Antitrypanosomal activity of epi-polygodial from *Drimys brasiensis* and its effects in cellular membrane models at the air-water interface

Giulia Elisa Guimarães Gonçalves\(^a\), Thiago Rahal Morais\(^a\), Kaio de Souza Gomes\(^b\), Thais Alves Costa-Silva\(^b\), Andre Gustavo Tempone\(^c\), João Henrique Ghilardi Lago\(^b\), Luciano Caseli\(^{a,\ast}\)

\(^a\) Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, São Paulo, Brazil

\(^b\) Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brasil

\(^c\) Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, São Paulo, Brazil

ARTICLE INFO

Keywords:

Epi-polygodial
Trypanosoma cruzi
Langmuir monolayers
Air-water interface

ABSTRACT

Epi-polygodial, a drimane sesquiterpene was isolated from *Drimys brasiensis* (Winteraceae). This compound demonstrated high parasite selectivity towards *Trypanosoma cruzi* trypomastigotes (IC\(_{50}\) = 5.01 μM) with a selectivity index higher than 40. These results were correlated with the effects observed when this compound was incorporated in cellular membrane models of protozoans, represented by Langmuir monolayers of dipalmitoylphosphoethanolamine (DPPE). Surface pressure-area isotherms showed that epi-polygodial expands DPPE monolayers at higher areas and condenses them at lower areas, which was attributed to the preferential interaction with the polar heads of the lipid. This mechanism of action could be corroborated with Polarization-Modulation Reflection-Absorption Spectroscopy and Brewster Angle Microscopy. These results pointed to the fact that the interaction of epi-polygodial with DPPE monolayers at the air-water interface affects the physical chemical properties of the mixed film, which may be important to comprehend the interaction of this drug with cellular membranes at the molecular level.

1. Introduction

Polygodial is a drimane skeleton sesquiterpene found in several plant species from *Polygonum* and *Drimys*. This compound exhibited fungicide [1], anti-inflammatory [2] and anti-leishmanial [3] activities. Although similar to polygodial, the occurrence of its C-9 isomer, epi-polygodial, has previously been detected exclusively in *Drimys winterri* [4].

The effect of polygodial against *Trypanosoma cruzi*, specifically to trypomastigote forms, has previously been reported by our group [3]. Effects against *Trypanosoma cruzi* are frequently associated to intracellular amastigotes since this form is considered the most relevant stage of the parasite [5]. However, the discovery of active compounds against trypomastigotes (extracellular forms) could be important, especially in studies aiming the determination of mechanisms of action of bioactive compounds. These facts are relevant to investigate the biological activity of epi-polygodial and to correlate with models of biological systems. One of these models is the Langmuir films, which are monolayers of insoluble amphiphiles formed at liquid-gas interfaces [6]. Monolayers formed from membrane lipids at the air-water interface can set up a model for half a membrane [7], and have been employed in the last decades to investigate interactions of bioactive compounds with cellular membranes at the molecular level [8–10]. With these ideas in mind, in this paper, we investigated the action of epi-polygodial in cell membrane models formed of selected lipids at the air-water interface. Particularly, we chose 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) since lipids with ethanolamine groups are frequently found in cellular membranes of protozoa [11] and employed as simple model when using Langmuir monolayers [12,13].

2. Materials and methods

2.1. General

NMR spectra were recorded on a spectrometer Varian INOVA-500, operating at 500 (\(^1\)H) and 125 (\(^{13}\)C) MHz, using CDCl\(_3\) (Aldrich) as solvent and TMS as the internal standard. LREIMS spectra were recorded on a MS-QP-5050A (70 eV) mass spectrometer. Column
chromatographic separation procedures were performed using silica gel 60 (230–400 mesh, Merck) for column and silica gel 60 PF254 (Merck) for analytical TLC (0.25 mm). The phospholipid DPPE (purity higher than 99%) was acquired from Sigma-Aldrich (St. Louis, MO, USA) and dissolved in chloroform (Synth, Diadema, Brazil, purity higher than 99%) to prepare a solution with concentration of 0.5 mg/mL. The monolayer subphase contained water purified using a Milli-Q-Plus System (resistivity 18.2 MΩ cm, pH 5.5). Alamar blue (resazurin) was purchased from Molecular Probes (Invitrogen, Brazil). DMSO and MeOH were obtained from Merck (Brazil). RPMI medium, Hank’s balanced salts and phosphate-buffered saline (PBS) were obtained from Sigma (Brazil). Other reagents were purchased from Sigma Aldrich (Brazil). All the experiments were performed at a temperature of 25 ± 1°C.

