Synthesis and biological evaluation of novel tris-chalcones as potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibitors

Serdar Burmaoglua,b,\textdagger,1, Ali Osman Yilmazb, M. Fatih Polatc, Rüya Kayad, İlhami Gulcinb, Oztekin Algule,\textdagger,1

a Tercan Vocational High School, Erzincan Binali Yildirim University, Erzincan 24800, Turkey
b Department of Chemistry, Faculty of Science, Atatürk University, Erzurum 25240, Turkey
c Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
d Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri 04100, Turkey
e Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin 33169, Turkey

ARTICLE INFO

Keywords:
Tris-chalcone
Carbonic anhydrase
α-glycosidase
Acetylcholinesterase
Butyrylcholinesterase

ABSTRACT

A novel class of fluoro-substituted tris-chalcones derivatives (5a-5i) was synthesized from phloroglucinol and corresponding benzaldehydes. A three step synthesis method was followed for the production of these tris-chalcone compounds. The structures of the newly synthesized compounds (5a-5i) were confirmed on the basis of IR, 1H NMR, 13C NMR, and elemental analysis. The compounds' inhibitory activities were tested against human carbonic anhydrase I and II isoenzymes (hCA I and hCA II), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase (α-Gly). These chalcone derivatives had \textit{K}_i values in the range of 19.58–78.73 nM for hCA I, 12.23–41.70 nM for hCA II, 1.09–6.84 nM for AChE, 8.30–32.30 nM for BChE and 0.93 ± 0.20–18.53 ± 5.06 nM against α-glycosidase. These results strongly support the promising nature of the tris-chalcone scaffold as selective carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase inhibitor. Overall, due to these derivatives' inhibitory potential on the tested enzymes, they are promising drug candidates for the treatment of diseases like glaucoma, leukemia, epilepsy; Alzheimer’s disease; type-2 diabetes mellitus that are associated with high enzymatic activity of carbonic anhydrase, acetylcholine esterase, butyrylcholinesterase, and α-glycosidase.

1. Introduction

The natural abundance of fluorine atom, such as fluorite, fluorapatite and cryolite, is thought to be at the same level as that of nitrogen, and only 12 organic compounds bearing this special atom have been found so far in nature [1]. Despite this scarcity, compounds containing a large number of synthetic fluorine are widely used in various fields. The presence of fluorine atom or fluorinated groups results in molecules with considerably unique properties that cannot be achieved using any other element [2]. Synthesis of biologically active compounds containing various fluorine groups and effective synthetic procedures that can be applied to fluorine containing organic compounds need to be developed [3].

Since the C–F bond is stronger than the C–H bond, the C–F bond length is short enough to protect the carbon centre from various nucleophilic attacks [4]. Furthermore, the carbon centre of the C–F bond is resistant to oxidation owing to the strong electronegative structure of fluorine. The similarity of the Van der Waals radius of the fluorine atom to the hydrogen atom, its high electronegativity and the stability of the C–F bond make it important to be examined in the class of drug candidate compounds containing fluorine [5]. These properties of the fluorine group contribute to the reduction of adverse effects in addition to the improvement of pharmacokinetic properties, such as absorption, distribution, metabolism and excretion [2,6,7]. Also, biological active structures which are containing these groups have a strong effect on the binding affinity for the receptor and target enzymes [8–11].

Flavonoids are a group of natural compounds that have 1,3-diaryl-propane skeleton, which undertake different alicyclic or cyclic
arrangements according to varying levels of oxidation [12]. On the contrary, chalcones are precursor compounds for flavonoids, where the two aromatic rings are fused with α,β-unsaturated ketones, i.e. with 1,3-diphenyl-2-propene-1-one derivatives [13]. It is also known that a great number of enzymes are inhibited by the chalcones in addition to their biological activities, such as antibacterial, antiproteozal, anti-inflammatory, antitumor, anthelmintic, amoebicidal, insecticidal, immunosuppressive, cytotoxic and anticancer [14]. Most of the naturally occurring chalcones contain hydroxyl (−OH) or methoxy (−OCH3) substituents on the aromatic rings [15]. Synthetic and naturally occurring methoxy chalcones are considerably interesting molecules since they exhibit various pharmacological activity and biological properties [16].

