 7.10 and a CDOCKER binding score of −35.08, binds to the receptor through interaction of the N1 of the

Fig. 3. The library of T1-15 training set and S15-25 test set of known active VEGFR 2 inhibitors used for pharmacophore model generation along with their IC50 values (µM) indicated in parenthesis.
pyrimidine ring with Cys919 in the hinge region and binding of the CH proton at the 2-position of the pyrimidine ring with Glu917. Cys919 and Glu917 are key amino acids for the hydrogen bonding of the adenine ring of ATP to the hinge region of VEGFR 2 [15]. The hydrophobic interactions of 2r4b_GW7 involve the binding of the thiienyl ring to the kinase front pocket formed by residues Phe918, Leu840, Leu1035 and Ala866 and the hydrophobic binding of the pyrimidine ring to residues Leu1035, Cys919 and Ala866. In addition, the phenyl ring binds to Val916, Cys1045, Val848, Phe1047 and Lys868, the 3-chloro substituent of the phenyl ring forms hydrophobic interactions with Lys868 and Val1016, and the terminal phenyl ring forms hydrophobic interactions with Leu889 (Table 3). The three hits showed consistency in rendering the interactions of VEGFR 2 inhibitors.

2.2. Design strategy

In studying the structure-activity relationship of reported VEGFR 2 inhibitors and analysing their binding modes, three main features of type II inhibitors of VEGFR 2 were reported: most inhibitors include a flat heteroaromatic ring system that binds to the NH of Cys919 in the hinge region; a hydrogen bond donor and acceptor pair, which can be a urea or an amide group that binds with Glu885 and Asp1046 in the enzyme DFG motif, where two hydrogen bonds are formed between NH of the urea or amide group and Glu885 and another hydrogen bond is between the CO group and Asp1046 [16]; and finally, the binding of the terminal aryl group in the newly created allosteric hydrophobic pocket exposed upon flipping of the DFG loop, as shown in the inactive conformation or DFG-out conformation of the enzyme [17].

Utilizing the aforementioned essential structural features, bioisosteric modification strategies and the results of the 3D QSAR pharmacophore model generation and molecular modelling protocols, a proposed scaffold of 6,7-dihydro-5H-cyclopenta[d]pyrimidine derivatives was designed and synthesized. The design of the new scaffold was based on the replacement of the N-methylpicolinamide moiety of sorafenib with a 6,7-dihydro-5H-cyclopenta[d]pyrimidine moiety. Bioisosteric

Table 1

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Total cost</th>
<th>Cost difference</th>
<th>RMS</th>
<th>Correlation coefficient</th>
<th>Features</th>
<th>Maximum fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>59.35</td>
<td>140.98</td>
<td>1.03</td>
<td>0.97</td>
<td>HBA, HYP, HYP, HYP, RA</td>
<td>10.80</td>
</tr>
<tr>
<td>2</td>
<td>66.56</td>
<td>133.78</td>
<td>1.42</td>
<td>0.95</td>
<td>HBA, HYP, HYP, HYP</td>
<td>7.36</td>
</tr>
<tr>
<td>3</td>
<td>74.56</td>
<td>125.78</td>
<td>1.76</td>
<td>0.92</td>
<td>HBD, HYP, HYP, HYP</td>
<td>7.81</td>
</tr>
<tr>
<td>4</td>
<td>74.86</td>
<td>125.48</td>
<td>1.77</td>
<td>0.92</td>
<td>HBD, HYP, HYP, HYP</td>
<td>7.90</td>
</tr>
<tr>
<td>5</td>
<td>74.95</td>
<td>125.39</td>
<td>1.76</td>
<td>0.92</td>
<td>HYP, HYP, HYP, HYP</td>
<td>8.83</td>
</tr>
<tr>
<td>6</td>
<td>75.82</td>
<td>124.52</td>
<td>1.74</td>
<td>0.92</td>
<td>HBA, HBA, HYP, HYP, HYP</td>
<td>7.08</td>
</tr>
<tr>
<td>7</td>
<td>76.17</td>
<td>124.16</td>
<td>1.78</td>
<td>0.92</td>
<td>HBA, HBD, HYP, RA</td>
<td>6.23</td>
</tr>
<tr>
<td>8</td>
<td>76.54</td>
<td>123.80</td>
<td>1.80</td>
<td>0.92</td>
<td>HBD, HYP, HYP, HYP</td>
<td>6.39</td>
</tr>
<tr>
<td>9</td>
<td>78.23</td>
<td>122.10</td>
<td>1.89</td>
<td>0.91</td>
<td>HBA, HYP, HYP, RA</td>
<td>7.34</td>
</tr>
<tr>
<td>10</td>
<td>78.97</td>
<td>121.37</td>
<td>1.89</td>
<td>0.91</td>
<td>HBD, HRY, RA, RA</td>
<td>6.41</td>
</tr>
</tbody>
</table>

b Abbreviations used for features; hydrogen bond acceptor (HBA), hydrophobic (HYP) and ring aromatic (RA).