2.2. Plant material

Leaves of *D. brasiliensis* were collected in Campos do Jordão, São Paulo, SP, in August 2009. A voucher specimen was prepared and compared with that deposited at Herbarium of Prefeitura Municipal de São Paulo (PMSP) under number PMSP9884.

2.3. Extraction and isolation

Dried and powdered leaves (896 g) of *D. brasiliensis* were exhaustively extracted using n-hexane at room temperature. After concentration under reduced pressure, 29.6 g of n-hexane extract were obtained. Part of the crude material (680 mg) was subjected to column chromatography on a silica gel eluted with increasing amounts of EtOAc in n-hexane to afford epi-polygodial (31 mg, 99% of purity).

Epi-polygodial. Pale yellow oil; 1H NMR (CDCl3, 500 MHz): δ 9.87 (d, *J* = 2.1 Hz, H-11), 9.42 (s, H-12), 7.08 (dd, *J* = 5.5 and 2.2 Hz, H-7), 3.28 (m, H-9), 0.95 (s, H-14), 0.98 (s, H-15), 0.93 (s, H-13). 13C NMR (CDCl3, 125 MHz): 202.3 (C-11), 192.8 (C-12), 153.5 (C-7), 137.4 (C-8), 58.5 (C-9), 44.2 (C-5), 42.0 (C-3), 37.7 (C-10), 37.1 (C-1), 32.9 (C-13), 32.7 (C-4), 25.5 (C-6), 21.9 (C-14), 21.5 (C-15), 18.4 (C-2). LREIMS m/z (rel. int.): 234 (18), 230 (25), 215 (12), 203 (47), 191 (29), 177 (27), 161 (23), 148 (31), 133 (25), 119 (29), 105 (46), 91 (82), 77 (62), 69 (67), 55 (60), 41 (100).

2.4. Parasites and mammalian cell maintenance

Trypomastigotes of *T. cruzi* (Y strain) were maintained in Rhesus monkey kidney cells (LLC-MK2-ATCC CCL 7), cultivated in RPMI-1640 medium supplemented with 2% FBS at 37°C in a 5% CO2-humidified incubator. Macrophages were collected from the peritoneal cavity of BALB/c mice by washing them with RPMI-1640 medium and maintained at 37°C in a 5% CO2-humidified incubator. The murine conjunctive cells (NCTC clone 929, ATCC) and monolayer subphase contained water purified using a Milli-Q-Plus System (resistivity 18.2 MΩ·cm, pH 5.5). Alamar blue (resazurin) was determined using the following equation: CC50 against NCTC cells/IC50 against parasites [15].

2.5. Anti-trypomastigate activity

Free trypomastigotes obtained from LLC-MK2 cultures were counted in a Neubauer hemocytometer and seeded at 1 x 10⁶ microparticles. To determine the 50% inhibitory concentration (IC50) values, epi-polygodial and benznidazole (standard drug) were dissolved in DMSO, diluted in RPMI-1640 medium and maintained for 24 h at 37°C in a 5% CO2 humidified incubator. The viability of the trypomastigotes was verified by resazurin (Alamar Blue®) assay using a microplate reader (FilterMax F5 Multi-Mode Microplate Reader) with excitation and emission wavelengths of 540 nm and 595 nm, respectively [14].

2.6. Cytotoxicity in mammalian cells

NCTC cells-clone 1929 (6 x 10⁴ cells/well) were seeded and incubated with the epi-polygodial (200–1.56 μM) for 48 h at 37°C in a 5% CO2 incubator. The cytotoxic concentration (CC50) was determined by MTT assay. The optical density was determined in FilterMax F5 (Molecular Devices) at 570 nm. The selectivity index (SI) was determined using the following equation: CC50 against NCTC cells/IC50 against parasites [15].