Recently, the presence of multi-structural units, which are multivalent or polyvalent, bound to a central core that may cause simultaneous interactions with another unit or receptor, has become a preferred route for the design of active agents that may be novel drug candidates [17,18].

Thanks to the potential complementarity and diversity of the structures such these units, they enable them to much the same resemble their biochemical interactions with the substrates or inhibitors of the target enzymes [19]. Especially the hexa-substituted benzene derivatives allow the target enzymes to be closely similar to existing biochemical interactions with their substrates or inhibitors (Scheme 1) [20–22]. In the case of this conformation provides appropriate synergistic interactions within the binding sites of the target enzyme [23].

Carbonic anhydrase (CA, E.C.4.2.1.1) is a metalloenzyme that contains zinc ions (Zn2+) in its active site. Zn2+ ions, which are present in the active site of CA, interact with the substrate molecules directly and cause catalytic effect [24–26]. This enzyme family catalyses the reversible conversion of carbon dioxide (CO2) and water to bicarbonate (HCO3−) and protons (H+). They are grouped into seven different gene families, namely α-, β-, γ-, δ-, ε-, ζ-, and η- and the last recently discovered 0-CAs isoenzymes in prokaryotes and eukaryotes. The gene families do not have similarities with regard to amino acid sequences [27,28]. Human carbonic anhydrase (hCAs) are included in the class of α-CAs. Sixteen α-CA isoforms have been well defined in humans [29–32]. Among them, CAs I-III, VII and XIII are cytosolic isoenzymes, CAs IV, IX, XII, XIV and XV are membrane-bound isoenzymes, CAs VA and VB are mitochondrial isoenzymes, and CA VI is a secreted isoenzyme [29,30]. The common property of all CA isoenzymes is that they have Zn2+ ions bound to histidine amino acids. Zn2+ ions directly interact with the substrate molecules and increase the catalytic activity of the enzyme, hence effectively reducing the postprandial concentrations of H+ and CO2 and lowering the bicarbonate (HCO3−) levels in the blood and urine [31,32]. Carbonic anhydrase inhibitors (CAIs) are in clinical use for the treatment of various activities like diuretics, and α-glycosidase inhibitors (α-GIs) had a great importance for controlling of type-2 diabetes mellitus (T2DM) and hyperglycaemia [46]. Recently, two main chemical classes of N-comprising α-Glycosidase inhibitors (α-GIs) contain sugar-based inhibitors [47]. α-GIs can reduce the uptake of dietary carbohydrates and repress postprandial hyperglycaemia and T2DM. Thus, these α-GIs are endowed with sugar molecule such as competitive and moieties with the oligosaccharides for binding to the active site of the enzyme, hence effectively reducing the postprandial glucose amounts in T2DM [48–50].

In this study, by placing three methoxy groups at 1, 3 and 5 positions, and fluorine substituent, 3-aryl-2-propene-1-one groups, at 2, 4 and 6 positions on the aromatic A ring, the synthesis of the derivatives of this structure, and then human carbonic anhydrase, acetyleholinesterase, butyrylholinesterase, and α-glycosidase inhibition studies of these derivatives containing hexa-substitute aromatic system have been tested.

2. Results and discussion

2.1. Chemistry

Phloroglucinol (1) was reacted with A5C2O in the presence of methanesulfonylic acid (MSA) at 80 °C gave compound 2 in a yield of 83%. After the successful synthesis of compound 2, compound 3 was obtained from the reaction of compound 2 with dimethylsulfate in 93% yield. The base-catalysed reaction of compound 3 with related benzaldehydes (4a-4i) afforded fluoro-substituted trischalcones in good yields (Scheme 2). The reaction progress was checked by TLC monitoring. This is the first report on the preparation of compounds 5a-Si. All the compounds were isolated as solids and characterized by 1H NMR, 13C NMR, and elemental analysis (for detailed information see the supplementary data).