Table 2

<table>
<thead>
<tr>
<th>Training set</th>
<th>Experimental activity IC50 nM</th>
<th>Predicted activity IC50 nM</th>
<th>Fit value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>940</td>
<td>688.787</td>
<td>6.505</td>
</tr>
<tr>
<td>T2</td>
<td>870</td>
<td>1299</td>
<td>6.230</td>
</tr>
<tr>
<td>T3</td>
<td>340</td>
<td>349.804</td>
<td>6.800</td>
</tr>
<tr>
<td>T4</td>
<td>4.1</td>
<td>8.839</td>
<td>8.397</td>
</tr>
<tr>
<td>T5</td>
<td>32</td>
<td>13.729</td>
<td>8.206</td>
</tr>
<tr>
<td>T6</td>
<td>5.3</td>
<td>5.586</td>
<td>8.596</td>
</tr>
<tr>
<td>T7</td>
<td>4.4</td>
<td>8.998</td>
<td>8.389</td>
</tr>
<tr>
<td>T8</td>
<td>19</td>
<td>12.989</td>
<td>8.230</td>
</tr>
<tr>
<td>T9</td>
<td>2.7</td>
<td>3.086</td>
<td>8.854</td>
</tr>
<tr>
<td>T10</td>
<td>33</td>
<td>33.111</td>
<td>7.823</td>
</tr>
<tr>
<td>T11</td>
<td>110</td>
<td>113.757</td>
<td>7.287</td>
</tr>
<tr>
<td>T12</td>
<td>7.1</td>
<td>7.335</td>
<td>8.478</td>
</tr>
<tr>
<td>T13</td>
<td>30</td>
<td>14.713</td>
<td>8.176</td>
</tr>
<tr>
<td>T14</td>
<td>3.7</td>
<td>3.033</td>
<td>8.861</td>
</tr>
<tr>
<td>T15</td>
<td>14</td>
<td>17.234</td>
<td>8.107</td>
</tr>
</tbody>
</table>

Fig. 4. The best generated Pharmacophore model with three features: hydrogen bond acceptor (HBA) colored green, ring aromatic (RA) colored orange and hydrophobic (HYP) colored cyan. With their inter-feature distances in angstroms and angles displayed.

Fig. 5. Sorafenib as reference compound mapped into the best pharmacophore model with fit value of 6.19.

pyrimidine ring with Cys919 in the hinge region and binding of the CH proton at the 2-position of the pyrimidine ring with Glu917. Cys919 and Glu917 are key amino acids for the hydrogen bonding of the adenine ring of ATP to the hinge region of VEGFR 2 [15]. The hydrophobic interactions of 2r4b_GW7 involve the binding of the thiienyl ring to the kinase front pocket formed by residues Phe918, Leu840, Leu1035 and Ala866 and the hydrophobic binding of the pyrimidine ring to residues Leu1035, Cys919 and Ala866. In addition, the phenyl ring binds to Val916, Cys1045, Val848, Phe1047 and Lys868, the 3-chloro substituent of the phenyl ring forms hydrophobic interactions with Lys868 and Val1016, and the terminal phenyl ring forms hydrophobic interactions with Leu889 (Table 3). The three hits showed consistency in rendering the interactions of VEGFR 2 inhibitors.

2.2. Design strategy

In studying the structure-activity relationship of reported VEGFR 2 inhibitors and analysing their binding modes, three main features of type II inhibitors of VEGFR 2 were reported: most inhibitors include a flat heteroaromatic ring system that binds to the NH of Cys919 in the hinge region; a hydrogen bond donor and acceptor pair, which can be a urea or an amide group that binds with Glu885 and Asp1046 in the enzyme DFG motif, where two hydrogen bonds are formed between NH of the urea or amide group and Glu885 and another hydrogen bond is between the CO group and Asp1046 [16]; and finally, the binding of the terminal aryl group in the newly created allosteric hydrophobic pocket exposed upon flipping of the DFG loop, as shown in the inactive conformation or DFG-out conformation of the enzyme [17].

Compound 2r4b_GW7 has a fit value of 7.10 and exhibits the 5 features (1HBA, 3HYP and 1RA) of the validated pharmacophore model, while sorafenib has a fit value of 6.19 and exhibits only 4 features (1HBA, 3HYP), (Table 4). Molecular docking studies of the hit compound 2r4b_GW7 revealed a hydrogen bond between N1 of the thienyl pyrimidine moiety and Cys919 and a hydrogen bond between the CH proton at the 2-position of the pyrimidine ring and Glu917. Both Cys919 and Glu917 are key amino acids for the hydrogen bonding of ATP to the hinge region of VEGFR 2 [15]. The thienyl pyrimidine moiety forms additional hydrophobic interactions at the front pocket of the kinase domain with residues Leu840, Ala866, Phe918 and Leu1035, (Table 4). Hydrophobic interaction with the kinase front pocket complements the hydrogen bonding with the hinge region, increasing the residence time [8], which is a key factor in improving potency in vivo and enhancing the correlation between the in vitro and in vivo efficacy of drugs [18].