2.7. Langmuir monolayers

The DPPE solution was spread on the air-water interface of water contained in a Langmuir trough from KSV Instruments (model: mini), and 10 min were waited for evaporation of chloroform. Preliminary tests were carried out with epi-polygodial dissolved in chloroform to a concentration of 0.5 mg/mL; its solution was also spread alone at the air-water interface in order to test its surface activity. For mixed monolayers containing DPPE and epi-polygodial (5% in mol), the phospholipid and the bioactive compound were co-spred on the air-water interface.

The monolayers were compressed with an interface compression rate of 5 Å molecule⁻¹ min⁻¹ to the collapse of the film. Stability curves were carried out pre-compressing the monolayers up to 30 mN/m and registering the surface pressure variation with time with the barriers stopped. For PM-IRRAS (polarization modulation infrared reflection-absorption spectroscopy) and BAM (Brewster Angle Microscopy) studies, the monolayers were also compressed up to 30 mN/m, and maintained constant by slowly moving the barriers back and forth to compensate the surface pressure variations. When it is no longer necessary to trigger the barriers to keep the surface pressure of 30 mN/m constant, the monolayer is considered stable and the infrared spectrum is then taken.

The PM-IRRAS measurements were then taken using a KSV PML 550 instrument (KSV Instruments, Ltd., Helsinki, Finland) at a fixed incidence angle of 80° and the BAM images using a mini-BAM Microscopy from KSV-Nima.

Each data (tensiometric data, image or spectrum) shown in this paper was repeated at least three times for checking the reproducibility and only representative curves, images or spectra are shown.

3. Results and discussion

The 1H NMR spectrum showed two peaks assigned to aldehydes at δ 9.87 (d, *J* = 2.1 Hz, H-11) and at 9.42 (s, H-12) as well as a peak attributed to a conjugated olefinic hydrogen at δ 7.08 (dd, *J* = 5.5 and 2.2 Hz, H-7). These signals associated to the singlets at δ 0.95 (CH3-14), 0.98 (CH3-15), and 0.93 (CH3-13) suggested the occurrence of an isomer of sesquiterpene polygodial, previously isolated from *D. brasiliensis* [3]. 13C NMR spectrum showed 15 signals being two assigned to carbonyl carbons at δ 202.3 (C-11) and 192.8 (C-12), two attributed to olefinic carbons at δ 153.5 (C-7) and 137.4 (C-8) as well as three referring to methyl carbons at δ 21.9 (C-14), 21.5 (C-15), and 13.9 (C-13). Finally, LREIMS spectrum (70 eV) showed a [M]+ ion peak at m/z 234, consistent with molecular formula C15H22O2. The comparison of obtained NMR and LREIMS data with those reported in the literature [4], confirmed the structure of epi-polygodial as shown in Fig. 1.

The IC50 (50% inhibitory concentration) and CC50 (50% cytotoxic concentration) obtained for epi-polygodial and for the positive control benznidazole against the trypomastigate form of *T. cruzi* and to NCTC cells, respectively, are presented in Table 1. As could be observed, epi-polygodial showed an IC50 value of 5.0 μM, and benznidazole IC50 value of 16.4 μM. The obtained results indicated also a reduced toxicity to epi-polygodial (CC50 > 200 μM) with a SI > 40. Considering the need for new hit compounds with reduced toxicity for Chagas disease [16] and the potential of polygodial as new scaffolds, epi-polygodial could...
a future candidate for optimization studies in drug design against T. cruzi.

Based on these results, it is interesting to start investigating the molecular action mechanism of this drug against protozoans. Many microbialid drugs act disturbing the cellular membrane, or passing through it to attain the cytoplasm [17] or simply destroying it [18]. Consequently, the understanding of the physical chemical effects when these drugs interact with lipid interfaces is fundamental. Also, lipid-drug interactions are interesting for process involving drug delivery by using liposomes.