2.2. Biochemical studies

Human carbonic anhydrase inhibition has been the subject of several investigations since the discovery of the biological importance of this enzyme in several living organisms [50]. In recent years, many compounds and derivatives have been shaped as main classes of hCA inhibitors, including hCA I, and II [51,52]. Considering the fact that novel fluoro-substituted tris-chalcones (5a-Si) are found as effective CA inhibitors. We synthesized novel fluoro-substituted tris-chalcones (5a-Si) to explore their possible human carbonic anhydrase isoenzymes I, and II (hCA I, and II), acetyleholinesterase (AChE), butyrylholinesterase (BChE) and α-glycosidase inhibition effects. The inhibition data are summarized in Table 1, along with those referred to acetazolamide (AZA), used as standard inhibitor for both hCA isoenzymes. Acarbose was shown as α-glycosidase inhibitor. On the other

Scheme 1. Positions of the substituents on the hexa-substituted benzene ring structure.
As for CA I, all novel fluoro-substituted tris-chalcones (5a-Si) showed Ki values in the low nanomolar range that gave Ki values ranging from erythrocytes and is also expressed in normal colorectal mucosa [53,54].

The results has been delineated:

(i) The physiologically relevant hCA I is found at the highest level in erythrocytes and is also expressed in normal colorectal mucosa [53,54]. As for CA I, all novel fluoro-substituted tris-chalcones (5a-Si) showed Ki values in the low nanomolar range that gave Ki values ranging from 19.58 ± 2.87 nM to 78.73 ± 25.17 nM. Among the synthesized novel fluoro-substituted tris-chalcones (5a-Si), chalcone 5h, which possesses difluoro in meta position, showed the best inhibition (Ki: 19.58 ± 2.87 nM), followed by chalcone Si (Ki: 20.97 ± 8.07 nM) when compared to AZA (Table 1). AZA, which is positive control and used a clinical drug, demonstrated a Ki value of 141.02 ± 50.84 mM. However, there are no dramatically differences observed between inhibition effects of novel fluoro-substituted tris-chalcones (5a-Si), except of novel fluoro-substituted tris-chalcones 5a and 5b, which possessed a fluoro groups. Recently, it was reported that hCA I isoenzyme was inhibited by a series of new tetrabromo chalcone derivatives in low nanomolar range, with Ki values of 11.30–21.22 nM [55]. Similarly, some chalcone-imide derivatives inhibited this isoenzyme with nanomolar levels (426.47–699.58 nM) [56].

(ii) Human CA II is physiologically dominant and highly active cytosolic isofrom [54]. As shown in Table 1, the inhibition profile of the considered novel fluoro-substituted tris-chalcones (5a-Si) against dominant cytosolic hCA II revealed to be quite similar to that shown towards CA I. They demonstrated Ki values between 12.23 ± 2.43 nM. The only exception is represented by compound 5a and 5b that showed 3.41 and 3.05-folds decreased of the inhibition potency, when compared to compound 5c, which possessed Ki value of 12.23 ± 2.43 nM. On the other hand AZA, which used to treat glaucoma, altitude sickness, epilepsy, periodic paralysis, heart failure and idiopathic intracranial hypertension [59], had a Ki value of 22.17 ± 0.65 nM against hCA II. In recent studies, it was found that a series of new tetrabromo chalcone derivatives containing 4,7-methanoisoindol-1,3-diones inhibited hCA II isoenzyme in ranging of 8.21–12.86 nM [55]. At the same manner, some chalcone-imide derivatives inhibited dominant hCA II isoenzyme with nanomolar levels (214.92–532.21 nM) [56].