Utilizing the aforementioned essential structural features, bioisosteric modification strategies and the results of the 3D QSAR pharmacophore model generation and molecular modelling protocols, a proposed scaffold of 6,7-dihydro-5H-cyclopenta[d]pyrimidine derivatives was designed and synthesized. The design of the new scaffold was based on the replacement of the N-methylpicolinamide moiety of sorafenib with a 6,7-dihydro-5H-cyclopenta[d]pyrimidine moiety. Bioisosteric
Table 3
Docking score, hydrogen and hydrophobic interactions of sorafenib and the three top hits with VEGFR 2 (pdb code 3WZE), along with their pharmacophore mapping and fit values inside the best-generated pharmacophore model.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Binding interactions</th>
<th>CDOCKER energy</th>
<th>Pharmacophore mapping</th>
<th>Fit value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorafenib</td>
<td></td>
<td>−48.92</td>
<td></td>
<td>6.19</td>
</tr>
<tr>
<td>KM10259</td>
<td></td>
<td>−42.28</td>
<td></td>
<td>7.16</td>
</tr>
<tr>
<td>CDI665171</td>
<td></td>
<td>−33.81</td>
<td></td>
<td>7.80</td>
</tr>
<tr>
<td>2r4b_GW7</td>
<td></td>
<td>−35.08</td>
<td></td>
<td>7.10</td>
</tr>
</tbody>
</table>
replacement was carried out by the substitution of the oxygen linker with a classical NH bioisostere, (Fig. 6). Introducing new substituents at different positions of an aromatic ring of a hit compound may optimize the binding affinity of the drug with the receptor in addition to conferring the physicochemical properties essential for drug distribution and metabolism. Different derivatives of (I) were proposed with alternative lipophilic substituents at the terminal aromatic ring to occupy the hydrophobic allosteric pocket. Substituents were either electron withdrawing, such as chloro and trifluoromethyl groups, or electron donating, such as methyl and methoxy groups.

2.2.1. Validation of the proposed scaffold of VEGFR 2 inhibitors

2.2.1.1. Pharmacophore mapping of the proposed VEGFR 2 inhibitors

The activity of the proposed scaffold as an effective VEGFR 2 inhibitor was validated through mapping of the proposed derivatives into the validated pharmacophore model. The results showed that the proposed derivatives 6a, 6b, 6c, 6d and 6e exhibited five features of the generated pharmacophore model with fit values ranging from 6.63 to 9.21 (Table 5), which are higher than that of the reference.

Table 4

Docking results of sorafenib and the three top hits KM10259, CDI665171 and 2r4b_GW7 in the active site of VEGFR 2 (3WZE) showing hydrogen bonds and hydrophobic interactions.

<table>
<thead>
<tr>
<th>Name</th>
<th>Hydrogen bonds</th>
<th>Hydrogen bond length Å</th>
<th>Hydrophobic interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorafenib</td>
<td>O of Cys919 – H of CH₂</td>
<td>2.3</td>
<td>Leu840</td>
</tr>
<tr>
<td></td>
<td>O of Cys919 – H of NH</td>
<td>2.2</td>
<td>Val848</td>
</tr>
<tr>
<td></td>
<td>NH of Cys919 – N1 of pyridine</td>
<td>2.3</td>
<td>Ala866</td>
</tr>
<tr>
<td></td>
<td>O of Glu917 – C2 of pyridine</td>
<td>2.4</td>
<td>Cys919</td>
</tr>
<tr>
<td></td>
<td>O of Glu985 – H of urea NH</td>
<td>2.0</td>
<td>Leu1035</td>
</tr>
<tr>
<td></td>
<td>O of Glu885 – H of urea NH</td>
<td>2.1</td>
<td>Val848</td>
</tr>
<tr>
<td></td>
<td>NH of Asp1046 – O of urea CO</td>
<td>1.8</td>
<td>Lys868</td>
</tr>
<tr>
<td></td>
<td>H of Cys1045 – O of urea CO</td>
<td>2.7</td>
<td>Val916</td>
</tr>
<tr>
<td></td>
<td>H of His1026 – F in terminal phenyl ring</td>
<td>2.7</td>
<td>Cys1045</td>
</tr>
<tr>
<td></td>
<td>H of Cys1045 – F in terminal phenyl ring</td>
<td>2.5</td>
<td>Phe1047</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leu889 – terminal phenyl ring</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leu1019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Val916</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Val916</td>
</tr>
<tr>
<td>KM10259</td>
<td>O of Glu885 – H of urea NH</td>
<td>2.1</td>
<td>Val848</td>
</tr>
<tr>
<td></td>
<td>O of Glu885 – H of urea NH</td>
<td>2.1</td>
<td>Ala866</td>
</tr>
<tr>
<td></td>
<td>NH of Asp1046 – O of urea CO</td>
<td>1.9</td>
<td>Cys919</td>
</tr>
<tr>
<td></td>
<td>H of Cys1045 – O of urea CO</td>
<td>2.8</td>
<td>Leu1035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leu889</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Val916</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leu1019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ile1044</td>
</tr>
<tr>
<td>CDI665171</td>
<td>O of Glu885 – H of urea NH</td>
<td>2.1</td>
<td>Val848</td>
</tr>
<tr>
<td></td>
<td>O of Glu885 – H of urea NH</td>
<td>2.1</td>
<td>Ala866</td>
</tr>
<tr>
<td></td>
<td>NH of Asp1046 – O of urea CO</td>
<td>2.0</td>
<td>Cys919</td>
</tr>
<tr>
<td></td>
<td>H of Cys1045 – O of urea CO</td>
<td>2.3</td>
<td>Leu840</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leu1035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cys1045</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Val916</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Val916</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Val916</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leu1019</td>
</tr>
<tr>
<td>2r4b_GW7</td>
<td>NH of Cys919 – N1 of pyrimidine</td>
<td>2.5</td>
<td>Leu840</td>
</tr>
<tr>
<td></td>
<td>O of Glu917 – C2 of pyrimidine</td>
<td>2.2</td>
<td>Val848</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ala866</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cys919</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leu1035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cys1045</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phe1047</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Val916</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Val916</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ile1044</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Val916</td>
</tr>
</tbody>
</table>