When epi-poligodial spread alone on the air-water interface, as a surface active compound, the compression of the interface provokes the increase of the surface pressure monotonically up to 22 mN/m. Further compression leads to a lower rate of increase of surface pressure probably caused by molecular accommodation at the interface. However, it attains a relatively low area per molecule attained (about 8 Å²) in relation to its molecular dimensions suggests aggregation of the compound, formation of multilayers or desorption towards the aqueous subphase, indicating that epi-poligodial does not assemble films at the air-water interface as a stable monomolecular film.

Fig. 2 shows the surface pressure-area (π–A) isotherm for DPPE, alone or mixed with epi-poligodial. This lipid was chosen because PE-based lipids are frequently found in T. cruzi cellular membranes [11]. DPPE presents a typical curve, with a liquid-condensed state appearing with compression, which resembles to that reported in the literature [19]. At lower DPPE molecular densities, the isotherm is shifted to higher areas because of the presence of epi-poligodial, indicating the expelling of epi-poligodial from the monolayer with compression, but it is also possible that this compound is not completely expelled from the interface vicinities since epi-poligodial may interact with the polar heads of DPPE in the shear layer just below the lipid-water interface. Such interaction also would lead to the shift of the isotherm to lower areas due to monolayer condensation. This fact may occur owing to the minimization of the repulsion between adjacent lipid polar heads, which may stabilize the interface due to intermolecular interactions between epi-poligodial and the polar head of DPPE.

Compressional modulus, defined as $-A(\partial \pi/A)_T$, can be calculated directly from the π-A isotherm, as shown in Fig. 2B. In molecular areas lower than 62 Å², it is clear a sudden increased in the compressional modulus values for the pure DPPE monolayer suggesting a progressively compacted monolayer. For the mixed monolayer, we observe in molecular areas between 85 and 70 Å², approximately, a decrease in the modulus from 100 to 60 mN/m, roughly. With further compression, the modulus also increases sharply. The local decrease in the values of the compressional modulus may be associated to the mechanism of expelling of epi-poligodial from a position between adjacent lipid chains towards the polar heads of DPPE, i.e. at the shear layer of the lipid-water interface. In other words, the energy given to the monolayer by the compression, instead of resulting of an elastic increase of surface pressure, is employed for this molecular rearrangement at the interface, with the film presenting, therefore, viscoelastic features.

It is also important to note appearance of a phase transition induced by epi-poligodial, which is visible in the isotherm as a “pseudo”-plateau at 60 Å² (25 mN/m) and can be depicted in the compressibility modulus dependency as a minimum. Such a behavior prove that this transition is of first order and can be attributed to molecular rearrangements of epi-poligodial along the lipid molecules at the air-water interface when subjected to compression.

Fig. 3 shows the so-called stability curves. The monolayers were

Table 1

<table>
<thead>
<tr>
<th>Drug</th>
<th>IC50/µM (95% CI)</th>
<th>CC50/µM (95% CI)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trypanosoma cruzi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epi-polygodial</td>
<td>5.01 (4.51–5.56)</td>
<td>> 200</td>
<td>> 40.0</td>
</tr>
<tr>
<td>Benznidazole</td>
<td>16.40 (13.31–19.59)</td>
<td>> 200</td>
<td>> 12.2</td>
</tr>
</tbody>
</table>

SI: Selectivity index = CC50 of NCTC/IC50 of trypomastigotes; 95% CI – 95% confidence interval.
Compressed to 30 mN/m and barriers stopped in order to follow the spontaneous variation of surface pressure to reach equilibrium. This value of surface pressure was particularly chosen because it represents the lateral pressure of cellular membranes [20].

As the compression mechanism should be too fast for the equilibrium rearrangement to take place, the surface pressure tends to decrease when the monolayer is compressed to higher surface pressures due to mechanisms of molecular relaxation. For pure DPPE, the surface pressure decreases from 30 mN/m to 25 mN/m in 40 min, and for the mixed monolayer, the decrease leads to values as low as 24 mN/m. Considering the resolution of the sensor (below 0.1 mN/m), this difference is significant and indicates a destabilization of the monolayer caused by the presence of epi-polygodial, allowing for molecular rearrangements to relax thermodynamically the monolayer.