(iii) Another aim of biochemical estimation is the AChE and BChE inhibition effects of novel fluoro-substituted tri-chalcones derivatives (5a-Si). Both cholinergic enzymes inhibition properties were recorded according to the procedure of Ellman et al. [60] and described previously [61]. Novel fluoro-substituted tri-chalcones derivatives (5a-Si) had Ki values in ranging from 1.09 ± 0.20 to 6.84 ± 1.24 nM for AChE and 85.24 ± 1.71 to 8.35 ± 0.54 nM for BChE. On the other hand, tacrine had Ki value of 5.99 ± 1.79 and 2.43 ± 0.92 nM toward both cholinergic AChE and BChE, respectively. All evaluated novel fluoro-substituted tri-chalcones derivatives (5a-Si) showed effective inhibition against both AChE and BChE enzymes, but chalcone 5d, which posses two fluoro groups in benzene ring of chalcone, showed perfect inhibition effect against AChE (Ki: 1.09 ± 0.20 nM) and BChE (Ki: 5.24 ± 1.71 nM) enzymes. In the same context, chalcone-imide derivatives demonstrated cholinergic AChE enzyme inhibition with Ki values in ranging of 70.47–229.42 nM.

(iv) On the other hand, for the α-glycosidase, which present on cells lining the intestine, hydrolysing monosaccharides to be absorbed through the intestine, novel fluoro-substituted tri-chalcones derivatives (5a-Si) exhibited IC50 and Ki values are between 8.30 ± 3.80–32.30 ± 4.02 nM (Table 1). The results obtained from α-glycosidase assay showed that all novel fluoro-substituted tri-chalcones derivatives (5a-Si) had effective α-glycosidase inhibition profiles than that of acarbose (IC50: 22.800 mM) as standard α-glycosidase inhibitor [62]. Also, highly effective Ki values were obtained for chalcone 5c with Ki value of 8.30 ± 3.80 nM. The inhibition of digestive enzyme of α-glycosidase had great importance due treating and preventing diabetes, postprandial glucose amounts pand hyperglycemia [63].
Table 1

<table>
<thead>
<tr>
<th>Compounds</th>
<th>IC<sub>50</sub> (nM)</th>
<th>Ki (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hCA I</td>
<td>r<sup>2</sup></td>
<td>r<sup>2</sup></td>
</tr>
<tr>
<td>hCA II</td>
<td>r<sup>2</sup></td>
<td>r<sup>2</sup></td>
</tr>
<tr>
<td>AChE</td>
<td>r<sup>2</sup></td>
<td>r<sup>2</sup></td>
</tr>
<tr>
<td>BChE</td>
<td>r<sup>2</sup></td>
<td>r<sup>2</sup></td>
</tr>
<tr>
<td>α-Gly</td>
<td>r<sup>2</sup></td>
<td>r<sup>2</sup></td>
</tr>
<tr>
<td>5a</td>
<td>33.80 ± 0.94</td>
<td>0.9582</td>
</tr>
<tr>
<td>5b</td>
<td>32.84 ± 0.94</td>
<td>0.9753</td>
</tr>
<tr>
<td>5c</td>
<td>42.00 ± 0.94</td>
<td>0.9628</td>
</tr>
<tr>
<td>5d</td>
<td>26.35 ± 0.94</td>
<td>0.9854</td>
</tr>
<tr>
<td>5e</td>
<td>43.04 ± 0.94</td>
<td>0.9728</td>
</tr>
<tr>
<td>5f</td>
<td>35.17 ± 0.94</td>
<td>0.9624</td>
</tr>
<tr>
<td>5g</td>
<td>33.00 ± 0.94</td>
<td>0.9728</td>
</tr>
<tr>
<td>TAC**</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ACR***</td>
<td>22,800 ± 78</td>
<td>12600 ± 78</td>
</tr>
</tbody>
</table>

* Acetazolamide (AZA) was used as a standard inhibitor for both hCA I and II isoenzymes.