Fig. 6. Illustration of binding of sorafenib and the proposed scaffold (I) to the binding regions of VEGFR 2.
Table 5
Docking score, hydrogen bonds and hydrophobic interactions of sorafenib and the proposed derivatives with VEGFR 2 (pdb code 3WZE), along with their pharmacophore mapping and fit values inside the best generated pharmacophore model.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Binding interactions</th>
<th>CDOCKER energy</th>
<th>Pharmacophore mapping</th>
<th>Fit value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorafenib</td>
<td></td>
<td>−48.92</td>
<td></td>
<td>6.19</td>
</tr>
<tr>
<td>6a</td>
<td></td>
<td>−29.49</td>
<td></td>
<td>9.05</td>
</tr>
<tr>
<td>6b</td>
<td></td>
<td>−34.28</td>
<td></td>
<td>6.63</td>
</tr>
<tr>
<td>6c</td>
<td></td>
<td>−29.29</td>
<td></td>
<td>9.21</td>
</tr>
<tr>
<td>6d</td>
<td></td>
<td>−31.94</td>
<td></td>
<td>6.63</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 5 (continued)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Binding interactions</th>
<th>CDOCKER energy</th>
<th>Pharmacophore mapping</th>
<th>Fit value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6e</td>
<td></td>
<td>−34.00</td>
<td></td>
<td>6.7</td>
</tr>
</tbody>
</table>

3. Results and discussion

3.1. Chemistry

The synthetic route of the key intermediates and final compounds of the proposed scaffold is illustrated in Schemes 1 and 2, respectively. The synthesis of the key intermediates (2a–e) was carried out by reacting p-nitroaniline with different isocyanates in dry dichloromethane for 48 h at room temperature [19] to give compounds (1a–e), followed by the reduction of 4-nitrophenyl substituted phenyl ureas (1a–e) using Pd/C in methanol [20] to give the corresponding amino derivatives (2a–e).

The synthesis of the 6,7-dihydro-5H-cyclopenta[d]pyrimidine derivatives (6a–e) was achieved through one-step Thorpe-Ziegler cyclization by reacting adiponitrile and sodium hydride in toluene [21] to give 2-aminocyclopent-1-ene carboxitride 3, which was then cyclized by heating under reflux with formic acid and acetic anhydride for 48 h [22] to provide the 6,7-dihydro-5H-cyclopenta[d]pyrimidinone derivative 4. The chlorination of 4 was carried out by heating with phosphorus oxychloride [23]. The key intermediates (2a–e) were then coupled with the chloro derivative 5 to give the corresponding 6,7-dihydro-5H-cyclopenta[d]pyrimidine derivatives (6a–e), and the reaction was followed up using TLC.

3.2. Biological analysis

Initial screening of all synthesized final compounds was carried out at a single dose of 10 µM to evaluate their inhibitory activity against VEGFR 2 kinase. The percentage inhibition of 6,7-dihydro-5H-cyclopenta[d]pyrimidine derivatives 6b and 6c was 87% and 97%, respectively. The enzymatic activity of the other synthesized compounds ranged from weak to moderate inhibition. Compounds 6d and 6e showed low inhibition despite their promising molecular modelling results due to their poor solubility in DMSO (Table 7).