PM-IRRAS spectra for the monolayers at 30 mN/m are shown in Fig. 4. The bands centered at 2851 and 2917 cm⁻¹ for pure DPPE are attributed to symmetric and antisymmetric stretches for CH₂, respectively. At the same time, the symmetric and antisymmetric C=O stretching of the terminal –CH₃ groups appear at 1735 and 1220 cm⁻¹, respectively. The frequencies of the CH₂ stretching absorption bands are sensitive to the conformational changes of the chains [21–24] and when the chains are highly ordered (all-trans conformation), narrow absorption bands appear around CH₂. For the mixed monolayer, the antisymmetric band is shifted to 2929 cm⁻¹, indicating an increase of the order of the monolayer [25]. This corroborates with the π-A isotherms, in which at 30 mN/m, the isotherm is shifted to lower areas, being suggested an interaction of epi-polygodial with the polar heads of DPPE.

Panel B shows that the C=O stretch band, centered at 1735 cm⁻¹, is relatively little affected with the presence of epi-polygodial. However, the bands attributed to phosphate (1096 and 1220 cm⁻¹) are clearly altered, suggesting an interaction of the drug with this group. The set of bands that appear at 1500 and 1700 cm⁻¹ are mainly attributed to interfacial waters, which is an artefact resulted from the difference of reflectivity of the interface covered and uncovered by the monolayer [26]. The band centered at 1453 cm⁻¹ is attributed to CH₂ bending vibrations.

Fig. 5 shows the images with BAM for the monolayers. DPPE, clearly, does not present contrast of phases up to 30 mN/m since forms a compacted monolayer. For the mixed monolayer, however, at 20 mN/m, small aggregates are observed as a consequence of the film expansion. With compression, epi-polygodial is rearranged at the interface towards the polar heads of the lipid, and at 30 mN/m, the monolayer became again homogeneous.

With these results, we can note that epi-polygodial disturb monolayers formed with DPPE, expanding the film at high molecular areas, but condensing it at low molecular areas. This process could be confirmed with data of infrared spectroscopy and BAM, in which the vibrational spectra and the morphology are affected upon incorporation of the compound.

Although the monolayer results do not justify directly the anti-trypanosomal activity of epi-polygodial, it can help understand how this drug can interact with lipid/water biological interfaces (such as cell membranes) in the course of its biological activity. More accurate information can be given with further work involving more complex systems such as unsaturated lipids, membrane proteins, and mixtures involving two or more lipids.

4. Conclusions

In this work we report the isolation and anti-T. cruzi activity of sesquiterpene epi-polygodial from leaves of D. brasilensis. Trypanosoma cruzi trypomastigotes were susceptible to treatment using epi-polygodial (IC₅₀ value of 5.01 µM) about 3-fold more effective than the positive control benznidazole (IC₅₀ value of 16.4 µM). Regarding the toxicity, both compounds displayed CC₅₀ values higher than 200 µM and SI values of > 40 and > 12.2 to epi-polygodial and benznidazole, respectively. The obtained results suggested that epi-polygodial could be considered a candidate molecule for further investigations, including in vivo assays against T. cruzi. This compound affected remarkably the physical chemical properties of protozoal cell membrane models, represented by DPPE monolayers. Epi-polygodial expanded DPPE monolayers in higher lipid molecular areas, but condensed them at low molecular densities, suggesting a preferential interaction with the polar heads of the lipid. Such mechanism of action...
These findings may be related to the effects caused by incorporating comprehension on the molecular mechanism of action of this monolayer. We expect that these results have a substantial impact on the thermodynamic, viscoelastic, structural and morphological properties of the biomimetic surface, pointing to a more condensed epi-polygodial into the Langmuir monolayer, especially at surface pressure values that approximate natural cellular membrane pressures.

Acknowledgments

FAPESP (2018/07885-1, 2015/23446-0, 2015/23403-9 and 2013/14262-7) and CNPq (400896/2016-8). We thank CAPES for scholarships for GEGG, TRM, KSG, and TACS. We also thank CNPq for the grant award to AGT, JHGL and LC.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioorg.2018.11.048.

References

Fig. 5. BAM images for DPPE monolayers, alone or mixed with epi-polygodial 5% in mol, as indicated in the inset (dimensions: 4000 × 3600 µm).