** Acarbose (ACR) was used as a standard inhibitor for α-glycosidase enzyme taken from Ref.[62].

3.1. Synthesis

3.1.1. General

All reagents used were commercially available unless otherwise specified. Melting points were measured with Gallenkamp melting point devices. IR Spectra: PerkinElmer Spectrum One FT-IR spectrometer. ¹H- and ¹³C NMR Spectra: Varian 400 and Bruker 400 spectrometers. Elemental analysis results were obtained on a Leco CHNS-932 instrument.

3.1.2. 1,1′,1′″-(2,4,6-trihydroxybenzene-1,3,5-triyl)trietrikanone (2)

The mixture of phloroglucinol (1) (1g, 7.93 mmol), acetic anhydride (2.24 mL, 23.8 mmol), acetic acid (0.45 mL, 7.95 mmol) was heated at 80°C. After 5 min. MSA (3.1 mL, 15.3 mmol) was added to the mixture and the mixture was heated at 80°C for 12 h. Completion of reaction was monitored by TLC analysis. Then the reaction was allowed to warm to room temperature and water (5 mL) was added to the mixture. The mixture was then extracted with ethyl acetate (3 x 20 mL). The combined extracts were dried over Na₂SO₄ and the solvent was removed in vacuo. Compound 2 was obtained as a white solid without further purification (1.66 g, 83%). R_f (EtOAc/Hexanes 40:60) = 0.93, ¹H NMR (400 MHz, CDCl₃) δ 17.16 (s, 1H), 2.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 205.2, 175.9, 103.3, 33.1. The ¹H NMR spectrum is in agreement with reported data [64].

3.1.3. 1,1′,1′″-(2,4,6-trimethoxybenzene-1,3,5-triyl)trietrikanone (3)

To a solution of compound 2 (500 mg, 1.98 mmol) in acetonitrile (20 mL, 0.18 mmol) and K₂CO₃ (2.7 g, 19.80 mmol) were added sequentially and stirred under reflux for 2 days. Completion of reaction was monitored by TLC analysis. After 2 days the precipitate was filtered and the solvent was evaporated. The resulted precipitate was washed with water and extracted with ethyl acetate (3 × 30 mL). The combined extracts were dried over Na₂SO₄ and the solvent was removed in vacuo. Compound 3 was obtained as a white solid without further purification (540 mg, yield 93%). R_f (EtOAc/Hexanes 40:60) = 0.17, ¹H NMR (400 MHz, CDCl₃) δ 3.73 (s, 9H), 7.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 174.5, 153.7, 133.2, 32.7. The ¹H NMR and ¹³C NMR spectra are in agreement with reported data [19].

3.1.4. General procedure for preparation of tris-chalcones (5a–5i)

To a solution of compound 3 (1 eq.) in MeOH (30 mL/1 mmol of substrate) benzaldehyde derivatives (4a–4i) (4.5 eq.) and 50% KOH solution (11 mL/1 mmol of substrate) were added sequentially and stirred for 15 h at room temperature. After 15 h solvent was evaporated. Crude material extracted with 2 M HCl solution (2 mL/1 mmol of substrate) and DCM (2 mL/1 mmol of substrate × 3). The combined extracts were dried over Na₂SO₄. The solvent was removed in vacuo and the remaining residue purified via column chromatography over silica gel using gradient elution with EtOAc and hexanes to yield compounds 5a–5i.