The inhibitory effect of the synthesized compounds on VEGFR 2 revealed that the unsubstituted terminal phenyl ring in 6a resulted in weak enzyme inhibition. However, the addition of different substituents, especially at the meta position of the terminal phenyl ring, resulted in a higher enzyme inhibitory effect [4], as shown in compounds 6b and 6c due to the addition of the 3-Cl-4-CH 3 and 4-Cl-3-CF 3 substituents. In addition, 6b and 6c exhibited high docking scores of −34.28 and −29.29, respectively, and high pharmacophore mapping fit values of 6.63 for compound 6b and 9.21 for compound 6c. Synthesized compounds with high percentage inhibition (above 80%) against VEGFR 2 were subjected to five-dose testing to determine their IC 50 value, and values of 2.26 µM and 0.85 µM were obtained for compounds 6b and 6c, respectively (Table 8).

4. Conclusion

In summary, a novel VEGFR 2 inhibitor scaffold was designed using several molecular modelling protocols. A valid 3D QSAR pharmacophore model was generated, followed by pharmacophore-based virtual screening of three different databases. Virtually screened compounds were filtered by docking into the VEGFR 2 structure with PDB code 3WZE. According to the results of molecular docking studies, a new scaffold of VEGFR 2 was designed based on substitution of the N-methylpicolinamide moiety of sorafenib with 6,7-dihydro-5H-cyclopenta[d]pyrimidine.

Five different derivatives of the proposed scaffold were tested for validation using pharmacophore mapping and molecular docking protocols. The proposed derivatives resulted in fit values, binding energies and binding interactions that are comparable to those of sorafenib. Following the molecular modelling results, the five proposed structures
were synthesized and subjected to biological evaluation against the VEGFR 2 enzyme. Compounds 6b and 6c exhibited high percentage inhibition of 87% and 97%, respectively, at 10 µM. The compounds with the highest enzyme inhibitory effect were tested for VEGFR 2 inhibition and demonstrated IC50 values in the sub-micromolar range. The IC50 values of compounds 6c and 6b were 0.85 µM and 2.26 µM, respectively. Therefore, compounds 6c and 6b represent a new molecular scaffold that can be further optimized and used for the design of promising potent VEGFR 2 inhibitors.

5. Experimental

Starting material and reagents were purchased from Sigma Aldrich or Alfa-Aesar organics and were used without further purification. Melting points were recorded using BUCHI B-540 apparatus and were uncorrected. Reactions were monitored using thin layer chromatography (TLC) purchased from Merck and performed on 0.255 mm silica gel plates, with visualization under U.V. light (254 nm). The hydrogenation process was carried out using hydrogenator (Parr Shaker) apparatus. FT-IR spectra were recorded on a Perkin Elmer FT-IR spectrophotometer and 1H NMR spectra were recorded on BRUCKER 400 MHz spectrophotometer at Ain Shams University. Mass spectra were recorded on Thermo Scientific ISQ LT gas chromatograph mass spectrometer at the regional center for Mycology and Biotechnology Al-Azhar University and on thermos Q-exactive orbitrap instrument at laboratory for single cell mass spectrometry, quantitative biology center, Japan.

5.1. Chemistry

5.1.1. General procedure for the preparation of compounds (1a–e)

A solution of p-nitroaniline (1 g, 6 mmol: 1 equiv.) in dry dichloromethane (20 mL), was stirred with the appropriate isocyanate (6 mmol: 1 equiv.) at room temperature for 48 h. The resulting mixture was filtered and the filtered solid was crystallized from ethanol to yield derivatives (1a–e) [19].
5.1.1.1. 1-(4-Nitrophenyl)-3-phenylurea (1a). Yield 40% as yellowish white crystals, m.p 226–228°C, (as reported) [24].

5.1.1.2. 1-(3-Chloro-4-methylphenyl)-3-(4-nitrophenyl)urea (1b). Yield 50% as yellow orange crystals, m.p 182–185°C, (as reported) [10].

5.1.1.3. 1-(3-Trifluoromethyl-4-chlorophenyl)-3-(4-nitrophenyl)urea (1c). Yield 90% as pale yellow crystals, m.p 238–240°C. FT-IR (υ max, cm⁻¹): 1596 (C=O), 1646 (C=N), 1717 (C=O), 3128 (CH aromatic), 3352 (NH).