3.1.5. (2E,2′E,2″E)-1,1″-(2,4,6-trimethoxybenzene-1,3,5-triyl)trietrikanone (5a)

The above general procedure was followed with 2-fluorobenzaldehyde (4a) to yield 5a as a yellow solid (76% yield). R_f (EtOAc/Hexanes 10:90) = 0.5; mp = 175–176°C; IR (KBr, cm⁻¹) νmax 2945.73, 1654.98, 1607.97, 1574.20; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dd, 6H, J = 21.8, 11.8 Hz), 7.39 (dd, 3H, J = 12.8, 6.6 Hz). 7.14 (ddd, 9H, J = 24.9, 16.9, 7.6 Hz), 6.77 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 192.7, 162.8, 160.3, 157.4, 138.5, 132.4, 123.4, 129.9, 129.3, 124.5, 124.0, 122.5, 116.4, 116.2, 63.9; Anal. calcd for C₃₆H₂₇F₃O₆: C, 70.58; H, 4.44; Found: C, 70.20; H, 4.56.
3.1.2. (2E,2′E,2′′E)-1,1′,1′′-(2,4,6-trimethoxybenzene-1,3,5-triyl)tris-(3-(3-difluorophenyl)prop-2-en-1-one) (5h)

The above general procedure was followed with 3,5-difluorobenzaldehyde (4h) to yield 5h as a yellow solid (55% yield). Rf (EtOAc/Hexanes 10:90) = 0.5; mp = 157–158°C; IR (KBr, cm-1) Vmax 2947.41, 1651.88, 1573.82, 1515.96; \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.48–7.36 (m, 6H), 7.36–7.28 (m, 6H), 7.21 (dt, 6H, J = 16.6, 8.3 Hz), 6.99 (dd, 3H, J = 16.0 Hz), 3.74 (s, 9H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 191.9, 157.5, 153.1, 151.9, 150.7, 150.6, 149.5, 143.3, 131.4, 128.3, 125.6, 124.1, 118.1, 117.9, 116.9, 116.7, 83.8; Anal. calc for C\(_{36}\)H\(_{27}\)F\(_{3}\)O\(_{6}\): C, 70.64; H, 4.44; Found: C, 70.36; H, 4.60.

3.1.3. (2E,2′E,2′′E)-1,1′,1′′-(2,4,6-trimethoxybenzene-1,3,5-triyl)tris(3-(3,4-difluorophenyl)prop-2-en-1-one) (5i)

The above general procedure was followed with 2,4,5-trifluorobenzaldehyde (4i) to yield 5i as a yellow solid (45% yield). Rf (EtOAc/Hexanes 10:90) = 0.5; mp = 79–80°C; IR (KBr, cm-1) Vmax 2948.54, 1655.08, 1570.62, 1519.64, 1344.67; \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.43 (d, 3H, J = 16.0 Hz), 7.15–7.00 (m, 9H), 6.87 (tt, 3H, J = 8.6, 2.2 Hz), 3.75 (s, 9H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 191.6, 164.5, 164.4, 162.1, 161.9, 157.76, 142.8, 137.5, 137.4, 137.3, 129.5, 124.0, 111.3, 111.3, 111.2, 111.1, 106.3, 106.1, 105.8, 63.9; Anal. calc for C\(_{36}\)H\(_{27}\)F\(_{3}\)O\(_{6}\): C, 64.87; H, 3.63; Found: C, 64.98; H, 3.77.

3.2. Biochemical studies

3.2.1. hCA inhibition studies

In this work, both hCA I, and II isoenzymes were purified by Sepharose-4B-\(\gamma\)-tyrosine-sulfanilamide affinity chromatography [65,66]. In this affinity technic, Sepharose-4B-\(\gamma\)-tyrosine-sulfanilamide was used as an affinity matrix for selective retention of CA isoenzymes [67,68]. CA activity determination was spectrophotometrically measured according to Verpoorte et al. [69] as described previously [70]. p-Nitrophenylacetate (PNA) was consumed as substrate for both iso-enzymes and enzymatically transformed to p-nitrophenol ions [69]. One CA activity unit is the amount of enzyme, which had absorbance change at 348 nm of PNA to 4-nitrophenolate over a period of 3 min at 25°C [71].