Table 6
Docking results of sorafenib and the three top hits KM10259, CDI665171 and 2r4b_GW7 in the active site of VEGFR 2 (3WZE) showing hydrogen bonds and hydrophobic interactions.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Hydrogen bonds</th>
<th>Hydrogen bond length Å</th>
<th>Hydrophobic interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorafenib</td>
<td>O of Cys196 – H of CH₃</td>
<td>2.5</td>
<td>Leu840</td>
</tr>
<tr>
<td></td>
<td>O of Cys196 – H of NH</td>
<td>2.2</td>
<td>Val848</td>
</tr>
<tr>
<td></td>
<td>NH of Cys196 – N₁ of pyridine</td>
<td>2.3</td>
<td>Ala866</td>
</tr>
<tr>
<td></td>
<td>O of Glu885 – C₂ of pyridine</td>
<td>2.4</td>
<td>Cys19</td>
</tr>
<tr>
<td></td>
<td>O of Glu885 – H of urea NH</td>
<td>2.0</td>
<td>Leu1035</td>
</tr>
<tr>
<td></td>
<td>O of Glu885 – H of urea NH</td>
<td>2.1</td>
<td>Val848</td>
</tr>
<tr>
<td></td>
<td>NH of Asp1046 – O of urea CO</td>
<td>1.8</td>
<td>Lys868</td>
</tr>
<tr>
<td></td>
<td>H of Cys1045 – H of Asp1046</td>
<td>2.7</td>
<td>Val1016</td>
</tr>
<tr>
<td></td>
<td>H of Cys1045 – F in terminal phenyl ring</td>
<td>2.7</td>
<td>Cys1045</td>
</tr>
<tr>
<td></td>
<td>H of Cys1045 – F in terminal phenyl ring</td>
<td>2.5</td>
<td>Phe1047</td>
</tr>
</tbody>
</table>

6a	NH of Cys196 – N₁ of pyridine	2.3	Leu1035
	H of Ph2018 – N₁ of pyridine	2.8	Leu840
	O of Glu197 – C₂ of pyridine	2.2	Ala866
	O of Glu885 – H of urea NH	2.0	Leu1035
	NH of Asp1046 – O of urea CO	1.8	Lys868
	H of Cys1045 – O of urea CO	2.6	Val1016

6b	NH of Cys196 – N₁ of pyridine	2.3	Leu1035
	H of Ph2018 – N₁ of pyridine	2.8	Leu840
	O of Glu197 – C₂ of pyridine	2.2	Ala866
	O of Glu885 – H of urea NH	2.0	Leu1035
	NH of Asp1046 – O of urea CO	1.8	Lys868
	H of Cys1045 – O of urea CO	2.7	Val1016

6c	NH of Cys196 – N₁ of pyridine	2.3	Leu1035
	H of Ph2018 – N₁ of pyridine	2.8	Leu840
	O of Glu197 – C₂ of pyridine	2.2	Ala866
	O of Glu885 – H of urea NH	2.0	Leu1035
	NH of Asp1046 – O of urea CO	1.8	Lys868
	H of Cys1045 – O of urea CO	2.6	Val1016

Fig. 6d	NH of Cys196 – N₁ of pyridine	2.3	Leu1035
	H of Ph2018 – N₁ of pyridine	2.8	Leu840
	O of Glu197 – C₂ of pyridine	2.2	Ala866
	O of Glu885 – H of urea NH	2.0	Leu1035
	NH of Asp1046 – O of urea CO	1.8	Lys868
	H of Cys1045 – O of urea CO	2.6	Val1016
	H of Cys1045 – F of 3-CN	2.8	Cys1045
	H of Cys1045 – F of 3-CN	2.6	Phe1047

5.1.1.4. 1-(3-Chloro-4-methylphenyl)-3-(4-nitrophenyl)urea (1b). Yield 50% as yellow orange crystals, m.p 182–185°C, (as reported) [10].
5.1.1.4. 1-(3-Methoxyphenyl)-3-(4-nitrophenyl)urea (1d). Yield 47% as yellow crystals, m.p 210–212 °C, (as reported) [24].

5.1.1.5. 1-(4-Nitrophenyl)-3-(3-(trifluoromethyl)phenyl)urea (1e). Yield 60% as greenish yellow crystals, m.p 260 °C. FT-IR (υ max, cm⁻¹): 1575 (C=O), 1621 (C=N), 1720 (C=O), 3162 (CH aromatic), 3356 (NH).

5.1.2. General procedure for the preparation of compounds (2a–e)
Pd-C (0.1 g, 10%) was added to a solution of the appropriate nitro phenyl urea derivative (1a-e) (4 mmol) in methanol (100 mL), the mixture was stirred under H₂ at room temperature, at 60 bar for 4 h. The catalyst was removed by filtration over celite. Then the filtrate was concentrated and dried to afford crystals of compounds (2a–e) which were then recrystallized from methanol [20].

5.1.2.1. 1-(4-Aminophenyl)-3-phenylurea (2a). Yield 70% as white crystals, m.p 224–227 °C, (as reported) [25].

5.1.2.2. 1-(4-Aminophenyl)-3-(3-Chloro-4-methylphenyl)urea (2b). Yield 80% as grey crystals, m.p 203–205 °C, (as reported) [10].

Table 7

<table>
<thead>
<tr>
<th>Compounds</th>
<th>R</th>
<th>% inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>6a</td>
<td>H</td>
<td>5</td>
</tr>
<tr>
<td>6b</td>
<td>3-Cl, 4-CH₃</td>
<td>87</td>
</tr>
<tr>
<td>6c</td>
<td>4-Cl, 3-CF₃</td>
<td>97</td>
</tr>
<tr>
<td>6d</td>
<td>3-CH₃</td>
<td>0</td>
</tr>
<tr>
<td>6e</td>
<td>3- CF₃</td>
<td>1</td>
</tr>
</tbody>
</table>

* These compounds are sparingly dissolved at 10 mM in 100% DMSO.

5.1.2.3. 1-(4-Aminophenyl)-3-(3-Chloro-4-methylphenyl)urea (2b). Yield 80% as grey crystals, m.p 203–205 °C, (as reported) [10].

Scheme 1. Synthesis of 4-aminophenyl substituted phenyl ureas reagents and conditions: (a) Phenyl isocyanates, DCM, rt, 48 hrs; (b) H₂, Pd/C, MeOH, rt, 4 hrs.

Scheme 2. Synthesis of 6,7-dihydro-SH-cyclopenta[d]pyrimidine derivatives reagents and conditions: (a) NaH, toluene, 15 hrs; (b) HCOOH, acetic anhydride, reflux, 48 hrs; (c) POCl₃, reflux, 3 hrs; (d) Ethanol, TEA, reflux, 18–48 hrs.
Table 8

<table>
<thead>
<tr>
<th>Compounds</th>
<th>VEGF 2 IC_{50} (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6b</td>
<td>2.26</td>
</tr>
<tr>
<td>6c</td>
<td>0.85</td>
</tr>
<tr>
<td>Staurosporine</td>
<td>0.09</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>0.09</td>
</tr>
</tbody>
</table>

5.1.6.2.1. 1-(4-(6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-ylamino)-3-phenylurea (6a). The product was separated as yellowish brown powder (0.2g, 33%), m.p > 300°C. 1H NMR (400 MHz, DMSO-d$_6$) δ 1.16–1.20 (s, 2H, cyclopentenyl H), 1.94–1.99 (m, 1H, cyclopentenyl H), 2.63–2.65 (m, 1H, cyclopentenyl H), 2.72–2.77 (m, 1H, cyclopentenyl H), 3.07–3.11 (m, 1H, cyclopentenyl H), 6.51–6.53 (d, J = 8 Hz, 2H, H$_2$-α), 6.90–7.01 (m, 1H, H$_2$-α), 7.08–7.10 (d, J = 8 Hz, 2H, H$_2$-α), 7.22–7.27 (m, 4H, H$_2$-α, H$_3$-α, H$_5$-α), 8.32 (s, 1H, pyrimidine H), 8.41 (s, 1H, NH, exchangeable by D$_2$O), 8.66 (s, 3H, NH, exchangeable by D$_2$O), 8.90 (s, 1H, NH, exchangeable by D$_2$O). HRMS (ESI-MS) calcd: 346.16339 for C$_{21}$H$_{19}$N$_3$O$_2$ [M + H$^+$]. Found: 346.16672.

5.1.6.2.2. 1-(3-chloro-4-methylphenyl)-3-(4-(6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-ylamino)-phenyl)-3-phenylurea (6b). The product was separated as yellow powder (0.102 g, 17%), m.p 233–235°C. 1H NMR (400 MHz, DMSO-d$_6$) δ 1.09–1.13 (m, 1H, cyclopentenyl H), 1.86–1.91 (m, 1H, cyclopentenyl H), 2.04–2.12 (m, 1H, cyclopentenyl H), 2.26 (s, 3H, Ph-CH$_3$), 2.76–2.83 (m, 3H, cyclopentenyl H), 6.55–6.56 (d, J = 2H, H$_2$-α), 7.00–7.58 (m, 5H, ArH), 8.37 (s, 1H, pyrimidine H), 8.68 (s, 1H, NH, exchangeable by D$_2$O), 8.70 (s, 1H, NH, exchangeable by D$_2$O), 8.81 (s, 1H, NH, exchangeable by D$_2$O). HRMS (ESI-MS) calcd: 394.14335 for C$_{21}$H$_{23}$N$_5$OCl [M + H$^+$]. Found: 394.14351.