Bradford technique was used for the investigation of protein amount during the purification stages [71]. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was used for fixation of both isoenzymes [72] described in previous studies [73]. Bovine serum albumin was used as the standard protein [74]. For determining the inhibition parameters of each novel fluoro-substituted tris-chalcone derivative and an activity (%) [Chalcones derivatives] graph was drawn. To calculate \(K_i\) values, three different novel fluoro-substituted tris-chalcone derivatives (Sa-Si) concentrations were tested [75].

3.2.2. AChE/BChE inhibition studies

The inhibitory effect of novel fluoro-substituted tris-chalcone derivatives (Sa-Si) on AChE/BChE activities was performed according to Ellman’s method [60] as described previously [76]. Acetylthiocholine iodide/butyrylcholine iodide (AChI/BChI) were used as substrate for both cholinergic reactions. In brief, an aliquot (100 \(\mu\)L) of Tris/HC1 buffer (pH 8.0, 1.0M) and different concentration of sample solutions (10–30 \(\mu\)g/mL) were added to 50 mL of AChE/BChE enzymes solution (5.32 \(\times\) \(10^{-2}\) EU). The solutions were incubated at 20°C for 10 min. An aliquot (50 \(\mu\)L, 0.5 mM) of DTNB (5,5'-dithio-bis(2-nitrobenzoic)acid) and AChI/BChI were added to incubated mixture and enzymatic
reactions were initiated. AChE/BChE activities were spectrophotometrically determined at 412 nm [77].

3.2.3. α-Glycosidase inhibition studies

α-Glycosidase inhibition effect of novel fluoro-substituted tris-chalcone derivatives (5a-5i) was evaluated according to the method of Tao et al. [40]. Firstly, phosphate buffer (pH 7.4, 75 μL) was mixed with 5 μL of the sample and α-glycosidase enzyme solution (20 μL) which prepared in phosphate buffer (0.15 U/mL, pH 7.4). After preincubation 50 μL of p-Nitrophenyl-D-glycopyranoside (p-NPG) in phosphate buffer (5 mM, pH 7.4) was added and solution was re-incubated at 37 °C. The absorbance of mixtures were recorded at 405 nm [78]. For the determination of Ki values, three different novel fluoro-substituted tris-chalcones derivatives (5a-5i) concentrations were used. Then, the Lineweaver-Burk graphs were drawn [78].

4. Conclusions

A new series of tris-chalcone derivatives were successfully produced with high yields and they were evaluated for their inhibitory potentials on the hCA I, hCA II, AChE, BChE and α-glycosidase enzymes whose high and uncontrolled activities have been associated with the certain diseases. Our compounds were potent inhibitors against the tested enzymes. They exerted better inhibitory potential than the conventional inhibitors that were purchased commercially except that of BChE enzyme. These molecules represent a promising structural scaffold that can be further explored in order to generate other synthetics with enhanced inhibitory potential as well as selectivity against these enzymes. Reported molecules constitute strong drug candidates against the diseases associated with the aberrant activity of the tested enzymes. These diseases can be listed as glaucoma, epilepsy, altitude sickness, periodic paralysis, idiopathic intracranial hypertension, and heart failure (as CA diseases). Our compounds were potent inhibitors against the tested enzymes. They exerted better inhibitory potential than the conventional acetaminophen with high yields and they were evaluated for their inhibitory potentials on the metal complexes of the trimers of bicyclo 2.2.1 hept-2-yne - intramolecular rotational bonding interactions and structural-changes, J. Chem. Soc.-Dalton Trans. 12 (1991) 3349–3358.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioproc.2018.12.035.

References

The authors report no financial and non-financial conflict of interest.

Acknowledgements

We thank to the Erzincan Binali Yildirim University (Grant Number: TSA-2017-495) provide financial support.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioproc.2018.12.035.

S. Burmaoglu et al.
Bioorganic Chemistry 85 (2019) 191–197
196