5.1.6.2.3. 1-(3-chloro-4-methylphenyl)-3-(4-(6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-ylamino)-phenyl)-3-phenylurea (6c). The product was separated as yellow powder (0.11 g, 19%), m.p 288–290°C. 1H NMR (400 MHz, DMSO-d$_6$) δ 1.12 (s, 1H, cyclopentenyl H), 1.98–2.06 (m, 2H, cyclopentenyl H), 2.76–2.79 (m, 3H, cyclopentenyl H), 7.29 (s, 1H, ArH), 7.40–7.42 (d, J = 2H, H$_2$-α), 7.47–7.50 (d, J = 8 Hz, 1H, H$_2$-α), 7.57–7.61 (m, 4H, ArH), 7.64–7.66 (d, J = 8 Hz, 1H, H$_2$-α), 8.15 (s, 1H, pyrimidine H), 8.71 (s, 1H, NH, exchangeable by D$_2$O), 9.37 (s, 1H, NH, exchangeable by D$_2$O), 9.94 (s, 1H, NH, exchangeable by D$_2$O). HRMS (ESI-MS) calcd: 448.11507 for C$_{21}$H$_{17}$N$_5$OClF$_3$ [M + H$^+$]. Found: 448.11562.

5.1.6.2.4. 1-(3-chloro-4-methylphenyl)-3-(4-(6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-ylamino)-phenyl)-3-phenylurea (6d). The product was separated as grayish white powder (0.13 g, 22%), m.p > 300°C. 1H NMR (400 MHz, DMSO-d$_6$) δ 1.14 (s, 4H, cyclopentenyl H), 1.91 (s, 2H, cyclopentenyl H), 3.50 (s, 3H, OCH$_3$), below water of DMSO, 6.86–6.88 (d, J = 8 Hz, 1H, H$_2$-α), 6.96–6.97 (d, J = 4 Hz, 1H, H$_2$-α), 7.04–7.06 (d, J = 8 Hz, 1H, H$_2$-α), 7.21–7.23 (d, J = 8 Hz, 1H, H$_2$-α), 7.47–7.50 (d, J = 12 Hz, 1H, H$_2$-α), 7.62–7.65 (d, J = 12 Hz, 1H, H$_2$-α), 7.82–7.86 (d, 1H, H$_2$-α), 7.93–7.94 (d, J = 4 Hz, 1H, H$_2$-α), 8.15 (s, 1H, pyrimidine H), 8.65 (s, 1H, NH, exchangeable by D$_2$O), 8.67 (s, 1H, NH, exchangeable by D$_2$O), 10.56 (s, 1H, NH, exchangeable by D$_2$O). HRMS (ESI-MS) calcd: 376.17721 for C$_{21}$H$_{22}$N$_5$O$_2$ [M + H$^+$]. Found: 376.17709.

5.1.6.2.5. 1-(3-chloro-4-methylphenyl)-3-(4-(6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-ylamino)-phenyl)-3-phenylurea (6e). The product was separated as yellow powder (0.05 g, 1%), m.p ≈ 105°C. 1H NMR (400 MHz, DMSO-d$_6$) δ 1.96–1.97 (m, 1H, cyclopentenyl H), 2.03–2.05 (m, 1H, cyclopentenyl H), 2.76–2.79 (m, 3H, cyclopentenyl H), 7.28 (s, 1H, ArH), 7.46–7.50 (d, J = 8 Hz, 1H, H$_2$-α), 7.86–7.89 (d, J = 8 Hz, 1H, H$_2$-α), 8.03 (s, 1H, pyrimidine H), 8.65 (s, 1H, NH, exchangeable by D$_2$O), 8.67 (s, 1H, NH, exchangeable by D$_2$O), 8.84 (s, 1H, NH, exchangeable by D$_2$O). HRMS (ESI-MS) calcd: 414.15404 for C$_{21}$H$_{23}$N$_5$O$_2$ [M + H$^+$]. Found: 414.15449 and 370.08269.
5.2. Biology

The structures of the synthesized compounds were submitted to BPS Bioscience, San Diego, CA, USA (www.bpbsbioscience.com) for a VEGFR 2 tyrosine kinase assay. The assay was carried out using a Kinase-Glo Plus Luminescence Kinase Assay Kit (Promega). Kinase activity is measured by quantitating the amount of ATP remaining in the solution after a kinase reaction. The luminescent signal from the assay is correlated with the amount of ATP present and is inversely correlated with the amount of kinase activity. Compounds 6a, 6b, 6c, 6d, and 6e were diluted in 10% DMSO, and 5 µl of the dilution was added to a 50 µl reaction so that the final concentration of DMSO was 1% in all reactions.

All of the enzymatic reactions were conducted at 30°C for 45 min. The 50 µl reaction mixture contained 40 mM Tris, pH 7.4, 10 mM MgCl₂, 0.1 mg/ml BSA, 1 mM DTT, 0.2 mg/ml Poly (Glu, Tyr) substrate, 10 µM ATP and enzyme. After the enzymatic reaction, 50 µl of Kinase-Glo Plus Luminescence Kinase Assay Solution (Promega) was added to each reaction, and the plate was incubated for 15 min at room temperature. The luminescence signal was measured using a BioTek Synergy 2 microplate reader.

References

Further reading